图书馆订阅: Guest
高温材料处理:国际期刊

每年出版 4 

ISSN 打印: 1093-3611

ISSN 在线: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

TWO-DIMENSIONAL MODEL OF HIGH-TEMPERATURE SYNTHESIS OF AN INTERMETALLIC IN THE REGIME OF DYNAMIC THERMAL EXPLOSION

卷 24, 册 1, 2020, pp. 65-79
DOI: 10.1615/HighTempMatProc.2020033859
Get accessGet access

摘要

The paper suggests a two-dimensional model of high-temperature synthesis of an intermetallic in the regime of dynamic thermal explosion after the heating of the powder compact in a cylindrical reactor. The mathematical formulation includes the thermal conduction equations for the powder mixture with a heat source of chemical nature and for reactor walls without source summands. The set of chemical reactions in the reactive mixture is replaced by the overall reagent-reaction product reaction scheme. The kinetic law takes into consideration severe inhibition of the reaction by the layer of the synthesized product. It is shown that the nonuniform temperature distribution in the powder compact is an important factor determining the dynamics of the process and the completeness of transformation.

参考文献
  1. Aldushin, A.P., Martem'yanova, T.M., Merzhanov A.G., Khaikin, B.I., and Shkadinskii, K.G., Propagation of the Front of an Exothermic Reaction in Condensed Mixtures with the Integration of the Components through a Layer of High-Melting Product, Combust. Explos. Shock Waves, vol. 8, no. 2, pp. 159-167, 1972a. DOI: https://doi.org/10.1007/BF00740444.

  2. Aldushin, A.P., Merzhanov A.G., and Khaikin, B.I., On Certain Specificities of Condensed System Combustion with Refractory Reaction Products, Rep. Acad. Sci. USSR, vol. 204, no. 5, pp. 1139-1142, 1972b (in Russian).

  3. Alexandrov, V.V. and Korchagin, M.A., Mechanism and Macrokinetics of Interaction of Components in Powder Mixtures, Rep. Acad. Sci., vol. 292, no. 4, pp. 879-881, 1987 (in Russian).

  4. Bakinovskii, A., Knyazeva, A.G., Krinitcyn, M.G., Kryukova, O.N., Pobol., I.L., Fedorov, V.V., and Rajczyk, J., Electron Beam Assisted Deposition of Ni-Al Coating on to Steel Substrate, Int. J. Self-Propag. High-Temp. Synth., vol. 28, no. 4, pp. 245-255, 2019. DOI: 10.3103/S1061386219040034.

  5. Biswas, A. and Roy, S.K., Comparison between the Microstructural Evolutions of Two Modes of SHS of NiAl: Key to a Common Reaction Mechanism, Acta Materialia, vol. 52, no. 2, pp. 257-270, 2004. DOI: 10.1016/j.actamat.2003.08.018.

  6. Biswas, A., Roy, S.K., Gurumurthy, K.R., Prabhu, N., and Banerjee, S., A Study of Self-Propagating High-Temperature Synthesis of NiAl in Thermal Explosion Mode, Acta Materialia, vol. 50, no. 4, pp. 757-773, 2002. DOI: 10.1016/S1359-6454(01)00387-1.

  7. Bochenek, K. and Basista, M., Advances in Processing of NiAl Intermetallic Alloys and Composites for High Temperature Aerospace Applications, Prog. Aerospace Sci., vol. 79, pp. 136-146, 2015. DOI: https://doi.org/10.1016/j.paerosci.2015.09.003.

  8. Bukrina, N.V., Knyazeva, A.G., and Ovcharenko, V.E., Mathematical Model of High-Temperature Synthesis of Ni3Al Intermetallic in Thermal Explosion of a Powder Compact from Stoichiometric Initial Composition, Interdisciplinary Problems of Additive Technologies 2018, Proc. III Pan-Russian Scientific Seminar with International Participation, Tomsk, Russia, pp. 3-9, 2018 (in Russian), accessed February 06, 2020, from http://portal.tpu.ru:7777/science/seminar/at/IPAT-2017_0.pdf.

  9. Clevenger, L.A., Thompson, C.V., and Tu, K.N., Explosive Silicidation in Nickel/Amorphous Silicon Multilayer Thin Films, J. Appl. Phys, vol. 67, no. 6, pp. 2894-2898, 1990. DOI: 10.1063/1.345429.

  10. Curfs, C., Turrillas, X., Vaughan, G.B.M., Terry, A.E., Kvick, A., and Rodriquez, M.A., Al-Ni Intermetallics Obtained by SHS; A Time-Resolved X-Ray Diffraction Study, Intermetallics, vol. 15, no. 9, pp. 1163-1171, 2007. DOI: 10.1016 / j.intermet.2007.02.00.

  11. Dyer, T.S. and Munir, Z.A., The Synthesis of Nickel Aluminides by Multilayer Self-Propagating Com-bustion, Metallurg. Mater. Trans. B, vol. 26, no. 3, pp. 603-610, 1995. DOI: 10.1007/BF02653881.

  12. Filimonov, V.Yu. and Koshelev, K.B., Adiabatic Thermal Explosion in Disperse Condensed Systems with Limited Solubility of the Reactants in the Product Layer, combust. Explos. Shock Waves, vol. 49, no. 4, pp. 463-471, 2013. DOI: https://doi.org/10.1134/S0010508213040096.

  13. Filimonov, V.Yu., Koshelev, K.B., and Sytnikov, A.A., Thermal Modes of Heterogeneous Exothermic Reactions. Solid-Phase Interaction, Combust. Flame, vol. 185, pp. 93-104, 2017. DOI: 10.1016/j. combustflame.2017.06.020.

  14. Gostishchev, V.V., Astapov, I.A., Seredyuk, A.V., Khimukhin, S.N., and Hosen, R., High-Temperature Synthesis of Composites Based on Nickel Aluminides, Inorg. Mater., vol. 52, no. 4, pp. 419-422, 2016. DOI: 10.1134/S0020168516040051.

  15. Grapes, M.D., Santala, M.K., Campbell, G.H., LaVan, D.A., and Weihs, T.P., A Detailed Study of the Al3Ni Formation Reaction Using Nanocalorimetry, Thermochimica Acta, vol. 658, pp. 72-83, 2017. DOI: https://doi.org/10.1016/j.tca.2017.10.018.

  16. Grigoriev, I.S. and Meilikhov, E.Z., Eds., Physical Quantities: Reference Book, Moscow, Russia: Energoatomizdat Press, 1991 (in Russian).

  17. Khudyaev, S.I., Effect of the Phase Transition on the Ignition Process, Combust. Explos. Shock Waves, vol. 39, no. 6, pp. 644-649, 2003. DOI: 10.1023/B: CESW. 0000007676.33964.03.

  18. Knyazeva, A. and Kryukova, O., Simulation of the Synthesis of Multiphase Composites on a Substrate, Taking into Account the Staging of Chemical Reactions, Appl. Solid State Chem., vol. 1, pp. 32-44, 2019. DOI: 10.18572/2619-0141-2018-2-3-2-16.

  19. Koshelev, K.B., Investigating the Processes of Structure Formation and Self-Heating in a Binary Ti-Al Powder Mixture in a Static Thermal Explosion Regime Based on a State Diagram, Bull. Tomsk Polytech. Univ., vol. 312, no. 2, pp. 44-47, 2008 (in Russian).

  20. Kovalev, O.B. and Neronov, V.A., Metallochemical Analysis of the Reaction in a Mixture of Nickel and Aluminum Powders, Combust. Explos. Shock Waves, vol. 40, no. 2, pp. 172-179, 2004. DOI: https:// doi.org/10.1023/B:CESW.0000020139.07061.9e.

  21. Kubaski, E.T., Cintho, O.M., Capocchi, J.D.T., Effect of Milling Variables on the Synthesis of NiAl Intermetallic Compound by Mechanical Alloying, Powder Technol., vol. 214, no. 1, pp. 77-82, 2011. DOI: 10.1016/j.powtec.2011.07.038.

  22. Lapshin, O.V. and Ovcharenko, V.E., Mathematical Model of High-Temperature Synthesis of Nickel Aluminide Ni3Al by Thermal Shock of a Powder Mixture of Pure Elements, Combust. Explos. Shock Waves, vol. 32, no. 3, pp. 299-305, 1996. DOI: https://doi.org/10.1007/BF01998460.

  23. Lapshin, O.V. and Smolyakov, V.K., Simulation of Thermal Explosion in a Pre-Activated 3Ni+Al Mixture, Combust. Explos. Shock Waves, vol. 53, no. 5, pp. 548-553, 2017. DOI: https://doi.org/10.1134/ S0010508217050070.

  24. Lapshin, O.V. and Smolyakov, V.K., Thermal Explosion in a Gasless System Undergoing a Phase Transition, Chem. Phys., vol. 34, no. 3, pp. 62-68, 2015 (in Russian).

  25. Lee, S.-H., Lee, J.-H., Lee, Y.-H., Dong Hyuk Shin, D.H., and Kim, Y.S., Effect of Heating Rate on the Combustion Synthesis of Intermetallics, Mater. Sci. Eng. A, vol. 281, nos. 1-2, pp. 275-285, 2000. DOI: 10.1016/S0921-5093(99)00715-7.

  26. Maznoy, A., Kirdyashkin, A., Kitler, V., and Solovyev, A., Combustion Synthesis and Characterization of Porous Ni-Al Materials for Metal-Supported Solid Oxide Fuel Cells Application, J. Alloys Compd., vol. 697, pp. 114-123, 2017. DOI: https://doi.org/10.1016/j.jallcom.2016.11.350.

  27. Merzhanov, A.G. and Strunina, A.G., Laws of Thermal Explosion with Constant Heating Rate, Combust. Explos. Shock Waves, vol. 1, no. 1, pp. 43-52, 1965. DOI: https://doi.org/10.1007/BF00757151.

  28. Merzhanov, A.G., Theory of Gasless Combustion, Chernogolovka, Russia, 1973 (in Russian).

  29. Mitra, R., Ed., Intermetallic Matrix Composites. Properties and Applications, Sawston, UK: Woodhead Publishing, 2017.

  30. Morsi, K., Reaction Synthesis Processing of Ni-Al Intermetallic Materials, Mater. Sci. Eng. A, vol. 299, pp. 1-15, 2001.

  31. Ovcharenko, V.E., Boyangin, E.N., Pshenichnikov, A.P., and Krilova, T.A., Structural-Phase State and Strength Properties of Pressure-Synthesized Ni3Al Intermetallic Compound, Mater. Sci. Forum. Mater. Process. Technol., vol. 906, pp. 95-100, 2017. DOI: doi.org/10.4028/www.scientific.net/ MSF.906.95.

  32. Paskonov, V.M., Polezhaev, V.I., and Chudov, L.A., Numerical Modeling of Heat and Mass Transfer Processes, Moscow, Russia: Nauka Press, 1984 (in Russian).

  33. Qin, L., Hu, J., Cui, C., Wang, H., and Guo, Z., Effect of Al Content on Reaction Laser Sintering of Ni-Al Powder, Sci. Sintering, vol. 40, no. 3, pp. 295-301, 2008. DOI: 10.2298/SOS0803295Q.

  34. Rabinovich, O.S., Grinchuk, P.S., Andreev, M.A., and Khina, B.B., Conditions for Combustion Synthesis in Nanosized Ni/Al Films on a Substrate, Physica B, vol. 392, pp. 272-280, 2007. DOI: https://doi.org/10.1016/j.physb.2006.11.032.

  35. Rogachev, A.S., Shkodich, N.F., Vadchenko, S.G., Baras, F., Kovalev, D.Yu., Rouvimov, S., Nepapushev, A.A., and Mukasyan, A.S., Influence of the High Energy Ball Milling on Structure and Reactivity of the Ni + Al Powder Mixture, J. Alloys Compd., vol. 577, pp. 600-605, 2013. DOI: https://doi. org/10.1016/j.jallcom.2013.06.114.

  36. Rogachev, A.S., Vadchenko, S.G., Baras, F., Politano, O., Rouvimov, S., Sachkova, N.V., Grapes, M.D., Weihs, T.P., and Mukasyan, A.S., Combustion in Reactive Multilayer Ni/Al Nanofoils: Experiments and Molecular Dynamic Simulation, Combust. Flame, vol. 166, pp. 158-169, 2016. DOI: https://doi. org/10.1016/j.combustflame.2016.01.014.

  37. Rosa, R., Veronesi, P., Poli, G., Leonelli, C., Corradi, A.B., Casagrande, A., and Boromei, I., Ni-Al-Ti Coatings Obtained by Microwave Assisted Combustion Synthesis, Surface Eng., vol. 28, pp. 91-95, 2012. DOI: https://doi.org/10.1179/1743294411Y.0000000046.

  38. Rutkowski, P., Huebner, J., Kata, D., Lis, J., Grabos, A., and Chlubny, L., Laser Initiated Ti3SiC2 Powder and Coating Synthesis, Ceramics Int., vol. 44, no. 9, pp. 10883-10890, 2018. DOI: https://doi. org/10.1016/j.ceramint.2018.03.143.

  39. Smolyakov, V.K. and Lapshin, O.V., Thermal Explosion in Mechanically Activated Heterogeneous Systems, Combust. Explos. Shock Waves, vol. 47, no. 3, pp. 314-322, 2011. DOI: https://doi.org/10.1134/ S0010508211030087.

  40. Thiers, L., Mukasyan, A.S., and Varma, A., Thermal Explosion in Ni-Al System: Influence of Reaction Medium Microstructure, Combust. Flame, vol. 131, nos. 1-2, pp. 198-209, 2002. DOI: 10.1016/ S0010-2180(02)00402-9.

  41. Volyanski, I., Shishkovsky, I.V., Yadroitsev, I., Shcherbakov, V.I., and Morozov, Yu.G., Layer-by-Layer Laser Synthesis of Cu-Al-Ni Intermetallic Compounds and Shape Memory Effect, Inorg. Mater., vol. 52, no. 6, pp. 566-572, 2016. DOI: 10.1134/S0020168516060170.

  42. Xanthopoulou, G., Marinou, A., Vekinis, G., Lekatou, A., and Vardavoulias, M., Ni-Al and NiO-Al Composite Coatings by Combustion-Assisted Flame Spraying, Coatings, vol. 4, pp. 231-252, 2014. DOI: 10.3390/coatings4020231.

  43. Yang, Y.F., Mu, D.K., and Jiang, Q.C., A Simple Route to Fabricate TiC-TiB2/Ni Composite via Thermal Explosion Reaction Assisted with External Pressure in Air, Mater. Chem. Phys., vol. 143, no. 2, pp. 480-485, 2014. DOI: 10.1016/j.matchemphys.2013.10.003.

对本文的引用
  1. Bukrina N. V., Knyazeva A. G., Two-dimensional model of intermetallic composite synthesis with inert inclusions, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY, 2310, 2020. Crossref

  2. Bukrina N. V., Knyazeva A. G., Influence of Inert Particles on the Physical Regularities of Bulk Synthesis of Composite, Russian Physics Journal, 63, 7, 2020. Crossref

  3. Bukrina N. V., Temperature Dependence of Thermal Conductivity and Physical Properties of Combustion Synthesis of Intermetallic Compound, Russian Physics Journal, 64, 3, 2021. Crossref

  4. Dudina Dina V., Vidyuk Tomila M., Korchagin Michail A., Synthesis of Ceramic Reinforcements in Metallic Matrices during Spark Plasma Sintering: Consideration of Reactant/Matrix Mutual Chemistry, Ceramics, 4, 4, 2021. Crossref

  5. Dudina Dina V., Vidyuk Tomila M., Gavrilov Alexander I., Ukhina Arina V., Bokhonov Boris B., Legan Mikhail A., Matvienko Alexander A., Korchagin Michail A., Separating the reaction and spark plasma sintering effects during the formation of TiC–Cu composites from mechanically milled Ti–C–3Cu mixtures, Ceramics International, 47, 9, 2021. Crossref

  6. Ovcharenko V.E., Kozulin A.A., Akimov K.O., Ivanov K.V., The effect of shear strains on grain size in the Ni3Al intermetallic compound synthesized under pressure, Mechanics of Materials, 161, 2021. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain