图书馆订阅: Guest
国际清洁环境能源期刊

每年出版 8 

ISSN 打印: 2150-3621

ISSN 在线: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

SYNERGISTIC EFFECT OF WATER AND CO-SOLVENTS ON THE HYDROTHERMAL LIQUEFACTION OF AGRICULTURAL BIOMASS TO PRODUCE HEAVY OIL

卷 23, 册 4, 2022, pp. 31-45
DOI: 10.1615/InterJEnerCleanEnv.2022040354
Get accessDownload

摘要

Hydrothermal liquefaction was performed on Alberta, Canada's agricultural biomass, corn stover and wheat straw, at an operating temperature of 300°C, initial reactor pressure of 600 psi and zero min retention time. Effects of adding co-solvents (methanol, ethanol, and 2-propanol) on yield and quality of heavy oil has been studied. 2-propanol exhibited to be a promising co-solvent that has improved the quality of heavy oil. Hydrothermal liquefaction of corn stover using a water−2-propanol mixture produced heavy oil having oxygen content of 18.8 wt.%, higher heating value of 32.17 MJ/kg, and total acid number value of 81.74 mg KOH/g oil. Hydrothermal liquefaction of wheat straw using water−2-propanol mixture produced heavy oil showing an oxygen content of 17.99 wt.% and higher heating value of 32.94 MJ/kg.

参考文献
  1. Agriculture and Agri-Food Canada (AAFC), Canada: Outlook for Principal Field Crops, 2018-08-17, pp. 1-38, accessed May 14, 2021, from https://agr.gc.ca/eng/canadas-agriculture-sectors/crops/reports-and-statistics-data-for-canadian-principal-field-crops/canada-outlook-for-principal-field-crops-2020-12-18/?id=1608598994440, 2020.

  2. Akhtar, J. and Amin, N.A.S., A Review on Process Conditions for Optimum Bio-Oil Yield in Hydrothermal Liquefaction of Biomass, Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1615-1624, 2011. DOI: 10.1016/j.rser.2010.11.054.

  3. Anouti, S., Haarlemmer, G., Deniel, M., and Roubaud, A., Analysis of Physicochemical Properties of Bio-Oil from Hydrothermal Liquefaction of Blackcurrant Pomace, Energy Fuels, vol. 30, no. 1, pp. 398-406, 2016. DOI: 10.1021/acs.energyfuels.5b02264.

  4. Bailey-Stamler, S., Samsom, R., and Ho Lem, S., Assessing the Agri-Fibre Biomass Residue Resources for Creating a BIOHEAT Industry in Alberta, p. 47, accessed May 11, 2021, from https://www.reap-canada.com/online_library/feedstock_biomass/Assessing the Agri-Fibre Biomass Residue.... (Bailey-Stamler et al., 2007).pdf, 2007.

  5. Bajpai, P., Structure of Lignocellulosic Biomass, in Pretreatment of Lignocellulosic Biomass for Biofuel Production, Springer Briefs in Molecular Science, Singapore: Springer, pp. 7-12, 2016.

  6. Bernardi, M., Tangorra, R.R., Palmisano, P., and Bogliano, A., Chemicals From Renewable Sources, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Amsterdam: Elsevier, 2016.

  7. Bicho, P. and McRae, M., Canadian Wheat Straw: Variability and the Effects of Outdoor Storage on Straw and Pulp Properties, Pulp Paper Can., vol. 109, no. 10, pp. C-1547-C-1550, 2008.

  8. Carr, A.G., Mammucari, R., and Foster, N.R., A Review of Subcritical Water as a Solvent and Its Utilisation for the Processing of Hydrophobic Organic Compounds, Chem. Eng. J., vol. 172, no. 1, pp. 1-17, 2011. DOI: 10.1016/j.cej.2011.06.007.

  9. Channiwala, S.A. and Parikh, P.P., A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels, Fuel, vol. 81, no. 8, pp. 1051-63, 2002. DOI: 10.1016/S0016-2361(01)00131-4.

  10. Cheng, S., D'Cruz, I., Wang, M., Leitch, M., and Xu, C.C., Highly Efficient Liquefaction of Woody Biomass in Hot-Compressed Alcohol-Water Co-Solvents, Energy Fuels, vol. 24, no. 9, pp. 4659-4667, 2010. DOI: 10.1021/ef901218w.

  11. Chernova, N., Kiseleva, S., and Vlaskin, M., Biofuel Production from Microalgae by Means of Hydrothermal Liquefaction: Advantages and Issues of the Promising Method, Int. J. Energy Clean Environ., vol. 18, no. 2, pp. 133-146, 2017. DOI: 10.1615/InterJEnerCleanEnv.2017021009.

  12. Cherubini, F., The Biorefinery Concept: Using Biomass Instead of Oil for Producing Energy and Chemicals, Energy Convers. Manage., vol. 51, no. 7, pp. 1412-1421, 2010. DOI: 10.1016/j.enconman.2010.01.015.

  13. Chumpoo, J. and Prasassarakich, P., Bio-Oil from Hydro-Liquefaction of Bagasse in Supercritical Ethanol, Energy Fuels, vol. 24, no. 3, pp. 2071-2077, 2010. DOI: 10.1021/ef901241e.

  14. Cui, Z., Cheng, F., Jarvis J.M., Brewer, C.E., and Jena, U., Roles of Co-Solvents in Hydrothermal Liquefaction of Low-Lipid, High-Protein Algae, Bioresour. Technol., vol. 310, p. 123454, 2020. DOI: 10.1016/j.biortech.2020.123454.

  15. DeKay, W., Canadian Crop Biomass Energy Research, accessed May 11, 2021, from https://www.producer. com/crops/canadian-crop-biomass-energy-research/, 2020.

  16. Demirbas, A., Calculation of Higher Heating Values of Biomass Fuels, Fuel, vol. 76, no. 5, pp. 431-434,1997. DOI: 10.1016/S0016-2361(97)85520-2.

  17. Deniel, M., Haarlemmer, G., Roubaud, A., Weiss-Hortala, E., and Fages, J., Bio-Oil Production from Food Processing Residues: Improving the Bio-Oil Yield and Quality by Aqueous Phase Recycle in Hydro-thermal Liquefaction of Blackcurrant (Ribes nigrum L.) Pomace, Energy Fuels, vol. 30, no. 6, pp. 4895-4904, 2016. DOI: 10.1021/acs.energyfuels.6b00441.

  18. Dimitriadis, A. and Bezergianni, S., Hydrothermal Liquefaction of Various Biomass and Waste Feedstocks for Biocrude Production: A State of the Art Review, Renew. Sustain. Energy Rev., vol. 68, pp. 113-125, 2017. DOI: 10.1016/j.rser.2016.09.120.

  19. Feng, S., Wei, R., Leitch, M., and Xu, C.C., Comparative Study on Lignocellulose Liquefaction in Water, Ethanol, and Water/Ethanol Mixture: Roles of Ethanol and Water, Energy, vol. 155, pp. 234-241, 2018. DOI: 10.1016/j.energy.2018.05.023.

  20. Feng, S., Yuan, Z., Leitch, M., and Xu, C.C., Hydrothermal Liquefaction of Barks into Bio-Crude - Effects of Species and Ash Content/Composition, Fuel, vol. 116, pp. 214-220, 2014. DOI: 10.1016/j. fuel.2013.07.096.

  21. Gronowska, M., Joshi, S., and MacLeana, H., A Review of U.S. and Canadian Biomass Supply Studies, BioResources, vol. 4, no. 1, pp. 341-369, 2009. DOI: 10.15376/biores.4.1.341-369.

  22. Hognon, C., Dupont, C., Grateau, M., and Delrue, F., Comparison of Steam Gasification Reactivity of Algal and Lignocellulosic Biomass: Influence of Inorganic Elements, Bioresour. Technol., vol. 164, pp. 347-353, 2014. DOI: 10.1016/j.biortech.2014.04.111.

  23. Liu, Y., Yuan, X., Huang, H., Wang, X., Wang, H., and Zeng, G., Thermochemical Liquefaction of Rice Husk for Bio-Oil Production in Mixed Solvent (Ethanol-Water), Fuel Process. Technol., vol. 112, pp. 93-99, 2013. DOI: 10.1016/j.fuproc.2013.03.005.

  24. Mathanker, A., Hydrothermal Liquefaction of Lignocellulosic Biomass to Produce Biofuels, Master of Science, University of Alberta, 2020.

  25. Mathanker, A., Pudasainee, D., Kumar, A., and Gupta, R., Hydrothermal Liquefaction of Lignocellulosic Biomass Feedstock to Produce Biofuels: Parametric Study and Products Characterization, Fuel, vol. 271, p. 117534, 2020. DOI: 10.1016/j.fuel.2020.117534.

  26. Moller, M., Nilges, P., Harnisch, F., and Schroder, U., Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation, ChemSusChem, vol. 4, no. 5, pp. 566-579, 2011. DOI: 10.1002/cssc.201000341.

  27. Ogi, T. and Yokoyama, S., Liquid Fuel Production from Woody Biomass by Direct Liquefaction, Sekiyu Gakkaishi (J. Jpn. Petrol. Inst.), vol. 36, no. 2, pp. 73-84, 1993. DOI: 10.1627/jpi1958.36.73.

  28. Okekunle, P.O., Ogunshola A.D., Babayemi, O.A., Abodunrin, E.D., and Daramola, O.M., Fuel Characterization of Bio-Oil from Fast Pyrolysis of Tectona Grandis in a Fixed Bed Reactor at Different Temperatures (400-700C), Int. J. Energy Clean Environ., vol. 22, no. 3, pp. 1-14, 2021. DOI: 10.1615/InterJEnerCleanEnv.2020035930.

  29. Patel, J.P. and Parsania, P.H., Characterization, Testing, and Reinforcing Materials of Biodegradable Composites, in Biodegradable and Biocompatible Polymer Composites, N.G Shimpi, Ed., Sawston, UK: Woodhead Publishing, pp. 55-79, 2018.

  30. Tajmirriahi, M., Karimi, K., and Kumar, R., Effects of Pinewood Extractives on Bioconversion of Pine-wood, Fuel, vol. 283, p. 119302, 2021. DOI: 10.1016/j.fuel.2020.119302.

  31. Toor, S.S., Rosendahl, L., and Rudolf, A., Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies, Energy, vol. 36, no. 5, pp. 2328-2342, 2011. DOI: 10.1016/j.energy.2011.03.013.

  32. Vaezi, M., Pandey, V., Kumar, A., and Bhattacharyya, S., Lignocellulosic Biomass Particle Shape and Size Distribution Analysis Using Digital Image Processing for Pipeline Hydro-Transportation, Biosyst. Eng., vol. 114, no. 2, pp. 97-112, 2013. DOI: 10.1016/j.biosystemseng.2012.11.007.

  33. Watson, J., Wang, T., Si, B., Chen, W.T., Aierzhati, A., and Zhang, Y., Valorization of Hydrothermal Lique-faction Aqueous Phase: Pathways towards Commercial Viability, Prog. Energy Combust. Sci., vol. 77, p. 100819, 2020. DOI: 10.1016/j.pecs.2019.100819.

  34. Wertz, J., Deleu, M., and Coppee, S., Hemicelluloses and Lignin in Biorefineries, Hemicelluloses and Lignin in Biorefineries, Boca Raton, FL: CRC Press, 2017.

  35. Yuan, X.Z., Li, H., Zeng, G.M., Tong, J.Y., and Xie, W., Sub- and Supercritical Liquefaction of Rice Straw in the Presence of Ethanol-Water and 2-Propanol-Water Mixture, Energy, vol. 32, no. 11, pp. 2081-2088, 2007. DOI: 10.1016/j.energy.2007.04.011.

  36. Zhao, Y., Zhu, W., Wei, X., Fan, X., Cao, J., Dou, Y., Zong, Z., and Zhao, W., Synergic Effect of Methanol and Water on Pine Liquefaction, Bioresour. Technol., vol. 142, pp. 504-509, 2013. DOI: 10.1016/j. biortech.2013.05.028.

  37. Zhu, W., Zhong, Z., Yan, H., Zhao, Y., Lu, Y., Wei, X., and Zhang, D., Cornstalk Liquefaction in Methanol/Water Mixed Solvents, Fuel Process. Technol., vol. 117, pp. 1-7, 2014. DOI: 10.1016/j.fuproc.2013.04.007.

  38. Zhu, Z., Toor, S.S., Rosendahl, L., and Chen, G., Analysis of Product Distribution and Characteristics in Hydrothermal Liquefaction of Barley Straw in Subcritical and Supercritical Water, Environ. Prog. Sustain. Energy, vol. 33, no. 3, pp. 737-743, 2014. DOI: 10.1002/ep.11977.

7926 文章浏览量 549 文章下载 统计数据
7926 文章浏览量 549 下载次数 Google
Scholar
引用次数

相似内容的文章:

A NEW PROCEDURE OF HYDROTHERMAL LIQUEFACTION OF MICROALGAE AFTER DIFFERENT THERMOCHEMICAL PRE-TREATMENTS International Heat Transfer Conference 16, Vol.20, 2018, issue
Mikhail S. Vlaskin, Sophia V. Kiseleva, Nadezhda I. Chernova, Leonid A. Dombrovsky
Co-gasification performance study of high ash Indian Coal and Rice husk blends in different proportion in Fluidised bed Gasifier Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India, Vol.0, 2024, issue
Rakesh Kumar, Ankit Kumar, Prakash D Chavan
EXTRACTION AND CHARACTERIZATION OF BIODIESEL DERIVED FROM THE COFFEE HUSK AND ITS EFFECT ON DIESEL ENGINE PERFORMANCE AND EMISSION CHARACTERISTICS International Journal of Energy for a Clean Environment, Vol.24, 2023, issue 6
Addisu Emma, Ajay Kumar Yadav, Alangar Sathyabhama
Oxidative Stability of Sunflower Oil Supplemented with Medicinal Split Gill Mushroom, Schizophyllum commune Fr.:Fr. Extract during Accelerated Storage International Journal of Medicinal Mushrooms, Vol.13, 2011, issue 4
Hip Seng Yim, Pei Ying Heng, Fook Yee Chye, Chun Wai Ho
WASTE TRANSFORMER OIL TO BIODIESEL: EFFECT OF INJECTION TIMING ON ENGINE PERFORMANCE AND EMISSION CHARACTERISTICS International Journal of Energy for a Clean Environment, Vol.23, 2022, issue 8
Abhishek Bhardwaj, Biswajeet Nayak, Himanshu Singh, Vaibhav Singh, Aritra Nandi, Abhay Rai, Raneet Sahoo

将发表的论文

Evaluation of Waste Heat Recovery Systems for Industrial Decarbonization Ladislav Vesely, Logan Rapp, Jayanta Kapat APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain