图书馆订阅: Guest

A NUMERICAL STUDY ON DETERMINATION OF TEMPERATURE CORRECTION FACTOR OF TEMPERATURE SENSOR MOUNTED ON ULTRASONIC FLOWMETER

卷 14, 册 5, 2022, pp. 47-79
DOI: 10.1615/ComputThermalScien.2022039654
Get accessGet access

摘要

In the present study, an effort is made to find out the temperature correction factor (TCF) for the measurement of fluid temperature in the transit time ultrasonic flowmeter. Coupled multidomain simulations are carried out for different flowmeter sizes, velocities, and flow, and ambient temperature. Flow analysis of a 24-inch flowmeter is performed and five methodologies are developed: average method, two-sensor method, three-sensor method, two-variable regression method, and three-variable regression method. Using other flowmeter size flow analysis, values of TCF are computed. Thus initial and final errors are calculated. The three-sensor method turns out to be the best methodology, as TCF using the three-sensor method gives the minimum absolute final error. This study proves to be very significant to customize temperature sensors on an ultrasonic flowmeter, as it eliminates the sensor mounting dependency at a conventional position (1/3 of the internal diameter).

Figures

  • Working of a transit time ultrasonic flowmeter with (a) sensor at ID/3 and (b) sensor at ID
  • Flow chart of methodology adopted in this study
  • Total simulation cases
  • (a) Geometry (half domain), (b) front view, and (c) enlarged view of pipe and fluid domain
  • Comparasion of numerical results with previously computed results
  • Variation of TCF along length of 24-inch pipe for different temperature cases
  • Variation of TIS/3 along length of 24-inch pipe (Ti = 413 K, Ta = 233 K)
  • Variation of TCF along pipe length at different velocity cases for 16-inch pipe: (a) 100 ft/s, (b) 70 ft/s, (c) 50 ft/s, (d) 30
ft/s, (e) 10 ft/s, and (f) 3 ft/s
  • Comparison of methodologies using Ei and Ef for 16-inch pipe. Velocity (a) 100 ft/s, 70 ft/s, and 50 ft/s, (b) 30 ft/s, 10
ft/s, and 3 ft/s.
  • Variation of TCF at different velocities for 14-inch pipe: (a) 100 ft/s, (b) 70 ft/s, (c) 50 ft/s, (d) 30 ft/s, (e) 10 f /s, and (f)
3 ft/s
  • Variation of TCF at different velocities for 12-inch pipe: (a) 100 ft/s, (b) 70 ft/s, (c) 50 ft/s, (d) 30 ft/s, (e) 10 ft/s, and (f)
3 ft/s
  • Variation of TCF at different velocities for 10-inch pipe: (a) 100 ft/s, (b) 70 ft/s, (c) 50 ft/s, (d) 30 ft/s, (e) 10 ft/s, and (f)
3 ft/s
  • Variation of TCF at different velocities for 8-inch pipe: (a) 100 ft/s, (b) 70 ft/s, (c) 50 ft/s, (d) 30 ft/s, (e) 10 ft/s, and (f)
3 ft/s
  • Variation of TCF at different velocities for 6-inch pipe: (a) 100 ft/s, (b) 70 ft/s, (c) 50 ft/s, (d) 30 ft/s, (e) 10 ft/s, and (f)
3 ft/s
  • Comparison of methodologies using Ei and Ef for 14-inch pipe. Velocity (a) 100 ft/s, 70 ft/s, and 50 ft/s, (b) 30 ft/s, 10
ft/s, and 3 ft/s.
  • Comparison of methodologies using Ei and Ef for 12-inch pipe. Velocity (a) 100 ft/s, 70 ft/s, and 50 ft/s, (b) 30 ft/s, 10
ft/s, and 3 ft/s.
  • Comparison of methodologies using Ei and Ef for 10-inch pipe. Velocity (a) 100 ft/s, 70 ft/s, and 50 ft/s, (b) 30 ft/s, 10
ft/s, and 3 ft/s.
  • Comparison of methodologies using Ei and Ef for 8-inch pipe. Velocity (a) 100 ft/s, 70 ft/s, and 50 ft/s, (b) 30 ft/s, 10
ft/s, and 3 ft/s.
  • Comparison of methodologies using Ei and Ef for 6-inch pipe. Velocity (a) 100 ft/s, 70 ft/s, and 50 ft/s, (b) 30 ft/s, 10
ft/s, and 3 ft/s.
参考文献
  1. Baker, R.C., Ultrasonic Flowmeters, in Flow Measurement Handbook, Cambridge, UK: Cambridge University Press, pp. 312-356, 2000. DOI: 10.1017/CB09780511471100.015. DOI: 10.1017/CB09780511471100.015

  2. Fei, L., Cunfu, H., Bin, W., and Jingpin, J., Numerical Simulation of Multi-Path Ultrasonic Flowmeter: Ultrasonic Path Error Analysis, Proc. 1stInt. Conf. on Sensor Device Technologies and Applications, Venice, Italy, pp. 58-62,2010. DOI: 10.1109/ SENSORDEVICES .2010.18.

  3. Ge, L., Deng, H., Wang, Q., Hu, Z., and Li, J., Study of the Influence of Temperature on the Measurement Accuracy of Transit-Time Ultrasonic Flowmeters, Sensor Rev., vol. 39, no. 2, pp. 269-276,2019. DOI: 10.1108/SR-01-2018-0005. DOI: 10.1108/SR-01-2018-0005

  4. Hilgenstock, A. and Ernst, R., Analysis of Installation Effects by Means of Computational Fluid Dynamics - CFD vs Experiments? FlowMeas. Instrument., vol. 7, no. 3, pp. 161-171,1996. DOI: 10.1016/S0955-5986(97)88066-1. DOI: 10.1016/S0955-5986(97)88066-1

  5. Holm, M., Stang, J., and Delsing, J., Simulation of Flow Meter Calibration Factors for Various Installation Effects, Measurement, vol. 15, no. 4, pp. 235-244,1995. DOI: 10.1016/0263-2241(95)00007-8. DOI: 10.1016/0263-2241(95)00007-8

  6. Jackson, G.A., Gibson, J.R., and Holmes, R., Three-Path Ultrasonic Flow Meter with Fluid Velocity Profile Identification, Meas. Sci. Technol., vol. 2, no. 7, pp. 635-642,1991. DOI: 10.1088/0957-0233/2/7/010. DOI: 10.1088/0957-0233/2/7/010

  7. Johari, H. and Durgin, W.W., Direct Measurement of Circulation Using Ultrasound, Exp. Fluids, vol. 25, no. 5, pp. 445-454,1998. DOI: 10.1007/s003480050250. DOI: 10.1007/s003480050250

  8. Kang, L., Feeney, A., Somerset, W., Su, R., Lines, D., Ramadas, S.N., and Dixon, S., A Novel Mathematical Model for Transit-Time Ultrasonic Flow Measurement, IEEE Int. Ultrasonics Symposium, Glasgow, Scotland, pp. 1590-1593, 2019. DOI: 10.1109/ULTSYM.2019.8925693. DOI: 10.1109/ULTSYM.2019.8925693

  9. Kikura, H., Yamanaka, G., and Aritomi, M., Effect of Measurement Volume Size on Turbulent Flow Measurement Using Ultrasonic Doppler Method, Exp. Fluids, vol. 36, no. 1,pp. 187-196,2004. DOI: 10.1007/s00348-003-0694-x. DOI: 10.1007/s00348-003-0694-x

  10. Kolpatzik, S.J., Hilgenstock, A., Dietrich, H., and Nath, B., The Location of Temperature Sensors in Pipe Flows for Determining the Mean Gas Temperature in Flow Metering Applications, Flow Meas. Instrument., vol. 9, no. 1, pp. 43-57, 1998. DOI: 10.1016/S0955-5986(98)00009-0. DOI: 10.1016/S0955-5986(98)00009-0

  11. McDonald, B.E. and Sui, L., Ultrasonic Flow Measurement with Integrated Temperature Measurement Compensation, 16th Int. Flow Measurement Conf., Paris, no. 1, pp. 570-575,2013.

  12. Menter, F.R., Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows, 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conf., Reston, VA, 1993. DOI: 10.2514/6.1993-2906. DOI: 10.2514/6.1993-2906

  13. Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J., vol. 32, no. 8, pp. 1598-1605,1994. DOI: 10.2514/3.12149. DOI: 10.2514/3.12149

  14. Miau, J.J., Yeh, C.F., Hu, C.C., and Chou, J.H., On Measurement Uncertainty of a Vortex Flowmeter, Flow Meas. Instrument., vol. 16, no. 6, pp. 397-404,2005. DOI: 10.1016/j.flowmeasinst.2005.04.005. DOI: 10.1016/j.flowmeasinst.2005.04.005

  15. Mousavi, S.F., Hashemabadi, S.H., and Jamali, J., Calculation of Geometric Flow Profile Correction Factor for Ultrasonic Flow Meter Using Semi-3D Simulation Technique, Ultrasonics, vol. 106,2020. DOI: 10.1016/j.ultras.2020.106165. DOI: 10.1016/j.ultras.2020.106165

  16. Peng, S., Liao, W., and Tan, H., Performance Optimization of Ultrasonic Flow Meter Based on Computational Fluid Dynamics, Adv. Mech. Eng., vol. 10, no. 8, pp. 1-9,2018. DOI: 10.1177/1687814018793264. DOI: 10.1177/1687814018793264

  17. Raisutis, R., Investigation of the Flow Velocity Profile in a Metering Section of an Invasive Ultrasonic Flowmeter, Flow Meas. Instrument, vol. 17, no. 4, pp. 201-206,2006. DOI: 10.1016/j.flowmeasinst.2005.11.004. DOI: 10.1016/j.flowmeasinst.2005.11.004

  18. Roosnek, N., Novel Digital Signal Processing Techniques for Ultrasonic Gas Flow Measurements, Flow Meas. Instrument., vol. 11, no. 2, pp. 89-99,2000. DOI: 10.1016/S0955-5986(00)00008-X. DOI: 10.1016/S0955-5986(00)00008-X

  19. Ruppel, C. and Peters, F., Effects of Upstream Installations on the Reading of an Ultrasonic Flowmeter, Flow Meas. Instrument., vol. 15, no. 3, pp. 167-177,2004. DOI: 10.1016/j.flowmeasinst.2003.12.004. DOI: 10.1016/j.flowmeasinst.2003.12.004

  20. Zhao, H., Peng, L., Takahashi, T., Hayashi, T., Shimizu, K., and Yamamoto, T., CFD-Aided Investigation of Sound Path Position and Orientation for a Dual-Path Ultrasonic Flowmeter with Square Pipe, IEEE Sensors J, vol. 15, no. 1, pp. 128-137, 2015. DOI: 10.1109/JSEN.2014.2338322. DOI: 10.1109/JSEN.2014.2338322

将发表的论文

Positivity Preserving Analysis of Central Schemes for Compressible Euler Equations Souren Misra, Alok Patra, Santosh Kumar Panda A lattice Boltzmann study of nano-magneto-hydrodynamic flow with heat transfer and entropy generation over a porous backward facing-step channel Hassane NAJI, Hammouda Sihem, Hacen Dhahri A Commemorative Volume in Memory of Darrell Pepper David Carrington, Yogesh Jaluria, Akshai Runchal In Memoriam: Professor Darrell W. Pepper – A Tribute to an Exceptional Engineering Educator and Researcher Akshai K. Runchal, David Carrington, SA Sherif, Wilson K. S. Chiu, Jon P. Longtin, Francine Battaglia, Yongxin Tao, Yogesh Jaluria, Michael W. Plesniak, James F. Klausner, Vish Prasad, Alain J. Kassab, John R. Lloyd, Yelena Shafeyeva, Wayne Strasser, Lorenzo Cremaschi, Tom Shih, Tarek Abdel-Salam, Ryoichi S. Amano, Ashwani K. Gupta, Nesrin Ozalp, Ting Wang, Kevin R. Anderson, Suresh Aggarwal, Sumanta Acharya, Farzad Mashayek, Efstathios E. Michaelides, Bhupendra Khandelwal, Xiuling Wang, Shima Hajimirza, Kevin Dowding, Sandip Mazumder, Eduardo Divo, Rod Douglass, Roy E. Hogan, Glen Hansen, Steven Beale, Perumal Nithiarasu, Surya Pratap Vanka, Renato M. Cotta, John A. Reizes, Victoria Timchenko, Ashoke De, Keith A Woodbury, John Tencer, Aaron P. Wemhoff, G.F. ‘Jerry’ Jones, Leitao Chen, Timothy S. Fisher, Sandra K. S. Boetcher, Patrick H. Oosthuizen, Hamidreza Najafi, Brent W. Webb, Satwindar S. Sadhal, Amanie Abdelmessih Modeling of Two-Phase Gas-Liquid Slug Flows in Microchannels Ayyoub Mehdizadeh Momen, SA Sherif, William E. Lear Performance of two dimensional planar curved micronozzle used for gas separation Manu K Sukesan, Shine SR A Localized Meshless Method for Transient Heat Conduction with Applications Kyle Beggs, Eduardo Divo, Alain J. Kassab Non-nested Multilevel Acceleration of Meshless Solution of Heat Conduction in Complex Domains Anand Radhakrishnan, Michael Xu, Shantanu Shahane, Surya P Vanka Assessing the Viability of High-Capacity Photovoltaic Power Plants in Diverse Climatic Zones : A Technical, Economic, and Environmental Analysis Kadir Özbek, Kadir Gelis, Ömer Özyurt MACHINE LEARNING LOCAL WALL STEAM CONDENSATION MODEL IN PRESENCE OF NON-CONDENSABLE FROM TUBE DATA Pavan Sharma LES of Humid Air Natural Convection in Cavity with Conducting Walls Hadi Ahmadi moghaddam, Svetlana Tkachenko, John Reizes, Guan Heng Yeoh, Victoria Timchenko
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain