图书馆订阅: Guest
Journal of Machine Learning for Modeling and Computing

每年出版 4 

ISSN 打印: 2689-3967

ISSN 在线: 2689-3975

Indexed in

MESH-BASED GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR MODELING MATERIALS WITH MICROSTRUCTURE

卷 3, 册 1, 2022, pp. 1-30
DOI: 10.1615/JMachLearnModelComput.2021039688
Get accessDownload

摘要

Predicting the evolution of a representative sample of a material with microstructure is a fundamental problem in homogenization. In this work we propose a graph convolutional neural network that utilizes the discretized representation of the initial microstructure directly, without segmentation or clustering. Compared to feature-based and pixel-based convolutional neural network models, the proposed method has a number of advantages: (a) it is deep in that it does not require featurization but can benefit from it, (b) it has a simple implementation with standard convolutional filters and layers, (c) it works natively on unstructured and structured grid data without interpolation (unlike pixel-based convolutional neural networks), and (d) it preserves rotational invariance like other graph-based convolutional neural networks. We demonstrate the performance of the proposed network and compare it to traditional pixel-based convolution neural network models and feature-based graph convolutional neural networks on multiple large datasets.

参考文献
  1. Albawi, S., Mohammed, T.A., and Al-Zawi, S., Understanding of a Convolutional Neural Network, in Proc. of 2017Int. Conf. on Engineering and Technology (ICET), Antalya, Turkey, August 21-23,2017.

  2. Belkin, M. and Niyogi, P., Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Comput, vol. 15, no. 6, pp. 1373-1396,2003.

  3. Bessa, M.A., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., and Liu, W.K., A Frame-work for Data-Driven Analysis of Materials under Uncertainty: Countering the Curse of Dimensionality, Comput. Methods Appl. Mech. Eng., vol. 320, pp. 633-667,2017.

  4. Bishop, C.M., Pattern Recognition and Machine Learning, Berlin/Heidelberg, Germany: Springer, 2006.

  5. Bishop, J. and Hill, R., CXXVIII. A Theoretical Derivation of the Plastic Properties of a Polycrystalline Face-Centred Metal, London, Edinburgh, Dublin Philosoph. Mag. J. Sci., vol. 42, no. 334, pp. 1298- 1307,1951a.

  6. Bishop, J. and Hill, R., XLVI. A Theory of the Plastic Distortion of a Polycrystalline Aggregate under Combined Stresses, London, Edinburgh, Dublin Philosoph. Mag. J. Sci., vol. 42, no. 327, pp. 414-427, 1951b.

  7. Bjorck, J., Gomes, C., Selman, B., and Weinberger, K.Q., Understanding Batch Normalization, 2018. arXiv: 1806.02375.

  8. Bouquerel, J., Verbeken, K., and De Cooman, B., Microstructure-Based Model for the Static Mechanical Behavior of Multiphase Steels, Acta Mater., vol. 54, no. 6, pp. 1443-1456,2006.

  9. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P., Geometric Deep Learning: Going beyond Euclidean Data, IEEE Signal Proc. Mag, vol. 34, no. 4, pp. 18-42,2017.

  10. Brown, J., Carroll, J., Huddleston, B., Casias, Z., and Long, K., A Multiscale Study of Damage in Elastomeric Syntactic Foams, J. Mater. Sci., vol. 53, no. 14, pp. 10479-10498,2018.

  11. Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y., Spectral Networks and Locally Connected Networks on Graphs, 2013. arXiv: 1312.6203.

  12. Cekada, M., Panjan, P., Kek-Merl, D., Panjan, M., and Kapun, G., SEM Study of Defects in PVD Hard Coatings, Vacuum, vol. 82, no. 2, pp. 252-256, 2007.

  13. Chen, G., Hong, Y., Zhang, Y., Kim, J., Huynh, K.M., Ma, J., Lin, W., Shen, D., Yap, P.T., and the UNC/UMN Baby Connectome Project Consortium, Estimating Tissue Microstructure with Undersampled Diffusion Data via Graph Convolutional Neural Networks, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, pp. 280-290,2020.

  14. Chidester, B., Do, M.N., and Ma, J., Rotation Equivariance and Invariance in Convolutional Neural Networks, 2018. arXiv: 1805.12301.

  15. Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y., Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation, 2014. arXiv: 1406.1078.

  16. Chowdhury, A., Kautz, E., Yener, B., and Lewis, D., Image Driven Machine Learning Methods for Microstructure Recognition, Comput. Mater. Sci., vol. 123, pp. 176-187,2016.

  17. Cohen, T. and Welling, M., Group Equivariant Convolutional Networks, in Proc. of Int. Conf. on Machine Learning, pp. 2990-2999, New York, NY, June 19-24,2016.

  18. Dawson, P.R., Computational Crystal Plasticity, Int. J. Solids Struct., vol. 37, nos. 1-2, pp. 115-130,2000.

  19. DeCost, B.L., Francis, T., and Holm, E.A., Exploring the Microstructure Manifold: Image Texture Repre-sentations Applied to Ultrahigh Carbon Steel Microstructures, Acta Mater., vol. 133, pp. 30-40,2017.

  20. Defferrard, M., Bresson, X., and Vandergheynst, P., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, 2016. arXiv: 1606.09375.

  21. Dieleman, S., De Fauw, J., and Kavukcuoglu, K., Exploiting Cyclic Symmetry in Convolutional Neural Networks, in Proc. of 33rdInt. Conf. on Machine Learning, New York, NY, pp. 1889-1898, June 19-24, 2016.

  22. Finzi, M., Stanton, S., Izmailov, P., and Wilson, A.G., Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data, in Proc. of Int. Conf. on Machine Learning, Virtual Event, pp. 3165-3176, July 13-18,2020.

  23. Frankel, A.L., Jones, R.E., Alleman, C., and Templeton, J.A., Predicting the Mechanical Response of Oligocrystals with Deep Learning, Comput. Mater. Sci, vol. 169, p. 109099,2019.

  24. Frankel, A., Tachida, K., and Jones, R., Prediction of the Evolution of the Stress Field of Polycrystals Undergoing Elastic-Plastic Deformation with a Hybrid Neural Network Model, Mach. Learn.: Sci. Technol., vol. 1, no. 3, p. 035005,2020.

  25. Fulton, L., Modi, V., Duvenaud, D., Levin, D.I., and Jacobson, A., Latent-Space Dynamics for Reduced Deformable Simulation, Computer Graphics Forum, vol. 38, Hoboken, NJ: Wiley Online Library, pp. 379-391,2019.

  26. Ghosh, S. and Dimiduk, D., Eds., Computational Methods for Microstructure-Property Relationships, vol. 1, Berlin/Heidelberg, Germany: Springer, 2011.

  27. Glorot, X. and Bengio, Y., Understanding the Difficulty of Training Deep Feedforward Neural Networks, in Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, pp. 249-256, Sardinia, Italy, May 13-15,2010.

  28. Glorot, X., Bordes, A., and Bengio, Y., Deep Sparse Rectifier Neural Networks, in Proc. of the 14th Int. Conf. on Artificial Intelligence and Statistics, pp. 315-323,Ft. Lauderdale, FL, USA, April 11-13,2011.

  29. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, Cambridge, MA: MIT Press, 2016.

  30. Groeber, M.A. and Jackson, M.A., DREAM.3D, accessed September 2020, from http: // dream3d.bluequartz. net, 2019.

  31. Hammond, D.K., Vandergheynst, P., and Gribonval, R., Wavelets on Graphs via Spectral Graph Theory, Appl. Comput. Harmonic Anal., vol. 30,no.2,pp. 129-150,2011.

  32. Hasanzadeh, A., Hajiramezanali, E., Duffield, N., Narayanan, K.R., Zhou, M., and Qian, X., Semi-Implicit Graph Variational Auto-Encoders, 2019. arXiv: 1908.07078.

  33. Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction, Math. Intel., vol. 27, no. 2, pp. 83-85,2005.

  34. He, X. andNiyogi, P., Locality Preserving Projections, Advances in Neural Information Processing Systems 16, pp. 153-160, Vancouver, Canada, December 8-13,2004.

  35. Heckman, N.M., Ivanoff, T.A., Roach, A.M., Jared, B.H., Tung,D.J., Brown-Shaklee, H.J., Huber, T., Saiz, D.J., Koepke, J.R., Rodelas, J.M.,Madison, J.D., Salzbrenner, B.C., Swiler, L.P., Jones, R.E., andBoyce, B.L., Automated High-Throughput Tensile Testing Reveals Stochastic Process Parameter Sensitivity, Mater. Sci. Eng.: A, vol. 772, p. 138632,2020.

  36. Herriott, C. and Spear, A.D., Predicting Microstructure-Dependent Mechanical Properties in Additively Manufactured Metals with Machine- and Deep-Learning Methods, Comput. Mater. Sci, vol. 175, p. 109599,2020.

  37. Hochreiter, S. and Schmidhuber, J., Long Short-Term Memory, Neural Comput, vol. 9, no. 8, pp. 1735-1780,1997.

  38. Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. National Acad. Sci, vol. 79, no. 8, pp. 2554-2558,1982.

  39. Jones, R., Templeton, J.A., Sanders, C.M., and Ostien, J.T., Machine Learning Models of Plastic Flow Based on Representation Theory, Comput. Model. Eng. Sci., vol. 117, no. 3, pp. 309-342,2018.

  40. Kanada, T., Onuki, M., and Tanaka, Y., Low-Rank Sparse Decomposition of Graph Adjacency Matrices for Extracting Clean Clusters, in Proc. of 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1153-1159, Honolulu, Hawaii, November 12-15, 2018.

  41. Khalil, M., Teichert, G., Alleman, C., Heckman, N., Jones, R., Garikipati, K., and Boyce, B., Modeling Strength and Failure Variability Due to Porosity in Additively Manufactured Metals, Comput. Methods Appl. Mech. Eng., vol. 373, p. 113471,2021.

  42. Kipf, T.N. and Welling, M., Semi-Supervised Classification with Graph Convolutional Networks, 2016a. arXiv: 1609.02907.

  43. Kipf, T.N. and Welling, M., Variational Graph Auto-Encoders, 2016b. arXiv: 1611.07308.

  44. Kocks, U., Laws for Work-Hardening and Low-Temperature Creep, J. Eng. Mater. Technol., vol. 98, no. 1, pp. 76-85,1976.

  45. Kondo,R., Yamakawa, S., Masuoka, Y., Tajima, S., and Asahi, R.,Microstructure Recognition Using Convolutional Neural Networks for Prediction of Ionic Conductivity in Ceramics, Acta Mater., vol. 141, pp. 29-38,2017.

  46. Kondor, R. and Trivedi, S., On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups, in Proc. of 35th Int. Conf. on Machine Learning, Stockholm, Sweden, pp. 2747-2755, July 10-15,2018.

  47. Kraft, T., Rettenmayr, M., and Exner, H., An Extended Numerical Procedure for Predicting Microstructure and Microsegregation of Multicomponent Alloys, Model. Simul. Mater. Sci. Eng., vol. 4, no. 2, p. 161, 1996.

  48. Krizhevsky, A., Sutskever, I., and Hinton, G.E., Imagenet Classification with Deep Convolutional Neural Networks, Adv. Neural Inform. Proc. Sys., vol. 25, pp. 1097-1105,2012.

  49. Kroner, E., On the Plastic Deformation ofPolycrystals, Acta Metallurg., vol. 9, no. 2, pp. 155-161,1961.

  50. Le, C., Bruns, T.E., and Tortorelli, D.A., Material Microstructure Optimization for Linear Elastodynamic Energy Wave Management, J. Mech. Phys. Solids, vol. 60, no. 2, pp. 351-378,2012.

  51. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V., Speeding-Up Convolutional Neural Networks Using Fine-Tuned CP-Decomposition, 2014. arXiv: 1412.6553.

  52. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., and Jackel, L.D., Back-propagation Applied to Handwritten Zip Code Recognition, Neural Comput, vol. 1, no. 4, pp. 541-551, 1989.

  53. LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-Based Learning Applied to Document Recognition, Proc. IEEE, vol. 86, no. 11, pp. 2278-2324,1998.

  54. Lee, K. and Carlberg, K., Deep Conservation: A Latent-Dynamics Model for Exact Satisfaction of Physical Conservation Laws, 2019. arXiv: 1909.09754.

  55. Li, Y., Hu, S., Sun, X., and Stan, M., A Review: Applications of the Phase Field Method in Predicting Microstructure and Property Evolution of Irradiated Nuclear Materials, npj Comput. Mater, vol. 3, no. 1, p. 16,2017.

  56. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A., Multipole Graph Neural Operator for Parametric Partial Differential Equations, 2020. arXiv: 2006.09535.

  57. Liao, Y., Wang, Y., and Liu, Y., Graph Regularized Auto-Encoders for Image Representation, IEEE Transact. Image Process., vol. 26, no. 6, pp. 2839-2852,2016.

  58. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F.E., A Survey of Deep Neural Network Architectures and Their Applications, Neurocomput., vol. 234, pp. 11-26,2017.

  59. Lubbers, N., Lookman, T., and Barros, K., Inferring Low-Dimensional Microstructure Representations Using Convolutional Neural Networks, Phys. Rev. E, vol. 96, no. 5, p. 052111,2017.

  60. Lubliner, J., Plasticity Theory, North Chelmsford, MA: Courier Corporation, 2008.

  61. Mandel, J., Generalisation de la Theorie de Plasticite de WT Koiter, Int. J. Solids Struct., vol. 1, no. 3, pp. 273-295,1965.

  62. Mecking, H., Kocks, U., and Fischer, H., Hardening, Recovery, and Creep in FCC Mono- and Polycrystals, in Proc. the 4th Int. Conf. on Strength of Metals and Alloys, Nancy, France, August 30-September 3, 1976.

  63. Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., and Bessa, M., Deep Learning Predicts Path-Dependent Plasticity, Proc. Nat. Acad. Sci., vol. 116, no. 52, pp. 26414-26420,2019.

  64. Mura, T., Micromechanics of Defects in Solids, Berlin/Heidelberg, Germany: Springer Science & Business Media, 2013.

  65. Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials, Amsterdam, Netherlands: Elsevier, 2013.

  66. Noh, J., Kim, J., Stein, H.S., Sanchez-Lengeling, B., Gregoire, J.M., Aspuru-Guzik, A., and Jung, Y., Inverse Design of Solid-State Materials via a Continuous Representation, Matter, vol. 1, no. 5, pp. 1370-1384,2019.

  67. O'Shea, K. and Nash, R., An Introduction to Convolutional Neural Networks, 2015. arXiv: 1511.08458.

  68. Pandey, A. and Pokharel, R., Machine Learning Enabled Surrogate Crystal Plasticity Model for Spatially Resolved 3D Orientation Evolution under Uniaxial Tension, 2020. arXiv: 2005.00951.

  69. Qin, Z., Yu, F., Liu, C., and Chen, X., How Convolutional Neural Network See the World-A Survey of Convolutional Neural Network Visualization Methods, 2018. arXiv: 1804.11191.

  70. Quiroga, F., Ronchetti, F., Lanzarini, L., and Bariviera, A.F., Revisiting Data Augmentation for Rotational Invariance in Convolutional Neural Networks, in Modelling and Simulation in Management Sciences, Berlin/Heidelberg, Germany: Springer, pp. 127-141,2018.

  71. Richard, E., Savalle, P.A., and Vayatis, N., Estimation of Simultaneously Sparse and Low Rank Matrices, 2012. arXiv: 1206.6474.

  72. Rizzi, F., Khalil, M., Jones, R.E., Templeton, J.A., Ostien, J.T., and Boyce, B.L., Bayesian Modeling of Inconsistent Plastic Response Due to Material Variability, 2018. arXiv: 1809.01009.

  73. Roduit, C., Sekatski, S., Dietler, G., Catsicas, S., Lafont, F., and Kasas, S., Stiffness Tomography by Atomic Force Microscopy, Biophys. J., vol. 97, no. 2, pp. 674-677,2009.

  74. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D., Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., vol. 58, no. 4, pp. 1152-1211,2010.

  75. Rowley, H.A., Baluja, S., and Kanade, T., Rotation Invariant Neural Network-Based Face Detection, in Proc. of 1998 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, pp. 38-44, Santa Barnara, California, June 23-25,1998.

  76. Salehi, A. andDavulcu,H., Graph Attention Auto-Encoders, 2019. arXiv: 1905.10715.

  77. Salinger, A.G., Bartlett, R.A., Bradley, A.M., Chen, Q., Demeshko, I.P., Gao, X., Hansen, G.A., Mota, A., Muller, R.P., Nielsen, E., Ostien, J.T., Pawlowski, R.P., Perego, M., Phipps, E.T., Sun, W.C., and Tezaur, I.K., Albany: Using Component-Based Designto Develop a Flexible, Generic Multiphysics Analysis Code, Int. J. Multiscale Comput. Eng., vol. 14, no. 4, pp. 415-438,2016.

  78. Savas, B. and Dhillon, I.S., Clustered Low Rank Approximation of Graphs in Information Science Applications, in Proc. of the 2011 SIAM International Conference on Data Mining, Mesa, AZ, USA, pp. 164-175, April 28-30,2011.

  79. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., and Woo, W., Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, in Proc. of Advances in Neural Information Processing Systems 28: Annual Conf. on Neural Information Processing Systems, Montreal, Canada, pp. 802-810, December 7-12,2015.

  80. Silhavy, M., The Mechanics and Thermodynamics of Continuous Media, Berlin/Heidelberg, Germany: Springer Science & Business Media, 2013.

  81. Stenzel, O., Pecho, O., Holzer, L., Neumann, M., and Schmidt, V., Predicting Effective Conductivities Based on Geometric Microstructure Characteristics, AIChE J, vol. 62, no. 5, pp. 1834-1843,2016.

  82. Stewart, J.R. and Edwards, H.C., Sierra Mechanics, accessed September 2020, from https://www.sandia.gov/asc/advanced-simulation-and-computing/integrated-codes, 2020.

  83. Tai, C., Xiao, T., Zhang, Y., Wang, X., and E, W., Convolutional Neural Networks with Low-Rank Regularization, 2015. arXiv: 1511.06067.

  84. Taylor, G.I., The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical, Proc. Roy. Soc. London. Ser. A, vol. 145, no. 855, pp. 362-387,1934.

  85. Trask, N., Huang, A., and Hu, X., Enforcing Exact Physics in Scientific Machine Learning: A Data-Driven Exterior Calculus on Graphs, 2020. arXiv: 2012.11799.

  86. Trask, N., Patel, R.G., Gross, B.J., and Atzberger, P.J., GMLS-Nets: A Framework for Learning from Unstructured Data, 2019. arXiv: 1909.05371.

  87. Trovalusci, P., Capecchi, D., and Ruta, G., Genesis of the Multiscale Approach for Materials with Microstructure, Archive Appl. Mech., vol. 79, no. 11, pp. 981-997,2009.

  88. Vlassis, N.N., Ma, R., and Sun, W., Geometric Deep Learning for Computational Mechanics Part I: Anisotropic Hyperelasticity, Comput. Methods Appl. Mech. Eng., vol. 371, p. 113299,2020.

  89. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., and Brostow, G.J., Harmonic Networks: Deep Translation and Rotation Equivariance, in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 5028-5037, July 21-26,2017.

  90. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S.Y., A Comprehensive Survey on Graph Neural Networks, Proc. IEEE Transact. Neural Networks Learn. Syst., vol. 32, no. 1, pp. 4-24,2020.

  91. Yin, X., Chen, W., To, A., McVeigh, C., and Liu, W.K., Statistical Volume Element Method for Predicting Microstructure-Constitutive Property Relations, Comput. Methods Appl. Mech. Eng., vol. 197, nos. 43-44, pp. 3516-3529,2008.

  92. Zhang, T., Liu, B., Niu, D., Lai, K., and Xu, Y., Multiresolution Graph Attention Networks for Relevance Matching, Proc. of the 27th ACM Int. Conf. on Information and Knowledge Management, Torino, Italy, pp. 933-942, October 22-26,2018.

  93. Zhang, Z., Cui, P., and Zhu, W., Deep Learning on Graphs: A Survey, 2020. arXiv: 1812.04202.

  94. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and Sun, M., Graph Neural Networks: A Review of Methods and Applications, AI Open, vol. 1, pp. 57-81,2020.

对本文的引用
  1. Bridgman Wyatt, Zhang Xiaoxuan, Teichert Greg, Khalil Mohammad, Garikipati Krishna, Jones Reese, A heteroencoder architecture for prediction of failure locations in porous metals using variational inference, Computer Methods in Applied Mechanics and Engineering, 398, 2022. Crossref

10652 文章浏览量 1477 文章下载 统计数据
10652 文章浏览量 1477 下载次数 1 Crossref 引用次数 Google
Scholar
引用次数

相似内容的文章:

Computations of Heat Conduction in Two-Dimensional (2D) Domains Using a High-Accuracy Radial Basis Function Based Meshless Method Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India, Vol.0, 2021, issue
Somnath Roy, Naman Bartwal, Shantanu Shahane, Surya Pratap Vanka
RBF Networks for Source Localization in Quantitative Electrophysiology Critical Reviews™ in Biomedical Engineering, Vol.28, 2000, issue 3&4
Ang Kian Tun, P. Saratchandran, Nah Teck Lye, Zhang Guanglan, Udantha R. Abeyratne
EQUIVARIANT GEOMETRIC LEARNING FOR DIGITAL ROCK PHYSICS: ESTIMATING FORMATION FACTOR AND EFFECTIVE PERMEABILITY TENSORS FROM MORSE GRAPH International Journal for Multiscale Computational Engineering, Vol.21, 2023, issue 5
Zeyu Xiong, Yusu Wang, Teng-Fong Wong, Chen Cai, Nikolaos Vlassis, Bahador Bahmani, Lucas Magee, Ran Ma, WaiChing Sun
EVALUATION OF THE RAINBOW VOLUMIC VELOCIMETRY (RVV) PROCESS BY SYNTHETIC IMAGES Journal of Flow Visualization and Image Processing, Vol.14, 2007, issue 1
C. Cudel, Jean-Pierre Prenel, R. Malfara, Yannick Bailly
Performance of Sharp-versus-Diffuse Interface-based Level Set Method on a Staggered-versus-Co-located grid Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India, Vol.0, 2021, issue
Sanjid C S, Janani Srree Murallidharan, Atul Sharma
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain