图书馆订阅: Guest
国际不确定性的量化期刊

每年出版 6 

ISSN 打印: 2152-5080

ISSN 在线: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

PARAMETER ESTIMATION OF STOCHASTIC CHAOTIC SYSTEMS

卷 11, 册 2, 2021, pp. 49-62
DOI: 10.1615/Int.J.UncertaintyQuantification.2020032807
Get accessGet access

摘要

A standard way of formulating stochastic differential equation systems is to additively extend the drift of a deterministic system with a random diffusion part, but an increasing trend in applications, such as meteorology, is to perturb deterministic models in multiplicative and highly nonlinear ways, that escape the standard framework. This work aims to present a Bayesian method that enables estimating the parameters of such systems. The approach is well suited for situations were the observation times are irregular with large gaps between, so that the use of usual prediction-based filtering methods is excluded. The key idea is to construct a likelihood that is based on feature vectors that characterize the variability of the system. We illustrate the capability of the method in different scenarios that are both chaotic and stochastic using the classical Lorenz system as the demonstration example.

参考文献
  1. Pedersen, A.R., A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations, Scand. J. Stat, 22(1):55-71, 1995.

  2. At-Sahalia, Y., Closed-Form Likelihood Expansions for Multivariate Diffusions, Ann. Stat., 36(2):906-937, 2008.

  3. Sarkka, S., Bayesian Filtering and Smoothing, Cambridge: Cambridge University Press, 2013.

  4. Chen, N. and Majda, A.J., Filtering Nonlinear Turbulent Dynamical Systems through Conditional Gaussian Statistics, Mon. Weather Rev, 144(12):4885-4917,2016.

  5. Smelyanskiy, V.N., Luchinsky, D.G., Stefanovska, A., and McClintock, P.V.E., Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction, Phys. Rev. Lett., 94:098101, 2005.

  6. Hakkarainen, J., Ilin, A., Solonen, A., Laine, M., Haario, H., Tamminen, J., Oja, E., and Jarvinen, H., On Closure Parameter Estimation in Chaotic Systems, Nonlinear Proc. Geophys., 19(1):127-143, 2012.

  7. Hakkarainen, J., Solonen, A., Ilin, A., Susiluoto, J., Laine, M., Haario, H., and Jarvinen, H., A Dilemma of the Uniqueness of Weather and Climate Model Closure Parameters, Tellus A: Dyn. Meteorol. Oceanogr., 65(1):20147, 2013.

  8. Holm, D.D., Variational Principles for Stochastic Fluid Dynamics, Proc. R. Soc. London, Ser. A, 471(2176):20140963, 2015.

  9. Leutbecher, M., Lock, S.J., Ollinaho, P., Lang, S.T.K., Balsamo, G., Bechtold, P., Bonavita, M., Christensen, H.M., Diamantakis, M., Dutra, E., English, S., Fisher, M., Forbes, R.M., Goddard, J., Haiden, T., Hogan, R.J., Juricke, S., Lawrence, H., MacLeod, D., Magnusson, L., Malardel, S., Massart, S., Sandu, I., Smolarkiewicz, P.K., Subramanian, A., Vitart, F., Wedi,N., and Weisheimer, A., Stochastic Representations of Model Uncertainties at ECMWF: State of the Art and Future Vision, Q. J. R. Meteorol. Soc., 143(707):2315-2339, 2017.

  10. Ollinaho, P., Lock, S.J., Leutbecher, M., Bechtold, P., Beljaars, A., Bozzo, A., Forbes, R.M., Haiden, T., Hogan, R.J., and Sandu, I., Towards Process-Level Representation of Model Uncertainties: Stochastically Perturbed Parametrizations in the ECMWF Ensemble, Q. J. R. Meteorol. Soc, 143(702):408-422, 2017.

  11. Wood, S., Statistical Inference for Noisy Nonlinear Ecological Dynamic Systems, Nature, 466:1102-1104, 2010.

  12. Price, L.F., Drovandi, C.C., Lee, A., and Nott, D.J., Bayesian Synthetic Likelihood, J. Comput. Graph. Stat., 27(1):1-11, 2018.

  13. Ong, V.M.H., Nott, D.J., Tran, M.N., Sisson, S.A., and Drovandi, C.C., Variational Bayes with Synthetic Likelihood, Stat. Comput, 28(4):971-988,2018.

  14. Grassberger, P. and Procaccia, I., Estimation of the Kolmogorov Entropy from a Chaotic Signal, Phys. Rev. A, 28:2591-2593, 1983.

  15. Grassberger, P. and Procaccia, I., Measuring the Strangeness of Strange Attractors, Phys. Rev. D, 9(1):189-208, 1983.

  16. Jarvinen, H., Raisanen, P., Laine, M., Tamminen, J., Ilin, A., Oja, E., Solonen, A., and Haario, H., Estimation of ECHAM5 Climate Model Closure Parameters with Adaptive MCMC, Atmos. Chem. Phys, 10(20):9993-10002, 2010.

  17. Haario, H., Kalachev, L., and Hakkarainen, J., Generalized Correlation Integral Vectors: A Distance Concept for Chaotic Dynamical Systems, Chaos: Interdisc. J. Nonlinear Sci., 25(6):063102, 2015.

  18. Neumeyer, N., A Central Limit Theorem for Two-Sample U-Processes, Stat. Probab. Lett., 67(1):73-85,2004.

  19. Shemyakin, V. and Haario, H., Online Identification of Large Scale Chaotic System, Nonlinear Dyn., 93:961-975,2018.

  20. Brooks, S., Gelman, A., Jones, G., and Meng, X.L., Handbook of Markov Chain Monte Carlo, Boca Raton, FL: CRC Press, 2011.

  21. Andrieu, C. and Roberts, G.O., The Pseudo-Marginal Approach for Efficient Monte Carlo Computations, Ann. Statist., 37(2):697-725,2009.

  22. Haario, H., Laine, M., Mira, A., and Saksman, E., DRAM: Efficient Adaptive MCMC, Stat. Comput, 16(4):339-354, 2006.

  23. Borovkova, S., Burton, R., and Dehling, H., Limit Theorems for Functionals of Mixing Processes with Applications to U-Statistics and Dimension Estimation, Trans. Am. Math. Soc., 353(11):4261-4318, 2001.

  24. Haario, H., Saksman, E., and Tamminen, J., An Adaptive Metropolis Algorithm, Bernoulli, 7(2):223-242,2001.

  25. Palmer, T., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G., Steinheimer, M., and Weisheimer, A., Stochastic Parametrization and Model Uncertainty, ECMWF Technical Memorandum No. 598, p. 42, 2009.

  26. Haario, H., Hakkarainen, J., Maraia, R., and Springer, S., Correlation Integral Likelihood for Stochastic Differential Equations, in 2017 MATRIX Annals, New York: Springer, 2017.

  27. Conrad, P.R., Marzouk, Y.M., Pillai, N.S., and Smith, A., Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations, J. Am. Stat. Assoc., 111(516):1591-1607, 2016.

对本文的引用
  1. Shah Dipal, Springer Sebastian, Haario Heikki, Barbiellini Bernardo, Kalachev Leonid, Data based quantification of synchronization, Foundations of Data Science, 5, 1, 2023. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain