图书馆订阅: Guest
国际多尺度计算工程期刊

每年出版 6 

ISSN 打印: 1543-1649

ISSN 在线: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Soot Particle Deposition within Porous Structures using a Method-of-Moments-Lattice-Boltzmann Approach

卷 4, 册 2, 2006, pp. 221-232
DOI: 10.1615/IntJMultCompEng.v4.i2.30
Get accessGet access

摘要

This paper deals with the combination of two computational methods to simulate the flow of particle-laden fluids through porous structures: the lattice Boltzmann method (LBM), which is a method to solve the Navier-Stokes equation in complex geometries and the method of moments (MoM), which describes the time evolution of nonhomogeneous particle distributions. The combination of these methods makes it possible to take phenomena into account that depend on particle size and size distribution of the transported material. It is also possible to simulate changes in the size distribution. The applicability of the method is demonstrated by simulating the deposition of diesel soot on the porous structure of a filter. The geometry of the filter material has been reconstructed from CT scans of the filter material.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain