图书馆订阅: Guest

NUMERICAL ANALYSIS OF TRANSPORT PHENOMENA UNDER TURBULENT ANNULAR IMPINGING JET

卷 13, 册 2, 2021, pp. 1-19
DOI: 10.1615/ComputThermalScien.2020035055
Get accessGet access

摘要

The present work deals with the fluid flow and heat-transfer from a flat heated surface owing to impingement of a turbulent annular jet. A parametric study has been conducted for a fixed non-dimensional jet exit-to-target surface distance (H = 2) at different Reynolds number (Re = 10,000−50,000). After the validation of present model with published results, a comprehensive study has been carried out solving Reynolds-averaged Navier-Stokes equation as well as energy equation. The transition shear stress transport model is used for turbulent closure. It has been observed that, the strength, shape, and size of recirculation zones in the flow domain, are strongly dependent of Reynolds number. Increasing Reynolds number magnifies the size of this zone. At high Reynolds number, turbulence contributes to local enhancement of heat-transfer at the impingement zone. Finally, Nusselt number (Nu) is found to scale with Reynolds number in the form Nu = 0.026 × Re0.7896.

参考文献
  1. Abraham, J.P., Sparrow, E.M., and Tong, J.C.K., Heat Transfer in All Pipe Flow Regimes: Laminar, Transitional/Intermittent, and Turbulent, Int. J. Heat Mass Transf., vol. 52, nos. 3-4, pp. 557-563,2009.

  2. Afroz, F. and Sharif, M.A.R., Numerical Study of Turbulent Annular Impinging Jet Flow and Heat Transfer from a Flat Surface, Appl. Therm. Eng., vol. 138, pp. 154-172,2018. DOI: 10.1016/j.applthermaleng.2018.04.007.

  3. Brignoni, L.A. and Garimella, S.V., Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement, Int. J. Heat Mass Transf., vol. 43, no. 7, pp. 1133-1139,2000.

  4. Celik, N. and Eren, H., Heat Transfer due to Impinging Co-Axial Jets and the Jets' Fluid Flow Characteristics, Exp. Therm. Fluid Sci., vol. 33, no. 4, pp. 715-727,2009. DOI: 10.1016/j.expthermflusci.2009.01.007.

  5. Chan, W.T. and Ko, N.W.M., Coherent Structures in the Outer Mixing Region of Annular Jets, J. Fluid Mech., vol. 89, no. 3, pp. 515-533,1978.

  6. Chattopadhyay, H., Effect of Surface Motion on Transport Processes due to Circular Impinging Jets-A Numerical Study, Drying Technol, vol. 24, no. 11, pp. 1347-1351,2006.

  7. Chattopadhyay, H., Impinging Heat Transfer due to a Turbulent Annular Jet., Int. J. Transp. Phenom., vol. 9, no. 4, pp. 287-296, 2007.

  8. Chattopadhyay, H., Numerical Investigations of Heat Transfer from Impinging Annular Jet, Int. J. Heat Mass Transf., vol. 47, nos. 14-16, pp. 3197-3201,2004.

  9. Chattopadhyay, H. and Saha, S.K., Numerical Investigations of Heat Transfer over a Moving Surface due to Impinging Knife-Jets, Numer. Heat Transf, Part A: Appl., vol. 39, no. 5, pp. 531-549,2001.

  10. Craft, T.J., Graham, L.J.W., and Launder, B.E., Impinging Jet Studies for Turbulence Model Assessment-II. An Examination of the Performance of Four Turbulence Models, Int. J. Heat Mass Transf., vol. 36, no. 10, pp. 2685-2697,1993.

  11. Del Taglia, C., Blum, L., Gass, J., Ventikos, Y., and Poulikakos, D., Numerical and Experimental Investigation of an Annular Jet Flow with Large Blockage, J. Fluids Eng, vol. 126, no. 3, p. 375,2004. DOI: 10.1115/1.1760533.

  12. Gao, N., Sun, H., and Ewing, D., Heat Transfer to Impinging Round Jets with Triangular Tabs, Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2557-2569,2003.

  13. Hosseinalipour, S. and Mujumdar, A.S., Comparative Evaluation of Different Turbulence Models for Confined Impinging and Opposing Jet Flows, Numer. Heat Transf., Part A: Appl., vol. 28, no. 6, pp. 647-666,1995.

  14. Hwang, S.D., Lee, C.H., and Cho, H.H., Heat Transfer and Flow Structures in Axisymmetric Impinging Jet Controlled by Vortex Pairing, Int. J. Heat Fluid Flow, vol. 22, no. 3, pp. 293-300,2001.

  15. Ichimiya, K., Heat Transfer Characteristics of an Annular Turbulent Impinging Jet with a Confined Wall Measured by Thermosensitive Liquid Crystal, Heat Mass Transf., vol. 39, no. 7, pp. 545-551,2003.

  16. Jambunathan, K., Lai, E., Moss, M.A., and Button, B.L., A Review of Heat Transfer Data for Single Circular Jet Impingement, Int. J. Heat Fluid Flow, vol. 13, no. 2, pp. 106-115,1992.

  17. Kadiyala, P.K. and Chattopadhyay, H., Neuro-Genetic Optimization of Laminar Slot Jets Impinging on a Moving Surface, Int. Commun. Heat Mass Transf., vol. 59, pp. 143-147,2014.

  18. Kadiyala, P.K. and Chattopadhyay, H., Numerical Analysis of Heat Transfer from a Moving Surface due to Impingement of Slot Jets, Heat Transf. Eng., vol. 39, no. 2, pp. 98-106,2018.

  19. Kadiyala, P.K. and Chattopadhyay, H., Numerical Simulation of Transport Phenomena due to Array of Round Jets Impinging on Hot Moving Surface, Drying Technol, vol. 35, no. 14, pp. 1742-1754,2017.

  20. Kalinina, S.V., Terekhov, V.I., and Sharov, K.A., Special Features of Flow in an Annular Jet Impinging on a Barrier, Fluid Dyn, vol. 50, no. 5, pp. 665-671,2015.

  21. Kolar, V., Vortex Identification: New Requirements and Limitations, Int. J. Heat Fluid Flow, vol. 28, no. 4, pp. 638-652,2007.

  22. Maki, H. and Yabe, A., Unsteady Characteristics of the Annular Impinging Jet Flow Field and Reverse Stagnation Point Heat Transfer, Proc. Natl. Heat Transf. Conf. Heat Transfer in Convective Flows, HTD, vol. 107, pp. 163-168,1989a.

  23. Maki, H. and Yabe, A., Heat Transfer by the Annular Impinging Jet, Exp. Heat Transf., vol. 2, no. 1, pp. 1-12, 1989b. DOI: 10.1080/08916158908946350.

  24. Martin, H., Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, in Adv. Heat Transf., Amsterdam: Elsevier, pp. 1-60,1977.

  25. Mazur, A.I. and Iushina, L.E., Heat Transfer in an Impinging Annular Jet, Promyshlennaia Teplotekhnika, vol. 2, pp. 35-38, 1980.

  26. Murmu, S.C., Bhattacharyya, S., Chattopadhyay, H., and Biswas, R., Analysis of Heat Transfer around Bluff Bodies with Variable Inlet Turbulent Intensity: A Numerical Simulation, Int. Commun. Heat Mass Transf., vol. 117, p. 104779, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104779.

  27. Musika, W., Wae-Hayee, M., Vessakosol, P., Niyomwas, B., and Nuntadusit, C., Investigation of Flow and Heat Transfer Characteristics of Annular Impinging Jet, Adv. Mater. Res, vol. 931, pp. 1223-1227,2014.

  28. Pal, T.K., Chattopadhyay, H., and Mandal, D.K., Flow and Heat Transfer due to Impinging Annular Jet, Int. J. FluidMech. Res., vol. 46, no. 3, pp. 199-209,2019.

  29. Pal, T.K., Chattopadhyay, H., Mandal, D.K., and Bhattacharyya, S., Numerical Investigation of Heat Transfer Under Impinging Annular Jets, Matter: Int. J. Sci. Techn, vol. 2, no. 1, pp. 70-77,2015.

  30. Patankar, S., Numer. Heat Transf. and Fluid Flow, Boca Raton, FL: CRC Press, 2018.

  31. Sharif, M.A.R., Numerical Investigation of Round Turbulent Swirling Jet Impingement Heat Transfer from a Hot Surface, Comput. Therm. Sci.: Int. J, vol. 8, no. 6, pp. 489-507,2016.

  32. Shuja, S.Z., Yilbas, B.S., and Budair, M.O., Gas Jet Impingement on a Surface Having a Limited Constant Heat Flux Area: Various Turbulence Models, Numer. Heat Transf, Part A: Appl., vol. 36, no. 2, pp. 171-200,1999.

  33. Shuja, S.Z., Yilbas, B.S., and Budair, M.O., Local Entropy Generation in an Impinging Jet: Minimum Entropy Concept Evaluating Various Turbulence Models, Comput. Methods Appl. Mech. Eng., vol. 190, no. 28, pp. 3623-3644,2001.

  34. Terekhov, V. I., Kalinina, S.V., and Sharov, K.A., An Experimental Investigation of Flow Structure and Heat Transfer in an Imping-ing Annular Jet, Int. Commun. Heat Mass Transf., vol. 79, pp. 89-97,2016.

  35. Tesar, V. and Travnicek, Z., Increasing Heat and/or Mass Transfer Rates in Impinging Jets, J. Visualization, vol. 8, no. 2, pp. 91-98,2005.

  36. Travnicek, Z. and Tesar, V., Hysteresis in Annular Impinging Jets, Exp. Therm. Fluid Sci., vol. 44, pp. 565-570, 2013. DOI: 10.1016/j.expthermflusci.2012.08.019.

  37. Viskanta, R., Heat Transfer to Impinging Isothermal Gas and Flame Jets, Exp. Therm. Fluid Sci., vol. 6, no. 2, pp. 111-134,1993.

  38. Webb, B.W. and Ma, C.-F., Single-Phase Liquid Jet Impingement Heat Transfer, in Adv. Heat Transf., Elsevier, pp. 105-217,1995.

  39. Xu, P., Yu, B., Qiu, S., Poh, H.J., and Mujumdar, A.S., Turbulent Impinging Jet Heat Transfer Enhancement due to Intermittent Pulsation, Int. J. Therm. Sci, vol. 49, no. 7, pp. 1247-1252,2010.

  40. Zhen, H.S., Leung, C.W., and Cheung, C.S., Heat Transfer Characteristics of an Impinging Premixed Annular Flame Jet, Appl. Therm. Eng., vol. 36, pp. 386-392,2012.

对本文的引用
  1. Zhong Ying, Zhou Chao, Shi Yipeng, Effect of the Nozzle Geometry on Flow Field and Heat Transfer in Annular Jet Impingement, Energies, 15, 12, 2022. Crossref

  2. Jian Jie, Shuai Zhi-Jun, Yu Tao, Wang Xi, Ren Ke-Xin, Dong Lie-Yi, Li Wan-You, Jiang Chen-Xing, Research on stability characteristics of a spring-loaded valve with two outlets, Annals of Nuclear Energy, 175, 2022. Crossref

  3. Dutta Prasun, Chattopadhyay Himadri, Heat Transfer Due to Annular Jets Impinging on a Moving Surface, Journal of Heat Transfer, 144, 8, 2022. Crossref

  4. Joulaei Amir, Nili-Ahmadabadi Mahdi, Chun Kim Kyung, Parametric study of a fluidic oscillator for heat transfer enhancement of a hot plate impinged by a sweeping jet, Applied Thermal Engineering, 205, 2022. Crossref

  5. Xue Xiaochun, Zhou Shupei, Yu Yonggang, Evolution characteristics of under-expanded accompanying jet under extreme heat condition, International Communications in Heat and Mass Transfer, 137, 2022. Crossref

将发表的论文

A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain