图书馆订阅: Guest
高温材料处理:国际期刊

每年出版 4 

ISSN 打印: 1093-3611

ISSN 在线: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

DEGRADATION OF ALUMINA PARTICLES UNDER SELECTIVE LASER MELTING CONDITIONS

卷 26, 册 1, 2022, pp. 51-62
DOI: 10.1615/HighTempMatProc.2022042058
Get accessGet access

摘要

In modern technologies, attention is drawn to the possibility of synthesizing composites from multicomponent mixtures in which there are conditions for the formation of a finely dispersed structure. However, under the conditions of 3D technologies, the mutual influence of the components and the special melting and crystallization conditions leads to the fact that the composition of the synthesis products is poorly predictable in advance. In this work, the selective laser melting (SLM) method was used to form a three-dimensional sample 5 × 5 × 2 mm in size, a composite of interpenetrating phases of different elemental compositions based on titanium. The alumina is absent in the synthesis products due to nonequilibrium conditions that accelerate diffusion processes that limit the dissolution of the oxide.

参考文献
  1. Andreev, D.E., Yukhvid, V.I., Ikornikov, D.M., Sanin, V.N., Sachkova, N.V., Ignat'eva, T.I., and Kovalev, I.D., Autowave Synthesis of TiAl-Based Cast Composite Materials from Thermite-Type Mixtures, Inorg. Mater., vol. 55, no. 4, pp. 417-422, 2019.

  2. Bhandare, R.G. and Sonawane, P.M., Preparation of Aluminium Matrix Composite by Using Stir Casting Method, IJEAT, vol. 3, no. 3, pp. 61-65, 2013.

  3. Brauer, G.B., Tarasov, A.G., and Seplyarskii, B.S., Combustion of Bulk Density Powder Mixtures in a Co-flow of Inert Gas: 6(Fe2O3 + 2Al) + 30% Al2O3 Mixtures, Int. J. Self Propag. High Temp. Synth., vol. 18, no. 3, pp. 157-162, 2009.

  4. Choi, B.J., Lee, S., and Kim, Y.J., Influence of TiO2 on Alpha Case Reaction of Al2O3 Mould in Ti Investment Casting, J. Mater. Sci. Technol., vol. 29, no. 12, pp. 1453-1462, 2013.

  5. Dadbakhsh, S. and Hao, L., In Situ Formation of Particle Reinforced Al Matrix Composite by Selective Laser Melting of Al/Fe2O3 Powder Mixture, Adv. Eng. Mater, vol. 14, nos. 1-2, pp. 45-48, 2012.

  6. Dadbakhsh, S., Mertens, R., Hao, L., Van Humbeeck, J., and Kruth, J.P., Selective Laser Melting to Manufacture "In Situ" Metal Matrix Composites: A Review, Adv. Eng. Mater., vol. 21, no. 3, p. 1801244, 2019.

  7. Dudina, D.V. and Mukherjee, A.K., Reactive Spark Plasma Sintering: Successes and Challenges of Nano-material Synthesis, J. Nanomater., 2013.

  8. Fereiduni, E., Ghasemi, A., and Elbestawi, M., Selective Laser Melting of Aluminum and Titanium Matrix Composites: Recent Progress and Potential Applications in the Aerospace Industry, Aerospace, vol. 7, no. 6, p. 77, 2020.

  9. He, J., Huang, Y., Feng, G., Shen, S., Yan, M., and Zeng, H., Rapid Laser Reactive Sintering Synthesis of Colossal Dielectric CCTO Ceramics, Appl. Sci., vol. 10, no. 10, p. 3510, 2020.

  10. Horvitz, D., Gotman, I., Gutmanas, E.Y., and Claussen, N., In Situ Processing of Dense Al2O3-Ti Aluminide Interpenetrating Phase Composites, J. Eur. Ceram. Soc., vol. 22, no. 6, pp. 947-954, 2002.

  11. Jia, H., Zhang, Z., Qi, Z., Liu, G., and Bian, X., Formation of Nanocrystalline TiC from Titanium and Different Carbon Sources by Mechanical Alloying, J. Alloys Compd., vol. 472, nos. 1-2, pp. 97-103, 2009.

  12. Kaplan Akarsu, M., Akin, I., Sahin, F., and Goller, G., Comparative Study of Reactive and Nonreactive Spark Plasma Sintering Routes for the Production of TaB2-TaC Composites, Int. J. Appl. Ceram. Technol., vol. 19, no. 1, pp. 332-343, 2021.

  13. Kobyakov, V.P., Zozulya, V.D., Sichinava, M.A., Sachkova, N.V., Belikova, A.F., and Kovalev, D.Y., Combustion of a Fe2O3-TiO2-Al-C Powder Mixture in the SHS Regime and the Structure of the Combustion Products, Combust. Explos. Shock Waves, vol. 41, no. 4, pp. 414-420, 2005.

  14. Levenspiel, O., Chemical Reaction Engineering, New York: John Wiley and Sons, 1998.

  15. Liu, Y., Cai, X., Sun, Z., Jiao, X., Akhtar, F., Wang, J., and Feng, P., A Novel Fabrication Strategy for Highly Porous FeAl/Al2O3 Composite by Thermal Explosion in Vacuum, Vacuum, vol. 149, pp. 225-230, 2018.

  16. Lovshenko, G. and Hina, B., Modelirovanie Rastvoreniya Vklyuchenij Hroma Pri Otzhige Mekhanicheski Legirovannyh Splavov na Osnove Nikelya, Vestnik GGT, no. 4, pp. 49-56, 2007.

  17. Lyubov, B.Y.A., Diffuzionnye Processy v Neodnorodnyh Tverdyh Sredah, Moscow: Nauka, 1981.

  18. Mahboob, H., Sajjadi, S.A., and Zebarjad, S.M., Synthesis of Al-Al2O3 Nano-Composite by Mechanical Alloying and Evaluation of the Effect of Ball Milling Time on the Microstructure and Mechanical Properties, Int. Conf. Nanotech, Kuala Lumpur Malaysia, 2008.

  19. Mahmoodian, R., Hassan, M.A., Rahbari, R.G., Yahya, R., and Hamdi, M., A Novel Fabrication Method for TiC-Al2O3-Fe Functional Material under Centrifugal Acceleration, Composites, Part B, vol. 50, pp. 187-192, 2013.

  20. Marinca, T.F., Neamfu, B.V., Chicinas, I., Popa, F., and Pascuta, P., Composite Compacts of Fe/Fe3O4 Type Obtained by Mechanical Milling-Sintering-Annealing Route, Adv. Eng. Forum, vol. 13, pp. 3-8, 2015.

  21. Ndwandwe, O.M. and Mpungose, M.S., Thermodynamic Stability of Al2O3 Films in Contact with Ti and Mo Thin Films, S. Afr. J. Sci., vol. 102, no. 5, pp. 244-246, 2006.

  22. Nicoara, M., Raduta, A., Locovei, C., Opris, C., Sosdean, D., Vasiu, R., and Lungu, D., Optimizing the Parameters of Reactive Sintering for In Situ Fabrication ofAl-Al2O3 Composites, Solid State Phenom., vol. 216, pp. 255-260, 2014.

  23. Patil, K.C., Aruna, S.T., and Mimani, T., Combustion Synthesis: An Update, Curr. Opin. Solid State Mater. Sci., vol. 6, no. 6, pp. 507-512, 2002.

  24. Podergin, V.A., Metallotermiciskie Sistemy, Mettallurgija, 1992.

  25. Rambo, C.R., Pinheiro, G.K., Marques, L.S., Bernardes, J.C., Muller, D., and Sieber, H., Formation of Al by Metallothermic Reduction of Al2O3 by Ti, High Temp. Met. Microstruct. Anal., nos. 1-5, 2020.

  26. Reinhart, A., Ansell, T., Smith, W., and Nieto, A., Oxide Reinforced Ti64 Composites Processed by Selective Laser Melting, J. Mater. Eng. Perform, vol. 30, no. 9, pp. 6949-6960, 2021.

  27. Roslyakov, S.I., Kovalev, D.Y., Rogachev, A.S., Manukyan, K., and Mukasyan, A.S., Solution Combustion Synthesis: Dynamics of Phase Formation for Highly Porous Nickel, J. Phys. Chem., vol. 449, no. 1, pp. 48-51, 2013.

  28. Sakthivelu, S., Sethusundaram, P.P., Meignanamoorthy, M., and Ravichandran, M., Synthesis of Metal Matrix Composites through Stir Casting Process-A Review, Mech. Mech. Eng., vol. 22, no. 1, pp. 357-370, 2020.

  29. Sharifitabar, M., Khaki, J.V., and Sabzevar M.H., Fabrication of Fe-TiC-Al2O3 Composites on the Surface of Steel Using a TiO2-Al-C-Fe Combustion Reaction Induced by Gas Tungsten arc Cladding, Int. J. Miner. Metall. Mater., vol. 23, no. 2, pp. 193-204, 2016.

  30. Shishkovsky, I., Lazernyj Sintez Funkcional'no-Gradientnyh Mezostruktur I O Emnyh Izdelij, M.: Fizmatlit, vol. 424, p. 351, 2018.

  31. Sousa, L., Basilio, L., Alves, A.C., and Toptan, F., Tribocorrosion-Resistant Biofunctionalized Ti-Al2O3 Composites, Surf. Coat. Technol., vol. 420, no. 127329, pp. 1-9, 2021.

  32. Suryanarayana, C., Ivanov, E., and Boldyrev, V.V., The Science and Technology of Mechanical Alloying, Mater. Sci. Eng., A, vol. 304, pp. 151-158, 2001.

  33. Travitzky, N., Kumar, P., Sandhage, K.H., Janssen, R., and Claussen, N., Rapid Synthesis of Al2O3 Reinforced Fe-Cr-Ni Composites,Mater. Sci. Eng., A, vol. 344, nos. 1-2, pp. 245-252, 2003.

  34. Wakashima, K., Shimoyamada, T., Noma, H., Inamura, T., and Hosoda, H., In Situ Synthesis and Properties of Aluminum Composites with Ultrafine TiB2 and Al2O3 Particulates, Mater. Sci. Forum, vol. 475, pp. 925-928, 2005.

  35. Wang, L., Jue, J., Xia, M., Guo, L., Yan, B., and Gu, D., Effect of the Thermodynamic Behavior of Selective Laser Melting on the Formation of In Situ Oxide Dispersion-Strengthened Aluminum-Based Composites, Metals, vol. 6, no. 11, p. 286, 2016.

  36. Xuan, C. and Mu, W., A Phase-Field Model for the Study of Isothermal Dissolution Behavior of Alumina Particles into Molten Silicates, J. Am. Ceram. Soc., vol. 102, no. 11, pp. 6480-6497, 2019.

  37. Xuan, C. and Mu, W., A Mechanism Theory of Dissolution Profile of Oxide Particles in Oxide Melt, J. Am. Ceram. Soc., vol. 104, no. 1, pp. 57-75, 2021.

  38. Yeh, C.L. and Chen, K.T., Synthesis of FeSi-Al2O3 Composites by Autowave Combustion with Metallothermic Reduction,Metals, vol. 11, no. 2, p. 258, 2021.

  39. Young, D.A., Phase Diagrams of the Elements, Berkeley, CA: Univ of California Press, 1991.

  40. Zhang, K., Fen, W., Zhu, J., and Wu, H., Mechanical Properties and Microstructure of Al2O3/TiAl In Situ Composites Doped with Cr and V2O5, Sci. Sintering, vol. 44, no. 1, pp. 73-80, 2012.

1182 文章浏览量 24 文章下载 统计数据
1182 文章浏览量 24 下载次数 Google
Scholar
引用次数

相似内容的文章:

RAPID SOLIDIFICATION: FUNDAMENTALS AND MODELING Annual Review of Heat Transfer, Vol.11, 2000, issue 11
Guo-Xiang Wang, Vish Prasad
MODES OF ADHESIVE BONDING LAYER FORMATION DURING ROLL MOTION IN THE PROCESS OF SHEET LAMINATION High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.27, 2023, issue 1
Anna G. Knyazeva, Nahum Travitzky
ELECTRON-ION-PLASMA MODIFICATION OF CARBON STEEL High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.25, 2021, issue 1
E. A. Petrikova, Yuriy H. Akhmadeev, Maria E. Rygina, I. V. Lopatin, Yurii F. Ivanov, Olga V. Krysina
SCRATCH TESTING OF ZrN COATING ON TI-6AL-4V TITANIUM ALLOY SURFACE PRELIMINARY TREATED BY COMPRESSION PLASMA FLOWS IMPACT High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.28, 2024, issue 3
Andrej K. Kuleshov, Alexandra B. Petukh, Valiantsin M. Astashynski, Alexey A. Vereschaka, Nikolai N. Cherenda, D. P. Rusalski, Sergey N. Grigoriev, N. V. Bibik, Anton M. Kuzmitski, Vladimir V. Uglov
INFLUENCE OF MODIFYING ADDITIVES ON THE PHASE STABILITY AND RESISTANCE TO OXIDATION OF COATINGS BASED ON STABILIZED ZIRCONIUM DIOXIDE AND A CARBON−CARBON COMPOSITE MATERIAL Nanoscience and Technology: An International Journal, Vol.7, 2016, issue 4
D. Yu. Sinitsyn, V. N. Anikin, S. A. Eremin, B. V. Ryabenko
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain