图书馆订阅: Guest
流动显示和图像处理期刊

每年出版 4 

ISSN 打印: 1065-3090

ISSN 在线: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

A REVIEW ON UNSTEADY FLUID-FLEXIBLE STRUCTURE INTERACTION

卷 29, 册 2, 2022, pp. 43-86
DOI: 10.1615/JFlowVisImageProc.2022040041
Get accessDownload

摘要

The present work reviews the flow interactions of structures with flexible configurations in practical applications. The flow dynamics involved in flexible structures under unsteady aerodynamics and changes in the wake morphology of the attached body are covered in this study. Particle image velocimetry data recorded by the authors in their research are summarized. The similarities between the wake structures of rigid and flexible structures attached to bluff bodies are also explored in this article. The results obtained in this study are useful for researchers who wish to understand flow control over streamlined and bluff bodies using flexible structures. In addition, the flow dynamics involved in the flight of natural swimmers and fliers can be understood from this review.

参考文献
  1. Addo-Akoto, R., Han, J.-S., and Han, J.-H., Roles of Wing Flexibility and Kinematics in Flapping Wing Aerodynamics, J. Fluids Struct., vol. 104, p. 103317, 2021. DOI: 10.1016/j.jfluidstructs.2021.103317.

  2. Akaydin, H.D., Elvin, N., and Andreopoulos, Y., Wake of a Cylinder: A Paradigm for Energy Harvesting with Piezoelectric Materials, Exp. Fluids, vol. 49, no. 1, pp. 291-304, 2010. DOI: 10.1007/s00348-010-0871-7.

  3. An, X., Song, B., Tian, W., and Ma, C., Design and CFD Simulations of a Vortex-Induced Piezoelectric Energy Converter (VIPEC) for Underwater Environment, Energies, vol. 11, no. 2, pp. 1-15, 2018. DOI: 10.3390/en11020330.

  4. Apelt, C.J. and West, G.S., The Effects of Wake Splitter Plates on Bluff-Body Flow in the Range 104 < R < 5 x 104. Part 2, J. FluidMech., vol. 71, no. 1, pp. 145-160, 1975. DOI: 10.1017/S0022112075002479.

  5. Ashraf, M.A., Young, J., and Lai, J.C.S., Reynolds Number, Thickness and Camber Effects on Flapping Airfoil Propulsion, J. Fluids Struct., vol. 27, no. 2, pp. 145-160, 2011. DOI: 10.1016/j.jfluid-structs.2010.11.010.

  6. Bagheri, S., Mazzino, A., and Bottaro, A., Spontaneous Symmetry Breaking of a Hinged Flapping Filament Generates Lift, Phys. Rev. Lett., vol. 109, no. 15, pp. 1-5, 2012. DOI: 10.1103/PhysRevLett.109. 154502.

  7. Bearman, P.W. and Owen, J.C., Reduction of Bluff-Body Drag and Suppression of Vortex Shedding by the Introduction of Wavy Separation Lines, J. Fluids Struct., vol. 12, no. 1, pp. 123-130, 1998. DOI: 10.1006/jfls.1997.0128.

  8. Binyet, E., Huang, C.-Y., and Chang, J.-Y., Characterization of a Vortex-Induced Vibrating Thin Plate Energy Harvester with Particle Image Velocimetry, Microsyst. Technol., vol. 24, no. 11, pp. 4569-4576, 2018. DOI: 10.1007/s00542-018-3935-x.

  9. Binyet, E.M., Chang, J.-Y. and Huang, C.-Y., Flexible Plate in the Wake of a Square Cylinder for Piezoelectric Energy Harvesting-Parametric Study Using Fluid-Structure Interaction Modeling, Energies, vol. 13, no. 10, p. 2645, 2020. DOI: 10.3390/en13102645.

  10. Cai, J., Chng, L.T., and Tsai, H.M., On Vortical Flows Shedding from a Bluff Body with a Wavy Trailing Edge, Phys. Fluids, vol. 20, no. 6, p. 064102, 2008. DOI: 10.1063/1.2931682.

  11. Cete, A.R. and Unal, M.F., Effects of Splitter Plate on Wake Formation from a Circular Cylinder: A Discrete Vortex Simulation, Comput. FluidDyn., vol. 1, pp. 349-57, 1992.

  12. Chauhan, M.K., Dutta, S., and Gandhi, B.K., Wake Flow Modification behind a Square Cylinder Using Control Rods, J. Wind Eng. Ind. Aerodyn., vol. 184, no. 2019, pp. 342-361, 2019. DOI: 10.1016/j. jweia.2018.12.002.

  13. Chauhan, M.K., Dutta, S., Gandhi, B.K., and More, B.S., Experimental Investigation of Flow over a Transversely Oscillating Square Cylinder at Intermediate Reynolds Number, J. Fluids Eng., vol. 138, no. 5, pp. 1-19, 2016. DOI: 10.1115/1.4031878.

  14. Chauhan, M.K., Dutta, S., More, B.S., and Gandhi, B.K., Experimental Investigation of Flow over a Square Cylinder with an Attached Splitter Plate at Intermediate Reynolds Number, J. Fluids Struct., vol. 76, pp. 319-335, 2018. DOI: 10.1016/j.jfluidstructs.2017.10.012.

  15. Chen, S., Li, H., Guo, S., Tong, M., and Ji, B., Unsteady Aerodynamic Model of Flexible Flapping Wing, Aerosp. Sci. Technol., vol. 80, pp. 354-367, 2018. DOI: 10.1016/j.ast.2018.07.017.

  16. Csaba, J.F., Qiu, H., and Shyy, W., Research Paper Effects of Aspect Ratio on Flapping Wing Aerodynamics in Animal Flight, vol. 30, pp. 776-786, 2014.

  17. DeMauro, E.P., Leong, C.M., and Amitay, M., Interaction of a Synthetic Jet with the Flow over a Low Aspect Ratio Cylinder, Phys. Fluids, vol. 25, no. 6, p. 064104, 2013. DOI: 10.1063/1.4811710.

  18. De Nayer, G. and Breuer, M., Numerical FSI Investigation Based on LES: Flow past a Cylinder with a Flexible Splitter Plate Involving Large Deformations (FSI-PfS-2a), Int. J. Heat Fluid Flow, vol. 50, pp. 300-315, 2014. DOI: 10.1016/j.ijheatfluidflow.2014.08.013.

  19. De Nayer, G., Kalmbach, A., Breuer, M., Sicklinger, S., and Wuchner, R., Flow past a Cylinder with a Flexible Splitter Plate: A Complementary Experimental-Numerical Investigation and a New FSI Test Case (FSI-PfS-1a), Comput. Fluids, vol. 99, pp. 18-43, 2014. DOI: 10.1016/j.compfluid.2014.04.020.

  20. Deng, H., Xiao, S., Huang, B., Yang, L., Xiang, X., and Ding, X., Design Optimization and Experimental Study of a Novel Mechanism for a Hover-Able Bionic Flapping-Wing Micro Air Vehicle, Bioinspiration Biomimetrics, vol. 16, no. 2, p. 026005, 2020.

  21. Deshpande, P., Antony, R., Narayanan, P., Rajashesan, A., Singh, D., and Ramesh, G., Visualization and PIV Measurements of Leading-Edge Vortex Generated by Rigid Flapping Wings of Different Planforms, AIAA Aviation, vol. 32, pp. 2014-2880, 2014.

  22. Dickinson, M.H., Lehmann, F.O., and Sane, S.P., Wing Rotation and the Aerodynamic Basis of Insect Right, Science, vol. 284, no. 5422, pp. 1954-1960, 1999. DOI: 10.1126/science.284.5422.1954.

  23. Duan, F. and Wang, J., Fluid-Structure-Sound Interaction in Noise Reduction of a Circular Cylinder with Flexible Splitter Plate, J. Fluid Mech., vol. 920, 2021.

  24. Ellington, C.P., The Novel Aerodynamics of Insect Flight: Applications to Micro-Air Vehicles, J. Exp. Biol., vol. 202, no. 23, pp. 3439-3448, 1999.

  25. Gluck, M., Breuer, M., Durst, F., Halfmann, A., and Rank, E., Computation of Fluid-Structure Interaction on Lightweight Structures, J. Wind Eng. Ind. Aerodyn., vol. 89, nos. 14-15, pp. 1351-1368, 2001. DOI: 10.1016/S0167-6105(01)00150-7.

  26. Goushcha, O., Elvin, N., and Andreopoulos, Y., Interactions of Vortices with a Flexible Beam with Applications in Fluidic Energy Harvesting, Appl. Phy. Lett., vol. 104, no. 2, pp. 2012-2017, 2014. DOI: 10.1063/1.4861927.

  27. Heathcote, S., Martin, D., and Gursul, I., Flexible Flapping Airfoil Propulsion at Zero Freestream Velocity, AIAA J, vol. 42, no. 11, pp. 2196-2204, 2004. DOI: 10.2514/1.5299.

  28. Heathcote, S., Wang, Z., and Gursul, I., Effect of Spanwise Flexibility on Flapping Wing Propulsion, J. Fluids Struct., vol. 24, no. 2, pp. 183-199, 2008. DOI: 10.1016/j.jfluidstructs.2007.08.003.

  29. Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y.-C., and Ho, C.-M., Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers, Prog. Aerosp. Sci., vol. 39, no. 8, pp. 635-681, 2003. DOI: 10.1016/j. paerosci.2003.04.001.

  30. Hu, H., Kumar, A., Abate, G., and Albertani, R., An Experimental Study of Flexible Membrane Wings in Flapping Flight, Proc. of 47th AIAA Aerospace Sciences, pp. 1-16, 2009. doi: 10.2514/6.2009-876.

  31. Hu, Y. and Wang, J.J., The Effects of Attached Flexible Tail Length on the Flow Structure of an Oscillating Cylinder, Sci. China Phys. Mech. Astron, vol. 56, no. 2, pp. 340-352, 2013. DOI: 10.1007/s11433-013-5014-8.

  32. Hu, Y., Pan, C., and Wang, J. J., Vortex Structure for Flow over a Heaving Cylinder with a Flexible Tail, Exp. Fluids, vol. 55, no. 2, 2014. DOI: 10.1007/s00348-014-1682-z.

  33. Hua, R.-N., Zhu, L., and Lu, X.-Y., Locomotion of a Flapping Flexible Plate, Phys. Fluids, vol. 25, no. 12, p. 121901, 2013. DOI: 10.1063/1.4832857.

  34. Jin, Y., Kim, J.-T., Hong, L., and Chamorro, L.P., Flow-Induced Oscillations of Low-Aspect-Ratio Flexible Plates with Various Tip Geometries, Phys. Fluids, vol. 30, no. 9, p. 097102, 2018. DOI: 10.1063/1.5046950.

  35. Jukes, T.N. and Choi, K.-S., Flow Control around a Circular Cylinder Using Pulsed Dielectric Barrier Discharge Surface Plasma, Phys. Fluids, vol. 21, no. 8, p. 084103, 2009. DOI: 10.1063/1.3194307.

  36. Kang, C.-K., Aono, H., Cesnik, C.E.S., and Shyy, W., Effects of Flexibility on the Aerodynamic Performance of Flapping Wings, J. Fluid Mech., vol. 689, pp. 32-74, 2011. DOI: 10.1017/jfm.2011.428.

  37. Kundu, A., Soti, A.K., Bhardwaj, R., and Thompson, M.C., The Response of an Elastic Splitter Plate Attached to a Cylinder to Laminar Pulsatile Flow, J. Fluids Struct., vol. 68, pp. 423-443, 2017. DOI: 10.1016/j.jfluidstructs.2016.11.011.

  38. Lee, J.H., Huang, W.-X., and Sung, H.J., Flapping Dynamics of a Flexible Flag in a Uniform Flow, Fluid Dyn. Res., vol. 46, no. 5, p. 055517, 2014. DOI: 10.1088/0169-5983/46/5/055517.

  39. Lee, J. and You, D., Study of Vortex-Shedding-Induced Vibration of a Flexible Splitter Plate behind a Cylinder, Phys. Fluids, vol. 25, no. 11, p. 110811, 2013. DOI: 10.1063/1.4819346.

  40. Liang, S., Wang, J., Xu, B., Wu, W., and Lin, K., Vortex-Induced Vibration and Structure Instability for a Circular Cylinder with Flexible Splitter Plates, J. Wind Eng. Ind. Aerodyn., vol. 174, pp. 200-209, 2018. DOI: 10.1016/j.jweia.2017.12.030.

  41. Marais, C., Thiria, B., Wesfreid, J.E., and Godoy-Diana, R., Stabilizing Effect of Flexibility in the Wake of a Flapping Foil, J. Fluid Mech, vol. 710, pp. 659-669, 2012. DOI: 10.1017/jfm.2012.390.

  42. Mat Ali, M.S., Doolan, C.J., and Wheatley, V., Low Reynolds Number Flow over a Square Cylinder with a Splitter Plate, Phys. Fluids, vol. 23, no. 3, p. 033602, 2011. DOI: 10.1063/1.3563619.

  43. Mazaheri, K. and Ebrahimi, A., Experimental Study on Interaction of Aerodynamics with Flexible Wings ofFlapping Vehicles in Hovering and Cruise Flight,Arch. Appl. Mech., vol. 80, no. 11, pp. 1255-1269, 2010. DOI: 10.1007/s00419-009-0360-8.

  44. Miao, J.-M. and Ho, M.-H., Effect of Flexure on Aerodynamic Propulsive Efficiency of Flapping Flexible Airfoil, J. Fluids Struct., vol. 22, no. 3, pp. 401-419, 2006. DOI: 10.1016/j.jfluidstructs.2005.11.004.

  45. Noel, J., Yadav, R., Li, G., and Daqaq, M.F., Improving the Performance of Galloping Micro-Power Generators by Passively Manipulating the Trailing Edge, Appl. Phys. Lett., vol. 112, no. 8, pp. 1-6, 2018. DOI: 10.1063/1.5016102.

  46. Owen, J.C., Szewczyk, A.A., and Bearman, P.W., Suppression of Karman Vortex Shedding, Phys. Fluids, vol. 12, no. 9, p. S9, 2000. DOI: 10.1063/1.4739170.

  47. Park, H., Lee, D., Jeon, W.-P., Hahn, S., Kim, J., Kim, J., Choi, J., and Choi, H., Drag Reduction in Flow over a Two-Dimensional Bluff Body with a Blunt Trailing Edge Using a New Passive Device, J. Fluid Mech., vol. 563, p. 389, 2006. DOI: 10.1017/S0022112006001364.

  48. Qin, J., Li, L., Hao, Y., Xu, J., Bai, F., and Ye, J., Analysis of Aerodynamic Characteristics of Flexible Flapping Flap with Bidirectional Fluid-Structure Interaction, AIP Adv., vol. 10, no. 10, p. 105108, 2020. DOI: 10.1063/5.0021567.

  49. Rastan, M.R., Sohankar, A., Doolan, C., Moreau, D., Shirani, E., and Alam, M.M., Controlled Flow over a Finite Square Cylinder Using Suction and Blowing, Int. J. Mech. Sci., vol. 156, pp. 410-434, 2019. DOI: 10.1016/j.ijmecsci.2019.04.013.

  50. Razavi, S.E., Osanloo, B., and Sajedi, R., Application of Splitter Plate on the Modification of Hydro-Thermal Behavior of PPFHS, Appl. Therm. Eng., vol. 80, pp. 97-108, 2015. DOI: 10.1016/j.applthermaleng.2015.01.046.

  51. Roshko, A., On the Development of Turbulent Wakes from Vortex Streets, National Advisory Committee for Aeronautics, Washington, DC, from https://resolver.caltech.edu/CaltechAUTHORS:ROSnacarpt1191, 1954.

  52. Ryu, J., Park, S.G., Huang, W.X., and Sung, H.J., Hydrodynamics of a Three-Dimensional Self-Propelled Flexible Plate, Phys. Fluids, vol. 31, no. 2, p. 021902, 2019. DOI: 10.1063/1.5064482.

  53. Ryu, J., Park, S.G., Kim, B., and Sung, H.J., Flapping Dynamics of an Inverted Flag in a Uniform Flow, J. Fluids Struct., vol. 57, pp. 159-169, 2015. DOI: 10.1016/j.jfluidstructs.2015.06.006.

  54. Sahu, T.R., Furquan, M., Jaiswal, Y., and Mittal, S., Flow-Induced Vibration of a Circular Cylinder with Rigid Splitter Plate, J. Fluids Struct., vol. 89, pp. 244-256, 2019. DOI: 10.1016/j.jfluidstructs.2019.03.015.

  55. Sajedi, R., Osanloo, B., Talati, F., and Taghilou, M., Splitter Plate Application on the Circular and Square Pin Fin Heat Sinks, Microelectron. Reliab., vol. 62, pp. 91-101, 2016. DOI: 10.1016/j.microrel.2016.03.026.

  56. Sane, S.P. and Dickinson, M.H., The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight, J. Exp. Biol., vol. 205, no. 8, pp. 1087-1096, 2002.

  57. Satheesh, S., Diaz-Ojeda, H.R., Gonzalez, L.M., and Huera-Huarte, F. J., Hydrodynamic Forces on a Cylinder with a Flexible Splitter Plate Near the Free Surface, J. Offshore Mech. Arct. Eng., vol. 142, no. 6, p. 061202, 2020. DOI: 10.1115/1.4047199.

  58. Sharma, K.R. and Dutta, S., IHMTC2017-01-1370, IHMTC-2017, Proc. of 24th National and 2nd Int. ISHMT-ASTFE Heat and Mass Transfer Conf., ISHMTC Digital Library, pp. 1087-1094, 2017.

  59. Sharma, K.R. and Dutta, S., Flow over a Square Cylinder with an Attached Cambered Flexible Wake Splitter, Proc. ofTopical Problems ofFluid Mechanics 2019, D. Simurda and T. Bodnar, Eds., pp. 109-116, 2019.

  60. Sharma, K.R. and Dutta, S., Flow Control over a Square Cylinder Using Attached Rigid and Flexible Splitter Plate at Intermediate Flow Regime, Phys. Fluids, vol. 32, no. 1, p. 014104, 2020a. DOI: 10.1063/1.5127905.

  61. Sharma, K.R. and Dutta, S., Wake Sensitivity of Flow over a Square Cylinder with Respect to Length of an Attached Flexible Wake Splitter, J. Flow Visualiz. Image Process., vol. 27, no. 3, pp. 269-296, 2020b.

  62. Sharma, K.R. and Dutta, S., Influence of Length and Effective Stiffness of an Attached Flexible Foil for Flow over a Square Cylinder, J. Fluids Struct., vol. 104, p. 103298, 2021. DOI: 10.1016/j.jfluidstructs.2021.103298.

  63. Shen, P., Lin, L., Wei, Y., Dou, H., and Tu, C., Vortex Shedding Characteristics around a Circular Cylinder with Flexible Film, Eur. J. Mech. B Fluids, vol. 77, pp. 201-210, 2019. DOI: 10.1016/j.euromechflu.2019.05.008.

  64. Shinde, S.Y. and Arakeri, J.H., Flexibility in Flapping Foil Suppresses Meandering of Induced Jet in Absence of Free Stream, J. FluidMech., vol. 757, pp. 231-250, 2014. DOI: 10.1017/jfm.2014.480.

  65. Shukla, S., Govardhan, R.N., and Arakeri, J.H., Flow over a Cylinder with a Hinged-Splitter Plate, J. Fluids Struct., vol. 25, no. 4, pp. 713-720, 2009. DOI: 10.1016/jjfluidstructs.2008.11.004.

  66. Shukla, S., Govardhan, R.N., and Arakeri, J.H., Dynamics of a Flexible Splitter Plate in the Wake of a Circular Cylinder, J. Fluids Struct., vol. 41, pp. 127-134, 2013. DOI: 10.1016/j.jfluidstructs.2013.03.002.

  67. Song, J., Hu, G., Tse, K.T., Li, S.W., and Kwok, K.C.S., Performance of a Circular Cylinder Piezoelectric Wind Energy Harvester Fitted with a Splitter Plate, Appl. Phys. Lett., vol. 111, no. 22, pp. 1-5, 2017. DOI: 10.1063/1.5008918.

  68. Sosa, R., Artana, G., Benard, N., and Moreau, E., Mean Lift Generation on Cylinders Induced with Plasma Actuators, Exp. Fluids, vol. 51, no. 3, pp. 853-860, 2011. DOI: 10.1007/s00348-011-1108-0.

  69. Sun, M. and Tang, J., Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion., J. Exp. Biol., vol. 205, no. 1, pp. 55-70, 2002.

  70. Sun, X., Suh, C.S., Sun, C., and Yu, B., Vortex-Induced Vibration of a Flexible Splitter Plate Attached to a Square Cylinder in Laminar Flow, J. Fluids Struct., vol. 101, p. 103206, 2021. DOI: 10.1016/j.jfluid-structs.2020.103206.

  71. Teksin, S. and Yayla, S., Effects of Flexible Splitter Plate in the Wake of a Cylindrical Body, J. Appl. Fluid Mech, vol. 9, no. 6, pp. 3053-59, 2016.

  72. Teksin, S. and Yayla, S., Effects of Flexible Plate Attached to the Rear of the Cylinder on Flow Structure, J. Mech. Sci. Technol., vol. 31, no. 3, pp. 1195-1201, 2017. DOI: 10.1007/s12206-017-0218-y.

  73. Thomas, F.O., Kozlov, A., and Corke, T.C., Plasma Actuators for Cylinder Flow Control and Noise Reduction, AIAA J., vol. 46, no. 8, pp. 1921-1931, 2008. DOI: 10.2514/1.27821.

  74. Tronchin, T., David, L., and Farcy, A., Loads and Pressure Evaluation of the Flow around a Flapping Wing, PIV13, Proc. of 10th Int. Symp. on Particle Image Velocimetry, 2013.

  75. von Ellenrieder, K.D., Parker, K., and Soria, J., Fluid Mechanics of Flapping Wings, Exp. Therm. Fluid Sci., vol. 32, no. 8, pp. 1578-1589, 2008. DOI: 10.1016/j.expthermflusci.2008.05.003.

  76. Warui, H.M. and Fujisawa, N., Feedback Control of Vortex Shedding by Cross-Flow Cylinder Oscillations, Exp. Fluids, vol. 21, pp. 49-56, 1996.

  77. Watman, D. and Furukawa, T., A Visualization System for Analysis of Micro Aerial Vehicle Scaled Flapping Wings, J. Intell. Rob. Syst., vol. 51, no. 3, pp. 369-381, 2008. DOI: 10.1007/s10846-007-9191-4.

  78. Wu, J., Qiu, Y.L., Shu, C., and Zhao, N., Flow Control of a Circular Cylinder by Using an Attached Flexible Filament, Phys. Fluids, vol. 26, no. 10, p. 103601, 2014a. DOI: 10.1063/1.4896942.

  79. Wu, J., Shu, C., and Zhao, N., Investigation of Flow Characteristics around a Stationary Circular Cylinder with an Undulatory Plate, Eur. J. Mech. BFluids, vol. 48, pp. 27-39, 2014b. DOI: 10.1016/j.euromechflu.2014.04.007.

  80. Wu, J., Shu, C., and Zhao, N., Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder with a Hinged Flat Plate, Phys. Fluids, vol. 26, no. 6, p. 063601, 2014c. DOI: 10.1063/1.4880135.

  81. Wu, J. and Shu, C., Numerical Study of Flow Characteristics behind a Stationary Circular Cylinder with a Flapping Plate, Phys. Fluids, vol. 23, no. 7, p. 073601, 2011. DOI: 10.1063/1.3601484.

  82. Xiao, Q., Liu, W., and Hu, J., Parametric Study on a Cylinder Drag Reduction Using Downstream Undulating Foil, Eur. J. Mech. B Fluids, vol. 36, pp. 48-62, 2012. DOI: 10.1016/j.euromechflu.2012.04.005.

  83. Xiao, Q., Sun, K., Liu, H., and Hu, J., Computational Study on near Wake Interaction between Undulation Body and a D-Section Cylinder, Ocean Eng., vol. 38, no. 4, pp. 673-683, 2011. DOI: 10.1016/j. oceaneng.2010.12.017.

  84. Yayla, S. and Teksin, S., Flow Measurement around a Cylindrical Body by Attaching Flexible Plate: A PIV Approach, FlowMeas. Instrum., vol. 62, pp. 56-65, 2018. DOI: 10.1016/j.flowmeasinst.2018.05.003.

  85. Yayla, S., Teksin, S., and Sahin, B., Control of Flow Structures around a Cylinder in Deep Water Employing a Passive Control Element, FluidDyn. Res., vol. 51, no. 5, p. 055512, 2019. DOI: 10.1088/1873-7005/ab3e1b.

  86. Yu, X. and Yu, X., Laboratory Evaluation of Time-Domain Reflectometry for Bridge Scour Measurement: Comparison with the Ultrasonic Method, Adv. Civ. Eng., vol. 2010, p. 508172, 2010. DOI: 10.1155/2010/508172.

  87. Zhang, Y. and Zhu, K., Flow over an Inline Oscillating Circular Cylinder in the Wake of a Stationary Circular Cylinder, FluidDyn. Res., vol. 49, no. 1, p. 015504, 2017. DOI: 10.1088/0169-5983/49/1/015504.

  88. Zhou, X., Wang, J.J., and Hu, Y., Experimental Investigation on the Flow around a Circular Cylinder with Upstream Splitter Plate, J. Visualiz., vol. 22, 683-695, 2019. DOI: 10.1007/s12650-019-00560-x.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain