图书馆订阅: Guest
国际清洁环境能源期刊

每年出版 8 

ISSN 打印: 2150-3621

ISSN 在线: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

INFLUENCE OF BIOMASS PRETREATMENT ON SUBSEQUENT PYROLYSIS AND HYDRODEOXYGENATION IN BIO-BASED TRANSPORT FUELS AND CHEMICALS PRODUCTION: A CRITICAL REVIEW

卷 24, 册 7, 2023, pp. 59-114
DOI: 10.1615/InterJEnerCleanEnv.2022044290
Get accessGet access

摘要

The present article aims to review the influence of various biomass pretreatments on the production of bio-based transportation fuel and chemicals via pyrolysis and hydrodeoxygenation (HDO). The article includes the influence of different thermochemical pretreatments such as dry torrefaction (DT), wet torrefaction (WT), steam explosion treatment (SET), hot water extraction (HWE), acid treatment (ACT), and alkali treatment (AKT) on bio-oil yield and bio-oil properties. HDO primarily includes dehydration, hydrogenolysis, decarbonylation, and hydrogenation. HDO can be classified based on stages (single and two-stage HDO), reaction pressure (high and low), and hydrogen presence (ex situ and in situ). The recent developments, advantages, and drawbacks associated with different types of HDO processes have been included. The article includes recent studies on designing various catalysts based on HDO conversion of different bio-oil compositions or selective model compounds to targeted bio-based products. The various biomass pretreatments impact the concentration of certain families of organic compounds present in bio-oil. Hence, the present review article also includes recommendations of specific biomass pretreatments for various HDO catalysts designed for selective model compounds or different bio-oil compositions. Few praiseworthy techno-economic analysis (TEA) studies on the influence of different biomass pretreatments on the minimum selling price (MSP) of bio-based products obtained at various production stages have been discussed.

参考文献
  1. Abelha, P. and Kiel, J., Techno-Economic Assessment of Biomass Upgrading by Washing and Torrefaction, Biomass Bioenergy, vol. 142, p. 105751, 2020.

  2. Adjaye, J.D. and Bakhshi, N.N., Production of Hydrocarbons by Catalytic Upgrading of a Fast Pyrolysis Bio-Oil. Part II: Comparative Catalyst Performance and Reaction Pathways, Fuel Process. Technol., vol. 45, no. 3, pp. 185-202, 1995.

  3. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., and Levin, D.B., Biomass Pretreatment: Fundamentals toward Application, Biotechnol. Adv., vol. 29, no. 6, pp. 675-685, 2011.

  4. Aho, A., Roggan, S., Simakova, O.A., Salmi, T., and Murzin, D.Y., Structure Sensitivity in Catalytic Hydrogenation of Glucose over Ruthenium, Catal. Today, vol. 241, pp. 195-199, 2015.

  5. Akbari, M., Oyedun, A.O., and Kumar, A., Techno-Economic Assessment of Wet and Dry Torrefaction of Biomass Feedstock, Energy, vol. 207, p. 118287, 2020.

  6. Akgul, O., Zamboni, A., Bezzo, F., Shah, N., and Papageorgiou, L.G., Optimization-Based Approaches for Bioethanol Supply Chains, Ind. Eng. Chem. Res., vol. 50, no. 9, pp. 4927-4938, 2011.

  7. Aqsha, A., Tijani, M.M., Moghtaderi, B., and Mahinpey, N., Catalytic Pyrolysis of Straw Biomasses (Wheat, Flax, Oat and Barley) and the Comparison of Their Product Yields, J. Anal. Appl. Pyrolysis., vol. 125, pp. 201-208, 2017.

  8. Arioz, E., Kurtul, B., and Kockar, O.M., Catalytic Fast Pyrolysis of Safflower Biomass for Synthetic Bio-Oil Production, Int. J. Energy Clean Environ., vol. 23, no. 1, pp. 53-62, 2022.

  9. Arteaga-Perez, L.E., Gomez Capiro, O., Romero, R., Delgado, A., Olivera, P., Ronsse, F., and Jimenezc, R., In Situ Catalytic Fast Pyrolysis of Crude and Torrefied Eucalyptus Globulus Using Carbon Aerogel-Supported Catalysts, Energy, vol. 128, pp. 701-712, 2017.

  10. Asadullah, M., Adi, A.M., Suhada, N., Malek, N.H., Saringat, M.I., and Azdarpour, A., Optimization of Palm Kernel Shell Torrefaction to Produce Energy Densified Bio-Coal, Energy Convers. Manag., vol. 88, pp. 1086-1093, 2014.

  11. Ausavasukhi, A., Huang, Y., To, A.T., Sooknoi, T., and Resasco, D.E., Hydrodeoxygenation of M-Cresol over Gallium-Modified Beta Zeolite Catalysts, J. Catal., vol. 290, pp. 90-100, 2012.

  12. Bar-On, Y.M., Phillips, R., and Milo, R., The Biomass Distribution on Earth, Proc. Natl. Acad. Sci., vol. 115, no. 25, pp. 6506-6511, 2018.

  13. Baral, N.R. and Shah, A., Comparative Techno-Economic Analysis of Steam Explosion, Dilute Sulfuric Acid, Ammonia Fiber Explosion and Biological Pretreatments of Corn Stover, Bioresour. Technol., vol. 232, pp. 331-343, 2017.

  14. Baruah, J., Nath, B.K., Sharma, R., Kumar, S., Deka, R.C., Baruah, D.C., and Kalita, E., Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products, Front. Energy Res., vol. 6, pp. 1-19, article 141, 2018.

  15. Beier, C.M., Caputo, J., and Groffman, P.M., Measuring Ecosystem Capacity to Provide Regulating Services: Forest Removal and Recovery at Hubbard Brook (USA), Ecol. Appl., vol. 25, no. 7, pp. 2011-2021, 2015.

  16. Besson, M., Gallezot, P., and Pinel, C., Conversion of Biomass into Chemicals over Metal Catalysts, Chem. Rev., vol. 114, no. 3, pp. 1827-1870, 2014.

  17. Brannvall, E. and Backstrom, M., Improved Impregnation Efficiency and Pulp Yield of Softwood Kraft Pulp by High Effective Alkali Charge in the Impregnation Stage, Holzforschung, vol. 70, no. 11, pp. 1031-1037, 2016.

  18. Brigagao, G.V., de Queiroz Fernandes Araujo, O., de Medeiros, J.L., Mikulcic, H., and Duic, N., A Techno-Economic Analysis of Thermochemical Pathways for Corncob-to-Energy: Fast Pyrolysis to Bio-Oil, Gasification to Methanol and Combustion to Electricity, Fuel Process. Technol., vol. 193, pp. 102-113, 2019.

  19. Brown, T.R., Thilakaratne, R., Brown, R.C., and Hu, G., Techno-Economic Analysis of Biomass to Transportation Fuels and Electricity via Fast Pyrolysis and Hydroprocessing, Fuel, vol. 106, pp. 463-469, 2013.

  20. Bui, V.N., Laurenti, D., Delichere, P., and Geantet, C., Hydrodeoxygenation of Guaiacol. Part II: Support Effect for CoMoS Catalysts on HDO Activity and Selectivity, Appl. Catal. B Environ., vol. 101, nos. 3-4, pp. 246-255, 2011.

  21. Cao, L., Chen, H., Tsang, D.C.W., Luo, G., Hao, S., Zhang, S., and Chen, J., Optimizing Xylose Production from Pinewood Sawdust through Dilute-Phosphoric-Acid Hydrolysis by Response Surface Methodology, J. Clean. Prod., vol. 178, pp. 572-579, 2018.

  22. Cao, B., Wang, S., Hu, Y., El-Fatah Abomohra, A., Qian, L., He, Z., Wang, Q., Uzoejinwa, B.B., and Esakkimuthu, S., Effect of Washing with Diluted Acids on Enteromorpha Clathrata Pyrolysis Products: Towards Enhanced Bio-Oil from Seaweeds, Renew. Energy, vol. 138, pp. 29-38, 2019.

  23. Carpenter, D., Westover, T.L., Czernik, S., and Jablonski, W., Biomass Feedstocks for Renewable Fuel Production: A Review of the Impacts of Feedstock and Pretreatment on the Yield and Product Distribution of Fast Pyrolysis Bio-Oils and Vapors, Green Chem., vol. 16, no. 2, pp. 384-406, 2014.

  24. Chen, W.-H., Du, S.-W., Tsai, C.-H., and Wang, Z.-Y., Torrefied Biomasses in a Drop Tube Furnace to Evaluate Their Utility in Blast Furnaces, Bioresour. Technol., vol. 111, pp. 433-438, 2012.

  25. Chen, D., Zheng, Z., Fu, K., Zeng, Z., Wang, J., and Lu, M., Torrefaction of Biomass Stalk and Its Effect on the Yield and Quality of Pyrolysis Products, Fuel, vol. 159, pp. 27-32, 2015.

  26. Chen, D., Mei, J., Li, H., Li, Y., Lu, M., Ma, T., and Ma, Z., Combined Pretreatment with Torrefaction and Washing Using Torrefaction Liquid Products to Yield Upgraded Biomass and Pyrolysis Products, Bioresour. Technol., vol. 228, pp. 62-68, 2017.

  27. Chen, W.-H., Lin, B.-J., Colin, B., Chang, J-S., Petrissans, A., Bi, X.T., and Petrissans, M., Hygroscopic Transformation of Woody Biomass Torrefaction for Carbon Storage, Appl. Energy, vol. 231, pp. 768-776, 2018a.

  28. Chen, D., Gao, A., Cen, K., Zhang, J., Cao, X., and Ma, Z., Investigation of Biomass Torrefaction Based on Three Major Components: Hemicellulose, Cellulose, and Lignin, Energy Convers. Manag., vol. 169, pp. 228-237, 2018b.

  29. Chen, W.-H., Farooq, W., Shahbaz, M., Naqvi, S.R., Ali, I., Al-Ansari, T., and Amin, N.A.S., Current Status of Biohydrogen Production from Lignocellulosic Biomass, Technical Challenges and Commercial Potential through Pyrolysis Process, Energy, vol. 226, p. 120433, 2021.

  30. Ciolkosz, D. and Wallace, R., A Review of Torrefaction for Bioenergy Feedstock Production, Biofuels Bioprod. Biorefin., vol. 5, no. 3, pp. 317-329, 2011.

  31. Chen, C.-J., Lee, W.-S., and Bhan, A., Mo2C Catalyzed Vapor Phase Hydrodeoxygenation of Lignin-Derived Phenolic Compound Mixtures to Aromatics under Ambient Pressure, Appl. Catal. A Gen., vol. 510, pp. 42-48, 2016.

  32. Chumachenko, Y.A., Buluchevskiy, E.A., Fedorova, E.D., Nepomnyashchii, A.A., Gulyaeva, T.I., Trenikhin, M.V., Izmailov, R.R., and Mironenko, R.M., Hydrodeoxygenation of Sorbitol to Gasoline-Range Hydrocarbons over Pt, Pd, Rh, Ru, Ni Catalysts Supported on Tungstated Alumina, Biomass Convers. Biorefin., vol. 11, pp. 1233-1243, 2021.

  33. Corma, A., Huber, G.W., Sauvanaud, L., and O'Connor, P., Processing Biomass-Derived Oxygenates in the Oil Refinery: Catalytic Cracking (FCC) Reaction Pathways and Role of Catalyst, J. Catal., vol. 247, no. 2, pp. 307-327, 2007.

  34. Czernik, S. and Bridgwater, A.V., Overview of Applications of Biomass Fast Pyrolysis Oil, Energy Fuels, vol. 18, no. 2, pp. 590-598, 2004.

  35. Das, P., Ganesh, A., and Wangikar, P., Influence of Pretreatment for Deashing of Sugarcane Bagasse on Pyrolysis Products, Biomass Bioenergy, vol. 27, no. 5, pp. 445-457, 2004.

  36. David, G.F., Perez, V.H., Rodriguez Justo, O., and Garcia-Perez, M., Effect of Acid Additives on Sugarcane Bagasse Pyrolysis: Production of High Yields of Sugars, Bioresour. Technol., vol. 223, pp. 74-83, 2017.

  37. De, S., Saha, B., and Luque, R., Hydrodeoxygenation Processes: Advances on Catalytic Transformations of Biomass-Derived Platform Chemicals into Hydrocarbon Fuels, Bioresour. Technol., vol. 178, pp. 108-118, 2015.

  38. Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., Ferreira de Souza, S., and Kottaisamy, M., Structure, Morphology and Thermal Characteristics of Banana Nano Fibers Obtained by Steam Explosion, Bioresour. Technol., vol. 102, no. 2, pp. 1988-1997, 2011.

  39. de Miguel Mercader, F., Groeneveld, M.J., Kersten, S.R.A., Geantet, C., Toussaint, G., Way, N.W.J., Schaverien, C.J., and Hogendoorn, K.J.A., Hydrodeoxygenation of Pyrolysis Oil Fractions: Process Understanding and Quality Assessment through Co-Processing in Refinery Units, Energy Environ. Sci., vol. 4, no. 3, pp. 985-997, 2011.

  40. Doddapaneni, T.R.K.C., Konttinen, J., Hukka, T.I., and Moilanen, A., Influence of Torrefaction Pretreatment on the Pyrolysis of Eucalyptus Clone: A Study on Kinetics, Reaction Mechanism and Heat Flow, Ind. Crops Prod., vol. 92, pp. 244-254, 2016.

  41. Dong, Q., Zhang, S., Ding, K., Zhu, S., Zhang, H., and Liu, X., Pyrolysis Behavior of Raw/Torrefied Rice Straw after Different Demineralization Processes, Biomass Bioenergy, vol. 119, pp. 229-236, 2018.

  42. Elliott, D.C. and Hart, T.R., Catalytic Hydroprocessing of Chemical Models for Bio-Oil, Energy Fuels, vol. 23, no. 2, pp. 631-637, 2009.

  43. Elliott, D.C., Hart, T.R., Neuenschwander, G.G., Rotness, L.J., and Zacher, A.H., Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-Oil to Produce Hydrocarbon Products, Environ. Prog. Sustain. Energy, vol. 28, no. 3, pp. 441-449, 2009.

  44. Elliott, D.C., Hart, T.R., Neuenschwander, G.G., Rotness, L.J., Olarte, M.V., Zacher, A.H., and Solantausta, Y., Catalytic Hydroprocessing of Fast Pyrolysis Bio-Oil from Pine Sawdust, Energy Fuels, vol. 26, no. 6, pp. 3891-3896, 2012.

  45. Fan, L., Zhang, Y., Liu, S., Zhou, N., Chen, P., Cheng, Y., Addy, M., Lu, Q., Omar, M.M., Liu, Y., Wang, Y., Dai, L., Anderson, E., Peng, P., Lei, H., and Ruan, R., Bio-Oil from Fast Pyrolysis of Lignin: Effects of Process and Upgrading Parameters, Bioresour. Technol., vol. 241, pp. 1118-1126, 2017.

  46. Fleig, O.P., Raymundo, L.M., Trierweiler, L.F., and Trierweiler, J.O., Study of Rice Husk Continuous Torrefaction as a Pretreatment for Fast Pyrolysis, J. Anal. Appl. Pyrolysis, vol. 154, p. 104994, 2021.

  47. Fukuda, S., Pyrolysis Investigation for Bio-Oil Production from Various Biomass Feedstocks in Thailand, Int. J. Green Energy, vol. 12, no. 3, pp. 215-224, 2015.

  48. Gamliel, D.P., Karakalos, S., and Valla, J.A., Liquid Phase Hydrodeoxygenation of Anisole, 4-Ethylphenol and Benzofuran Using Ni, Ru and Pd Supported on USY Zeolite, Appl. Catal. A Gen., vol. 559, pp. 20-29, 2018.

  49. Gong, S.-H., Im, H.-S., Um, M., Lee, H.-W., and Lee, J.-W., Enhancement of Waste Biomass Fuel Properties by Sequential Leaching and Wet Torrefaction, Fuel, vol. 239, pp. 693-700, 2019.

  50. Granados, D.A., Basu, P., Nhuchhen, D.R., and Chejne, F., Investigation into Torrefaction Kinetics of Biomass and Combustion Behaviors of Raw, Torrefied and Char Samples, Biofuels, vol. 12, no. 6, pp. 633-643, 2019.

  51. Gollakota, A.R.K., Reddy, M., Subramanyam, M.D., and Kishore, N., A Review on the Upgradation Techniques of Pyrolysis Oil, Renew. Sust. Energ. Rev., vol. 58, pp. 1543-1568, 2016.

  52. Gyngazova, M.S., Negahdar, L., Blumenthal, L.C., and Palkovits, R., Experimental and Kinetic Analysis of the Liquid Phase Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Carbon-Supported Nickel Catalysts, Chem. Eng. Sci., vol. 173, pp. 455-464, 2017.

  53. Hakeem, I.G., Halder, P., Marzbali, M.H., Patel, S., Kundu, S., Paz-Ferreiro, J., Surapaneni, A., and Shaha, K., Research Progress on Levoglucosan Production via Pyrolysis of Lignocellulosic Biomass and Its Effective Recovery from Bio-Oil, J. Environ. Chem. Eng., vol. 9, no. 4, p. 105614, 2021.

  54. Han, Y., McIlroy, D.N., and McDonald, A.G., Hydrodeoxygenation of Pyrolysis Oil for Hydrocarbon Production Using Nanospring Based Catalysts, J. Anal. Appl. Pyrolysis., vol. 117, pp. 94-105, 2016.

  55. Hansen, S., Mirkouei, A., and Diaz, L.A., A Comprehensive State-of-Technology Review for Upgrading Bio-Oil to Renewable or Blended Hydrocarbon Fuels, Renew. Sust. Energ. Rev., vol. 118, p. 109548, 2020.

  56. Hassan, E.M., Steele, P.H., and Ingram, L., Characterization of Fast Pyrolysis Bio-Oils Produced from Pretreated Pine Wood, Appl. Biochem. Biotechnol., vol. 154, no. 1, pp. 3-13, 2009.

  57. Hatefirad, P. and Tavasoli, A., Effect of Acid Treatment and Na2CO3 as a Catalyst on the Quality and Quantity of Bio-Products Derived from the Pyrolysis of Granular Bacteria Biomass, Fuel, vol. 295, p. 120585, 2021.

  58. He, C., Tang, C., Li, C., Yuan, J., Tran, K.-Q., Bach, Q.-V., Qiu, R., and Yang, Y., Wet Torrefaction of Biomass for High Quality Solid Fuel Production: A Review, Renew. Sust. Energ. Rev., vol. 91, pp. 259-271, 2018a.

  59. He, J., Li, H., Riisager, A., and Yang, S., Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol with Recyclable Al-Zr@Fe Mixed Oxides, ChemCatChem, vol. 10, no. 2, pp. 430-438, 2018b.

  60. Hita, I., Ghoreishi, S., Santos, J.I., Barth, T., and Heeres, H.J., Hydrothermal Liquefaction versus Catalytic Hydrodeoxygenation of a Bioethanol Production Stillage Residue to Platform Chemicals: A Comparative Study, Fuel Process. Technol., vol. 213, p. 106654, 2021.

  61. Hilten, R.N., Speir, R.A., Kastner, J.R., Mani, S., and Das, K.C., Effect of Torrefaction on Bio-Oil Upgrading over HZSM-5. Part 2: Byproduct Formation and Catalyst Properties and Function, Energy Fuels, vol. 27, no. 2, pp. 844-856, 2013.

  62. Hollak, S.A.W., Ariens, M.A., De Jong, K.P., and Van Es, D.S., Hydrothermal Deoxygenation of Triglycerides Over Pd/C Aided by In Situ Hydrogen Production from Glycerol Reforming, ChemSusChem, vol. 7, no. 4, pp. 1057-1062, 2014.

  63. Hoang, A.T., Nizetic, S., Ong, H.C., Mofijur, M., Ahmed, S.F., Ashok, B., and Chau, M.Q., Insight into the Recent Advances of Microwave Pretreatment Technologies for the Conversion of Lignocellulosic Biomass into Sustainable Biofuel, Chemosphere, vol. 281, p. 130878, 2021.

  64. Hoekman, S.K., Broch, A., and Robbins, C., Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass, Energy Fuels, vol. 25, no. 4, pp. 1802-1810, 2011.

  65. Hoekman, S.K., Broch, A., Robbins, C., Zielinska, B., and Felix, L., Hydrothermal Carbonization (HTC) of Selected Woody and Herbaceous Biomass Feedstocks, Biomass Convers. Biorefin., vol. 3, no. 2, pp. 113-126, 2013.

  66. Howe, D., Westover, T., Carpenter, D., Santosa, D., Emerson, R., Deutch, S., Starace, A., Kutnyakov, I., and Lukins, C., Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis-Hydrotreating Pathway, Energy Fuels, vol. 29, no. 5, pp. 3188-3197, 2015.

  67. Hu, L., Lin, L., and Liu, S., Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran, Ind. Eng. Chem. Res., vol. 53, no. 24, pp. 9969-9978, 2014.

  68. Hu, W., Dang, Q., Rover, M., Brown, R.C., and Wright, M.M., Comparative Techno-Economic Analysis of Advanced Biofuels, Biochemicals, and Hydrocarbon Chemicals via the Fast Pyrolysis Platform, Biofuels, vol. 7, no. 1, pp. 57-67, 2016.

  69. Hu, J., Jiang, B., Wang, J., Qiao, Y., Zuo, T., Sun, Y., and Jaing, X., Physicochemical Characteristics and Pyrolysis Performance of Corn Stalk Torrefied in Aqueous Ammonia by Microwave Heating, Bioresour. Technol., vol. 274, pp. 83-88, 2019.

  70. IEA, World Energy Outlook 2019, IEA, Paris, accessed November 2, 2022, from https://www.iea.org/reports/world-energy-outlook-2019, 2019.

  71. Kan, T., Strezov, V., Evans, T.J., Jacquet, N., Maniet, G., Vanderghem, C., Delvigne, F., and Richel, A., Application of Steam Explosion as Pretreatment on Lignocellulosic Material: A Review, Ind. Eng. Chem. Res., vol. 54, no. 10, pp. 2593-2598, 2015.

  72. Jae, J., Zheng, W., Lobo, R.F., and Vlachos, D.G., Production of Dimethylfuran from Hydroxymethylfurfural through Catalytic Transfer Hydrogenation with Ruthenium Supported on Carbon, ChemSusChem, vol. 6, no. 7, pp. 1158-1162, 2013.

  73. Jin, W., Pastor-Perez, L., Shen, D., Sepulveda-Escribano, A., Gu, S., and Ramirez Reina, T., Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation - A Review, ChemCatChem, vol. 11, no. 3, pp. 924-960, 2019.

  74. Jin, W., Pastor-Perez, L., Yu, J., Odriozola, J.A., Gu, S., and Reina, T.R., Cost-Effective Routes for Catalytic Biomass Upgrading, Curr. Opin. Green Sustain. Chem., vol. 23, pp. 1-9, 2020.

  75. Jin, W., Pastor-Perez, L., Villora-Pico, J.J., Pastor-Blas, M.M., Odriozola, J.A., Sepulveda-Escribano, A., and Reina, T.R., In Situ HDO of Guaiacol over Nitrogen-Doped Activated Carbon Supported Nickel Nanoparticles, Appl. Catal. A Gen., vol. 620, p. 118033, 2021.

  76. Jongerius, A.L., Bruijnincx, P.C.A., and Weckhuysen, B.M., Liquid-Phase Reforming and Hydrodeoxygenation as a Two-Step Route to Aromatics from Lignin, Green Chem., vol. 15, no. 11, pp. 3049-3056, 2013.

  77. Jones, S., Meyer, P., Snowden-Swan, L., Padmaperuma, A., Tan, E., Dutta, A., Jacob, J., and Kara, C., Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway, United States, 2013.

  78. Kan, T., Strezov, V., and Evans, T.J., Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters, Renew. Sust. Energ. Rev., vol. 57, pp. 1126-1140, 2016.

  79. Kazi, F.K., Fortman, J.A., Anex, R.P., Hsu, D.D., Aden, A., Dutta, A., and Kothandaraman, G., Techno-Economic Comparison of Process Technologies for Biochemical Ethanol Production from Corn Stover, Fuel, vol. 89, pp. S20-S28, 2010.

  80. Kim, J.S., Lee, Y.Y., and Kim, T.H., A Review on Alkaline Pretreatment Technology for Bioconversion of Lignocellulosic Biomass, Bioresour. Technol., vol. 199, pp. 42-48, 2016.

  81. Kim, S. and Holtzapple, M.T., Delignification Kinetics of Corn Stover in Lime Pretreatment, Bioresour. Technol., vol. 97, no. 5, pp. 778-785, 2006.

  82. Kim, G., Seo, J., Choi, J.-W., Jae, J., Ha, J.-M., Suh, D.J., Lee, K.-Y., Jeon, J.-K., and Kim, J.-K., Two-Step Continuous Upgrading of Sawdust Pyrolysis Oil To Deoxygenated Hydrocarbons Using Hydrotreating and Hydrodeoxygenating Catalysts, Catal. Today, vol. 303, pp. 130-135, 2018.

  83. Kim, S., Kwon, E.E., Kim, Y.T., Jung, S., Kim, H.J., Huber, G.W., and Lee, J., Recent Advances in Hydrodeoxygenation of Biomass-Derived Oxygenates over Heterogeneous Catalysts, Green Chem., vol. 21, no. 14, pp. 3715-3743, 2019.

  84. Konsomboon, S., Commandre, J.-M., and Fukuda, S., Torrefaction of Various Biomass Feedstocks and Its Impact on the Reduction of Tar Produced during Pyrolysis, Energy Fuels, vol. 33, no. 4, pp. 3257-3266, 2019.

  85. Kumar, R., Strezov, V., Lovell, E., Kan, T., Weldekidan, H., He, J., Dastjerdi, B., and Scott, J., Bio-Oil Upgrading with Catalytic Pyrolysis of Biomass Using Copper/Zeolite-Nickel/Zeolite and Copper-Nickel/Zeolite Catalysts, Bioresour. Technol., vol. 279, pp. 404-409, 2019.

  86. Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., and Dastjerdi, B., Lignocellulose Biomass Pyrolysis for Bio-Oil Production: A Review of Biomass Pre-Treatment Methods for Production of Drop-in Fuels, Renew. Sust. Energ. Rev., vol. 123, p. 109763, 2020.

  87. Kumar, P., Barrett, D.M., Delwiche, M.J., and Stroeve, P., Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Ind. Eng. Chem. Res., vol. 48, no. 8, pp. 3713-3729, 2009.

  88. Kwon, E.E., Kim, Y.T., Kim, H.J., Lin, A., K.-Y., Kim, K.-H., Lee, J., and Huber, G.W., Production of High-Octane Gasoline via Hydrodeoxygenation of Sorbitol over Palladium-Based Bimetallic Catalysts, J. Environ. Manage., vol. 227, pp. 329-334, 2018.

  89. Lange, J.P., Van Der Heide, E., Van Buijtenen, J., and Price, R., Furfural-A Promising Platform for Lignocellulosic Biofuels, ChemSusChem, vol. 5, no. 1, pp. 150-166, 2012.

  90. Lappas, A.A., Bezergianni, S., and Vasalos, I.A., Production of Biofuels via Co-Processing in Conventional Refining Processes, Catal. Today, vol. 145, no. 1, pp. 55-62, 2009.

  91. Lee, J., Ro, I., Kim, H.J., Kim, Y.T., Kwon, E.E., and Huber, G.W., Production of Renewable C4-C6 Monoalcohols from Waste Biomass-Derived Carbohydrate via Aqueous-Phase Hydrodeoxygenation over Pt-ReOx/Zr-P, Proc. Safety Environ. Protect., vol. 115, pp. 2-7, 2018.

  92. Le Roux, E., Chaouch, M., Diouf, P.N., and Stevanovic, T., Impact of a Pressurized Hot Water Treatment on the Quality of Bio-Oil Produced from Aspen, Biomass Bioenergy, vol. 81, pp. 202-209, 2015a.

  93. Le Roux, E., Diouf, P.N., and Stevanovic, T., Analytical Pyrolysis of Hot Water Pretreated Forest Biomass, J. Anal. Appl. Pyrolysis., vol. 111, pp. 121-131, 2015b.

  94. Li, M.-F., Shen, Y., Sun, J.-K., Bian, J., Chen, C.-Z., and Sun, R.-C., Wet Torrefaction of Bamboo in Hydrochloric Acid Solution by Microwave Heating, ACS Sustain. Chem. Eng., vol. 3, no. 9, pp. 2022-2029, 2015.

  95. Li, S., Li, N., Li, G., Li, L., Wang, A., Cong, Y., Wang, X., Xu, G., and Zhang, T., Protonated Titanate Nanotubes as a Highly Active Catalyst for the Synthesis of Renewable Diesel and Jet Fuel Range Alkanes, Appl. Catal. B Environ., vols. 170-171, pp. 124-134, 2015.

  96. Li, X., Chen, G., Liu, C., Ma, W., Yan, B., and Zhang, J., Hydrodeoxygenation of Lignin-Derived Bio-Oil Using Molecular Sieves Supported Metal Catalysts: A Critical Review, Renew. Sust. Energ. Rev., vol. 71, pp. 296-308, 2017.

  97. Liu, S., Tamura, M., Nakagawa, Y., and Tomishige, K., One-Pot Conversion of Cellulose into N-Hexane over the Ir-ReOx/SiO2 Catalyst Combined with HZSM-5, ACS Sustain. Chem. Eng., vol. 2, no. 7, pp. 1819-1827, 2014.

  98. Liu, D., Cao, L., Zhang, G., Zhao, L., Gao, J., and Xu, C., Catalytic Conversion of Light Alkanes to Aromatics by Metal-Containing HZSM-5 Zeolite Catalysts-A Review, Fuel Process. Technol., vol. 216, p. 106770, 2021.

  99. Lopez-Asensio, R., Cecilia, J.A., Jimenez-Gomez, C.P., Garcia-Sancho, C., Moreno-Tost, R., and Maireles-Torres, P., Selective Production of Furfuryl Alcohol from Furfural by Catalytic Transfer Hydrogenation over Commercial Aluminas, Appl. Catal. A Gen., vol. 556, pp. 1-9, 2018.

  100. Louwes, A.C., Basile, L., Yukananto, R., Bhagwandas, J.C., Bramer, E.A., and Brem, G., Torrefied Biomass as Feed for Fast Pyrolysis: An Experimental Study and Chain Analysis, Biomass Bioenergy, vol. 105, pp. 116-126, 2017.

  101. Luo, J., Monai, M., Yun, H., Arroyo-Ramirez, L., Wang, C., Murray, C.B., Fornasiero, P., and Gorte, R.J., The H2 Pressure Dependence of Hydrodeoxygenation Selectivities for Furfural over Pt/C Catalysts, Catal. Lett., vol. 146, no. 4, pp. 711-717, 2016.

  102. Lup, A.N.K., Abnisa, F., Daud, W.M.A.W., and Aroua, M.K., A Review on Reactivity and Stability of Heterogeneous Metal Catalysts for Deoxygenation of Bio-Oil Model Compounds, J. Industrial Eng. Chem., vol. 56, pp. 1-34, 2017.

  103. Mankar, A.R., Pandey, A., Modak, A., and Pant, K.K., Pretreatment of Lignocellulosic Biomass: A Review on Recent Advances, Bioresour. Technol., vol. 334, p. 125235, 2021.

  104. Mao, J., Jiang, D., Fang, Z., Wu, X., Ni, J., and Li, X., Efficient Hydrothermal Hydrodeoxygenation of Triglycerides with In Situ Generated Hydrogen for Production of Diesel-Like Hydrocarbons, Catal. Commun., vol. 90, pp. 47-50, 2017.

  105. McCann, M.C., Penning, B.W., Dugard, C.K., and Carpita, N.C., Chapter 4 - Tailoring Plant Cell Wall Composition and Architecture for Conversion to Liquid Hydrocarbon Biofuels, in Direct Microbial Conversion of Biomass to Advanced Biofuels, M.E. Himmel, Ed., Amsterdam, the Netherlands: Elsevier, pp. 63-82, 2015.

  106. Meng, J., Park, J., Tilotta, D., and Park, S., The Effect of Torrefaction on the Chemistry of Fast-Pyrolysis Bio-Oil, Bioresour. Technol., vol. 111, pp. 439-446, 2012.

  107. Messina, L.I.G., Bonelli, P.R., and Cukierman, A.L., Effect of Acid Pretreatment and Process Temperature on Characteristics and Yields of Pyrolysis Products of Peanut Shell, Renew. Energy, vol. 114, pp. 697-707, 2017.

  108. Messou, D., Vivier, L., and Especel, C., Sorbitol Transformation into Biofuels over Bimetallic Platinum Based Catalysts Supported on SiO2-Al2O3 - Effect of the Nature of the Second Metal, Fuel Process. Technol., vol. 177, pp. 159-169, 2018.

  109. Meyer, P.A., Snowden-Swan, L.J., Jones, S.B., Rappe, K.G., and Hartley, D.S., The Effect of Feedstock Composition on Fast Pyrolysis and Upgrading to Transportation Fuels: Techno-Economic Analysis and Greenhouse Gas Life Cycle Analysis, Fuel, vol. 259, p. 116218, 2020.

  110. Miyagawa, A., Nakagawa, Y., Tamura, M., and Tomishige, K., Demethoxylation of Hydrogenated Derivatives of Guaiacol without External Hydrogen over Platinum Catalyst, Mol. Catal., vol. 471, pp. 60-70, 2019.

  111. Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., and Yusuf, S., Effects of Pretreatments of Napier Grass with Deionized Water, Sulfuric Acid and Sodium Hydroxide on Pyrolysis Oil Characteristics, Waste Biomass Valorization, vol. 8, no. 3, pp. 755-773, 2017.

  112. Moreno, B.M., Li, N., Lee, J., Huber, G.W., and Klein, M.T., Modeling Aqueous-Phase Hydrodeoxygenation of Sorbitol over Pt/SiO2-Al2O3, RSC Adv., vol. 3, no. 45, pp. 23769-23784, 2013.

  113. Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., and Jensen, A.D., A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels, Appl. Catal. A Gen., vol. 407, no. 1, pp. 1-19, 2011.

  114. Mullen, C.A. and Boateng, A.A., Production and Analysis of Fast Pyrolysis Oils from Proteinaceous Biomass, Bioenergy Res., vol. 4, no. 4, pp. 303-311, 2011.

  115. Nagarajan, R., Dharmaraja, J., Shobana, S., Sermarajan, A., Nguyen, D.D., and Murugavelh, S., A Comprehensive Investigation on Spirulina Platensis - Part I: Cultivation of Biomass, Thermo-Kinetic Modelling, Physico-Chemical, Combustion and Emission Analyses of Bio-Oil Blends in Compression Ignition Engine, J. Environ. Chem. Eng., vol. 9, no. 3, p. 105231, 2021.

  116. Nam, H. and Capareda, S., Experimental Investigation of Torrefaction of Two Agricultural Wastes of Different Composition Using Response Surface Methodology (RSM), Energy, vol. 91, pp. 507-516, 2015.

  117. Nimmanwudipong, T., Runnebaum, R.C., Block, D.E., and Gates, B.C., Catalytic Conversion of Guaiacol Catalyzed by Platinum Supported on Alumina: Reaction Network Including Hydrodeoxygenation Reactions, Energy Fuels, vol. 25, no. 8, pp. 3417-3427, 2011.

  118. Nimmanwudipong, T., Aydin, C., Lu, J., Runnebaum, R.C., Brodwater, K.C., Browning, N.D., Block, D.E., and Gates, B.C., Selective Hydrodeoxygenation of Guaiacol Catalyzed by Platinum Supported on Magnesium Oxide, Catal. Lett., vol. 142, no. 10, pp. 1190-1196, 2012.

  119. Niu, Y., Lv, Y., Lei, Y., Liu, S., Liang, Y., Wang, D., and Hui, S., Biomass Torrefaction: Properties, Applications, Challenges, And Economy, Renew. Sust. Energ. Rev., vol. 115, p. 109395, 2019.

  120. Nolte, M.W., Zhang, J., and Shanks, B.H., Ex Situ Hydrodeoxygenation in Biomass Pyrolysis Using Molybdenum Oxide and Low Pressure Hydrogen, Green Chem., vol. 18, no. 1, pp. 134-138, 2015.

  121. Nolte, M.W., Saraeian, A., and Shanks, B.H., Hydrodeoxygenation of Cellulose Pyrolysis Model Compounds Using Molybdenum Oxide and Low Pressure Hydrogen, Green Chem., vol. 19, no. 15, pp. 3654-3664, 2017.

  122. Oh, S., Kim, U.-J., Choi, I.-G., and Choi, J.W., Solvent Effects on Improvement of Fuel Properties during Hydrodeoxygenation Process of Bio-Oil in the Presence of Pt/C, Energy, vol. 113, pp. 116-123, 2016.

  123. Oh, Y.-K., Hwang, K.-R., Kim, C., Kim, J.R., and Lee, J.-S., Recent Developments and Key Barriers to Advanced Biofuels: A Short Review, Bioresour. Technol., vol. 257, pp. 320-333, 2018.

  124. Olcese, R.N., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., and Dufour, A., Gas-Phase Hydrodeoxygenation of Guaiacol Over Fe/SiO2 Catalyst, Appl. Catal. B Environ., vols. 115-116, pp. 63-73, 2012.

  125. Olcese, R.N., Francois, J., Bettahar, M.M., Petitjean, D., and Dufour, A., Hydrodeoxygenation of Guaiacol, A Surrogate of Lignin Pyrolysis Vapors, over Iron Based Catalysts: Kinetics and Modeling of the Lignin to Aromatics Integrated Process, Energy Fuels, vol. 27, no. 2, pp. 975-984, 2013.

  126. Patel, M., Zhang, X., and Kumar, A., Techno-Economic and Life Cycle Assessment on Lignocellulosic Biomass Thermochemical Conversion Technologies: A review, Renew. Sust. Energ. Rev., vol. 53, pp. 1486-1499, 2016.

  127. Pecha, M.B., Montoya, J.I., Chejne, F., and Garcia-Perez, M., Effect of a Vacuum on the Fast Pyrolysis of Cellulose: Nature of Secondary Reactions in a Liquid Intermediate, Ind. Eng. Chem. Res., vol. 56, no. 15, pp. 4288-4301, 2017.

  128. Phairuang, W., Hata, M., and Furuuchi, M., Influence of Agricultural Activities, Forest Fires and Agro-Industries on Air Quality in Thailand, J. Environ. Sci., vol. 52, pp. 85-97, 2017.

  129. Phanphanich, M. and Mani, S., Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass, Bioresour. Technol., vol. 102, no. 2, pp. 1246-1253, 2011.

  130. Pimchuai, A., Dutta, A., and Basu, P., Torrefaction of Agriculture Residue to Enhance Combustible Properties, Energy Fuels, vol. 24, no. 9, pp. 4638-4645, 2010.

  131. Poudel, J., Ohm, T.-I., Lee, S.-H., and Oh, S.C., A Study on Torrefaction of Sewage Sludge to Enhance Solid Fuel Qualities, Waste Manag., vol. 40, pp. 112-118, 2015a.

  132. Poudel, J., Ohm, T.-I., and Oh, S.C., A Study on Torrefaction of Food Waste, Fuel, vol. 140, pp. 275-281, 2015b.

  133. Pourzolfaghar, H., Abnisa, F., Wan Daud, W.M.A., and Aroua, M.K., Atmospheric Hydrodeoxygenation of Bio-Oil Oxygenated Model Compounds: A Review, J. Anal. Appl. Pyrolysis, vol. 133, pp. 117-127, 2018.

  134. Prasomsri, T., Shetty, M., Murugappan, K., and Roman-Leshkov, Y., Insights into the Catalytic Activity and Surface Modification of MoO3 during the Hydrodeoxygenation of Lignin-Derived Model Compounds into Aromatic Hydrocarbons under Low Hydrogen Pressures, Energy Environ. Sci., vol. 7, no. 8, pp. 2660-2669, 2014.

  135. Prasomsri, T., Nimmanwudipong, T., and Roman-Leshkov, Y., Effective Hydrodeoxygenation of Biomass-Derived Oxygenates into Unsaturated Hydrocarbons by MoO3 Using Low H2 Pressures, Energy Environ. Sci., vol. 6, no. 6, pp. 1732-1738, 2016.

  136. Prins, M.J., Ptasinski, K.J., and Janssen, F.J.J.G., Torrefaction of Wood: Part 2. Analysis of Products, J. Anal. Appl. Pyrolysis., vol. 77, no. 1, pp. 35-40, 2006.

  137. Pucher, H., Schwaiger, N., Feiner, R., Ellmaier, L., Pucher, P., Chernev, B.S., and Siebenhofer, M., Biofuels from Liquid Phase Pyrolysis Oil: A Two-Step Hydrodeoxygenation (HDO) Process, Green Chem., vol. 17, no. 2, pp. 1291-1298, 2015.

  138. Ranga, C., Lodeng, R., Alexiadis, V.I., Rajkhowa, T., Bjorkan, H., Chytil, S., Svenum, I.H., Walmsley, J., Detavernier, C., Poelman, H., Van Der Voort, P., and Thybaut, J.W., Effect of Composition and Preparation of Supported MoO3 Catalysts for Anisole Hydrodeoxygenation, Chem. Eng. J., vol. 335, pp. 120-132, 2018.

  139. Raveendran, K., Ganesh, A., and Khilar, K.C., Influence of Mineral Matter on Biomass Pyrolysis Characteristics, Fuel, vol. 74, no. 12, pp. 1812-1822, 1995.

  140. Ren, S., Lei, H., Wang, L., Bu, Q., Wei, Y., Liang, J., Liu, Y., Julson, J., Chen, S., Wu, J., and Ruan, R., Microwave Torrefaction of Douglas Fir Sawdust Pellets, Energy Fuels, vol. 26, no. 9, pp. 5936-5943, 2012.

  141. Ren, H., Chen, Y., Huang, Y., Deng, W., Vlachos, D.G., and Chen, J.G., Tungsten Carbides as Selective Deoxygenation Catalysts: Experimental and Computational Studies of Converting C3 Oxygenates to Propene, Green Chem., vol. 16, no. 2, pp. 761-769, 2014.

  142. Rogers, J.G. and Brammer, J.G., Estimation of the Production Cost of Fast Pyrolysis Bio-Oil, Biomass Bioenergy, vol. 36, pp. 208-217, 2012.

  143. Routray, K., Barnett, K.J., and Huber, G.W., Hydrodeoxygenation of Pyrolysis Oils, Energy Technol., vol. 5, no. 1, pp. 80-93, 2017.

  144. Sahoo, D., Ummalyma, S.B., Okram, A.K., Pandey, A., Sankar, M., and Sukumaran, R.K., Effect of Dilute Acid Pretreatment of Wild Rice Grass (Zizania Latifolia) from Loktak Lake for Enzymatic Hydrolysis, Bioresour. Technol., vol. 253, pp. 252-255, 2018.

  145. Santos, C.C., de Souza, W., Sant Anna, C., and Brienzo, M., Elephant Grass Leaves Have Lower Recalcitrance to Acid Pretreatment than Stems, with Higher Potential for Ethanol Production, Ind. Crops Prod., vol. 111, pp. 193-200, 2018.

  146. Shao, Y., Xia, Q., Liu, X., Lu, G., and Wang, Y., Pd/Nb2O5/SiO2 Catalyst for the Direct Hydrodeoxygenation of Biomass-Related Compounds to Liquid Alkanes under Mild Conditions, ChemSusChem, vol. 8, no. 10, pp. 1761-1767, 2015.

  147. Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T.N., Murthy Konda, N.V.S.N., Garcia, M.C., Wang, L., Hallett, J., and Shah, N., The Multi-Scale Challenges of Biomass Fast Pyrolysis and Bio-Oil Upgrading: Review of the State of Art and Future Research Directions, Prog. Energy Combust. Sci., vol. 71, pp. 1-80, 2019.

  148. Sharma, V., Getahun, T., Verma, M., Villa, A., and Gupta, N., Carbon Based Catalysts for the Hydrodeoxygenation of Lignin and Related Molecules: A Powerful Tool for the Generation of Non-Petroleum Chemical Products Including Hydrocarbons, Renew. Sust. Energ. Rev., vol. 133, p. 110280, 2020.

  149. Shemfe, M.B., Gu, S., and Ranganathan, P., Techno-Economic Performance Analysis of Biofuel Production and Miniature Electric Power Generation from Biomass Fast Pyrolysis and Bio-Oil Upgrading, Fuel, vol. 143, pp. 361-372, 2015.

  150. Shemfe, M., Gu, S., and Fidalgo, B., Techno-Economic Analysis of Biofuel Production via Bio-Oil Zeolite Upgrading: An Evaluation of Two Catalyst Regeneration Systems, Biomass Bioenergy, vol. 98, pp. 182-193, 2017.

  151. Shetty, M., Murugappan, K., Prasomsri, T., Green, W.H., and Roman-Leshkov, Y., Reactivity and Stability Investigation of Supported Molybdenum Oxide Catalysts for the Hydrodeoxygenation (HDO) of M-Cresol, J. Catal., vol. 331, pp. 86-97, 2015.

  152. Shi, W., Li, S., Jia, J., and Zhao, Y., Highly Efficient Conversion of Cellulose to Bio-Oil in Hot-Compressed Water with Ultrasonic Pretreatment, Ind. Eng. Chem. Res., vol. 52, no. 2, pp. 586-593, 2013.

  153. Si, Z., Zhang, X., Wang, C., Ma, L., and Dong, R., An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds, Catalysts, vol. 7, no. 6, p. 169, 2017.

  154. Singh, R.K., Shrivastava, D.K., Sarkar, A., and Chakraborty, J.P., Co-Pyrolysis of Eucalyptus and Sodium Polyacrylate: Optimization and Synergistic Effect, Fuel, vol. 277, p. 118115, 2020.

  155. Singh, R.K., Sarkar, A., and Chakraborty, J.P., Effect of Torrefaction on the Physicochemical Properties of Eucalyptus Derived Biofuels: Estimation of Kinetic Parameters and Optimizing Torrefaction Using Response Surface Methodology (RSM), Energy, vol. 198, p. 117369, 2020.

  156. So, C.-L. and Eberhardt, T.L., FTIR-Based Models for Assessment of Mass Yield and Biofuel Properties of Torrefied Wood, Wood Sci. Technol., vol. 52, no. 1, pp. 209-227, 2018.

  157. Solarte-Toro, J.C., Romero-Garcia, J.M., Martinez-Patino, J.C., Ruiz-Ramos, E., Castro-Galiano, E., and Cardona-Alzate, C.A., Acid Pretreatment of Lignocellulosic Biomass for Energy Vectors Production: A Review Focused on Operational Conditions and Techno-Economic Assessment for Bioethanol Production, Renew. Sust. Energ. Rev., vol. 107, pp. 587-601, 2019.

  158. Stankovikj, F., McDonald, A.G., Helms, G.L., and Garcia-Perez, M., Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, Energy Fuels, vol. 30, no. 8, pp. 6505-6524, 2016.

  159. Stankovikj, F., Tran, C.-C., Kaliaguine, S., Olarte, M.V., and Garcia-Perez, M., Evolution of Functional Groups during Pyrolysis Oil Upgrading, Energy Fuels, vol. 31, no. 8, pp. 300-316, 2017.

  160. Stephanidis, S., Nitsos, C., Kalogiannis, K., Iliopoulou, E.F., Lappas, A.A., and Triantafyllidis, K.S., Catalytic Upgrading of Lignocellulosic Biomass Pyrolysis Vapours: Effect of Hydrothermal Pre-Treatment of Biomass, Catal. Today, vol. 167, no. 1, pp. 37-45, 2011.

  161. Sun, Y., Tong, S., Li, X., Wang, F., Hu, Z., Dacres, O.D., Edreis, E.M.A., Worasuwannarak, N., Sun, M., Liu, H., Hu, H., Luo, G., and Yao, H., Gas-Pressurized Torrefaction of Biomass Wastes: The Optimization of Pressurization Condition and the Pyrolysis of Torrefied Biomass, Bioresour. Technol., vol. 319, p. 124216, 2021.

  162. Swanson, R.M., Platon, A., Satrio, J.A., and Brown, R.C., Techno-Economic Analysis of Biomass-To-Liquids Production Based on Gasification, Fuel, vol. 89, pp. S11-S19, 2010.

  163. Taghvaei, H., Moaddeli, A., Khalafi-Nezhad, A., and Iulianelli, A., Catalytic Hydrodeoxygenation of Lignin Pyrolytic-Oil over Ni Catalysts Supported on Spherical Al-MCM-41 Nanoparticles: Effect of Si/Al ratio and Ni loading, Fuel, vol. 293, p. 120493, 2021.

  164. Tang, X., Ding, W., and Li, H., Improved Hydrodeoxygenation of Bio-Oil Model Compounds with Polymethylhydrosiloxane by Bronsted Acidic Zeolites, Fuel, vol. 290, p. 119883, 2021.

  165. Tarves, P.C., Serapiglia, M.J., Mullen, C.A., Boateng, A.A., and Volk, T.A., Effects of Hot Water Extraction Pretreatment on Pyrolysis of Shrub Willow, Biomass Bioenergy, vol. 107, pp. 299-304, 2017.

  166. Teh, K.W. and Jamari, S.S., The Valorization of Rice Waste via Torrefaction Method, Int. J. Chem. Eng. Appl., vol. 7, no. 6, pp. 409-412, 2016.

  167. Torres-Mayanga, P.C., Lachos-Perez, D., Mudhoo, A., Kumar, S., Brown, A.B., Tyufekchiev, M., Dragone, G., Mussatto, S.I., Rostagno, M.A., Timko, M., and Forster-Carneiroa, T., Production of Biofuel Precursors and Value-Added Chemicals from Hydrolysates Resulting from Hydrothermal Processing of Biomass: A Review, Biomass Bioenergy, vol. 130, p. 105397, 2019.

  168. Tran, Q.K., Ly, H.V., Kwon, B., Kim, S.-S., and Kim, J., Catalytic Hydrodeoxygenation of Guaiacol as a Model Compound of Woody Bio-Oil over Fe/AC and Ni/γ-Al2O3 Catalysts, Renew. Energy, vol. 173, pp. 886-895, 2021.

  169. Unrean, P., Lai Fui, B.C., Rianawati, E., and Acda, M., Comparative Techno-Economic Assessment and Environmental Impacts of Rice Husk-to-Fuel Conversion Technologies, Energy, vol. 151, pp. 581-593, 2018.

  170. U.S. Department of Energy, Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks, 2016.

  171. Uslu, A., Faaij, A.P.C., and Bergman, P.C.A., Pre-Treatment Technologies, and Their Effect on International Bioenergy Supply Chain Logistics: Techno-Economic Evaluation of Torrefaction, Fast Pyrolysis and Pelletisation, Energy, vol. 33, no. 8, pp. 1206-1223, 2008.

  172. Vakkilainen, E.K., Recovery Boiler, in Steam Generation from Biomass, Elsevier, pp. 237-259, 2017.

  173. van der Graaff, W.N.P., Tempelman, C.H.L., Hendriks, F.C., Ruiz-Martinez, J., Bals, S., Weckhuysen, B.M., Pidko, E.V., and Hensen, E.J.M., Deactivation of Sn-Beta during Carbohydrate Conversion, Appl. Catal. A Gen., vol. 564, pp. 113-122, 2018.

  174. van Schalkwyk, D.L., Mandegari, M., Farzad, S., and Gorgens, J.F., Techno-Economic and Environmental Analysis of Bio-Oil Production from Forest Residues via Non-Catalytic and Catalytic Pyrolysis Processes, Energy Convers. Manag., vol. 213, p. 112815, 2020.

  175. Vardon, D.R., Sharma, B.K., Jaramillo, H., Kim, D., Choe, J.K., Ciesielski, P.N., and Strathmann, T.J., Hydrothermal Catalytic Processing of Saturated and Unsaturated Fatty Acids to Hydrocarbons with Glycerol for In Situ Hydrogen Production, Green Chem., vol. 16, no. 3, pp. 1507-1520, 2014.

  176. Vitasari, C.R., Meindersma, G.W., and de Haan, A.B., Water Extraction of Pyrolysis Oil: The First Step for the Recovery of Renewable Chemicals, Bioresour. Technol., vol. 102, no. 14, pp. 7204-7210, 2011.

  177. Wan, S., Pham, T., Zhang, S., Lobban, L., Resasco, D., and Mallinson, R., Direct Catalytic Upgrading of Biomass Pyrolysis Vapors by a Dual Function Ru/TiO2 Catalyst, AIChE J., vol. 59, no. 7, pp. 2275-2285, 2013.

  178. Wang, H., Srinivasan, R., Yu, F., Steele, P., Li, Q., and Mitchell, B., Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood, Energy Fuels, vol. 25, no. 8, pp. 3758-3764, 2011.

  179. Wang, H., Male, J., and Wang, Y., Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds, ACS Catal., vol. 3, no. 5, pp. 1047-1070, 2013.

  180. Wang, X., Leng, S., Bai, J., Zhou, H., Zhong, X., Zhuang, G., and Wang, J., Role of Pretreatment with Acid and Base on the Distribution of the Products Obtained via Lignocellulosic Biomass Pyrolysis, RSC Adv., vol. 5, no. 32, pp. 24984-24989, 2015.

  181. Wang, F. and Zhang, Z., Catalytic Transfer Hydrogenation of Furfural into Furfuryl Alcohol over Magnetic γ-Fe2O3@HAP Catalyst, ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 942-947, 2017.

  182. Wang, Z., Burra, K.G., Lei, T., and Gupta, A.K., Co-pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals-A Review, Prog. Energy Combust. Sci., vol. 84, p. 100899, 2021.

  183. Wang, H., Srinivasan, R., Yu, F., Steele, P., Li, Q., Mitchell, B., and Samala, A., Effect of Acid, Steam Explosion, and Size Reduction Pretreatments on Bio-oil Production from Sweetgum, Switchgrass, and Corn Stover, Appl. Biochem. Biotechnol., vol. 167, no. 2, pp. 285-297, 2012.

  184. Wang, J., Bi, P., Zhang, Y., Xue, H., Jiang, P., Wu, X., Liu, J., Wang, T., and Li, Q., Preparation of Jet Fuel Range Hydrocarbons by Catalytic Transformation of Bio-Oil Derived from Fast Pyrolysis of Straw Stalk, Energy, vol. 86, pp. 488-499, 2015.

  185. Wannapeera, J., Fungtammasan, B., and Worasuwannarak, N., Effects of Temperature and Holding Time During Torrefaction on the Pyrolysis Behaviors of Woody Biomass, J. Anal. Appl. Pyrolysis., vol. 92, no. 1, pp. 99-105, 2011.

  186. West, R.M., Kunkes, E.L., Simonetti, D.A., and Dumesic, J.A., Catalytic Conversion of Biomass-Derived Carbohydrates to Fuels and Chemicals by Formation and Upgrading of Mono-Functional Hydrocarbon Intermediates, Catal. Today, vol. 147, no. 2, pp. 115-125, 2009.

  187. Wigley, T., Yip, A.C.K., and Pang, S., A Detailed Product Analysis of Bio-Oil from Fast Pyrolysis of Demineralised and Torrefied Biomass, J. Anal. Appl. Pyrolysis., vol. 123, pp. 194-203, 2017.

  188. Wildschut, J., Mahfud, F.H., Venderbosch, R.H., and Heeres, H.J., Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts, Ind. Eng. Chem. Res., vol. 48, no. 23, pp. 10324-10334, 2009.

  189. Winjobi, O., Shonnard, D.R., Bar-Ziv, E., and Zhou, W., Techno-Economic Assessment of the Effect of Torrefaction on Fast Pyrolysis of Pine, Biofuel. Bioprod. Biorefin., vol. 10, no. 2, pp. 117-128, 2016.

  190. Wright, M.M., Daugaard, D.E., Satrio, J.A., and Brown, R.C., Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels, Fuel, vol. 89, pp. S2-S10, 2010.

  191. Xin, S., Mi, T., Liu, X., and Huang, F., Effect of Torrefaction on the Pyrolysis Characteristics of High Moisture Herbaceous Residues, Energy, vol. 152, pp. 586-593, 2018.

  192. Xin, X., Torr, K.M., Pang, S., van de Pas, D., Cooke-Willis, M., and de Miguel Mercader, F., Catalytic Fast Pyrolysis of Demineralized Biomass in a Fluidized Bed Reactor: Effects of Acid-Leaching and Torrefaction Pretreatments, Energy Fuels, vol. 34, no. 1, pp. 568-578, 2020.

  193. Xu, X., Zhang, C., Liu, Y., Zhai, Y., and Zhang, R., Two-Step Catalytic Hydrodeoxygenation of Fast Pyrolysis Oil to Hydrocarbon Liquid Fuels, Chemosphere, vol. 93, no. 4, pp. 652-660, 2013.

  194. Xu, G., Zhang, P., Cheng, J., Wei, T., Zhu, X., and Yang, F., Preparation of a Hollow HZSM-5 Zeolite Supported Molybdenum Catalyst by Desilication-Recrystallization for Enhanced Catalytic Properties in Propane Aromatization, J. Solid State Chem., vol. 300, p. 122238, 2021.

  195. Yang, P., Xia, Q., Liu, X., and Wang, Y., Catalytic Transfer Hydrogenation/Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Ni-Co/C Catalyst, Fuel, vol. 187, pp. 159-166, 2017a.

  196. Yang, J., Li, S., Zhang, L., Liu, X., Wang, J., Pan, X., Li, N., Wang, A., Cong, W., Wang, X., and Zhang, T., Hydrodeoxygenation of Furans over Pd-FeOx/SiO2 Catalyst under Atmospheric Pressure, Appl. Catal. B Environ., vol. 201, pp. 266-277, 2017b.

  197. Yin, W., Tang, Z., Venderbosch, R.H., Zhang, Z., Cannilla, C., Bonura, G., Frusteri, F., and Heeres, H.J., A One-Step Synthesis of C6 Sugar Alcohols from Levoglucosan and Disaccharides Using a Ru/CMK-3 Catalyst, ACS Catal., vol. 6, no. 7, pp. 4411-4422, 2016.

  198. You, F., Tao, L., Graziano, D.J., and Snyder, S.W., Optimal Design of Sustainable Cellulosic Biofuel Supply Chains: Multiobjective Optimization Coupled with Life Cycle Assessment and Input-Output Analysis, AIChE J., vol. 58, no. 4, pp. 1157-1180, 2012.

  199. Yu, Y., Chua, Y.W., and Wu, H., Characterization of Pyrolytic Sugars in Bio-Oil Produced from Biomass Fast Pyrolysis, Energy Fuels, vol. 30, no. 5, pp. 4145-4149, 2016.

  200. Yue, X., Zhang, L., Sun, L., Gao, S., Gao, W., Cheng, X., Shang, N., Gao, Y., and Wang, C., Highly Efficient Hydrodeoxygenation of Lignin-Derivatives Over Ni-Based Catalyst, Appl. Catal. B Environ., vol. 293, p. 120243, 2021.

  201. Yun, H., Clift, R., and Bi, X., Process Simulation, Techno-Economic Evaluation and Market Analysis of Supply Chains for Torrefied Wood Pellets from British Columbia: Impacts of Plant Configuration and Distance to Market, Renew. Sust. Energ. Rev., vol. 127, p. 109745, 2020.

  202. Zacher, A.H., Olarte, M.V., Santosa, D.M., Elliott, D.C., and Jones, S.B., A Review and Perspective of Recent Bio-Oil Hydrotreating Research, Green Chem., vol. 16, no. 2, pp. 491-515, 2014.

  203. Zaimes, G.G., Beck, A.W., Janupala, R.R., Resasco, D.E., Crossley, S.P., Lobban, L.L., and Khanna, V., Multistage Torrefaction and In Situ Catalytic Upgrading to Hydrocarbon Biofuels: Analysis of Life Cycle Energy Use and Greenhouse Gas Emissions, Energy Environ. Sci., vol. 10, no. 5, pp. 1034-1050, 2017.

  204. Zeng, K., He, X., Yang, H., Wang, X., and Chen, H., The Effect of Combined Pretreatments on the Pyrolysis of Corn Stalk, Bioresour. Technol., vol. 281, pp. 309-317, 2019.

  205. Zhang, L., Liu, R., Yin, R., and Mei, Y., Upgrading of Bio-Oil from Biomass Fast Pyrolysis in China: A Review, Renew. Sust. Energ. Rev., vol. 24, pp. 66-72, 2013a.

  206. Zhang, Y., Brown, T.R., Hu, G., and Brown, R.C., Techno-Economic Analysis of Two Bio-Oil Upgrading Pathways, Chem. Eng. J., vol. 225, pp. 895-904, 2013b.

  207. Zhang, J., Choi, Y.S., Yoo, C.G., Kim, T.H., Brown, R.C., and Shanks, B.H., Cellulose-Hemicellulose and Cellulose-Lignin Interactions during Fast Pyrolysis, ACS Sustain. Chem. Eng., vol. 3, no. 2, pp. 293-301, 2015.

  208. Zhang, C., Qi, J., Xing, J., Tang, S.-F., Song, L., Sun, Y., Zhang, C., Xin, H., and Li, X., An Investigation on the Aqueous-Phase Hydrodeoxygenation of Various Methoxy-Substituted Lignin Monomers on Pd/C and HZSM-5 Catalysts, RSC Adv., vol. 6, no. 106, pp. 104398-104406, 2016.

  209. Zhang, S., Chen, T., Xiong, Y., and Dong, Q., Effects of Wet Torrefaction on the Physicochemical Properties and Pyrolysis Product Properties of Rice Husk, Energy Convers. Manag., vol. 141, pp. 403-409, 2017.

  210. Zhang, Z., Yang, Q., Chen, H., Chen, K., Lu, X., Ouyang, P., Fu, J., and Chen, J.G., In Situ Hydrogenation and Decarboxylation of Oleic Acid into Heptadecane over a Cu-Ni Alloy Catalyst Using Methanol as a Hydrogen Carrier, Green Chem., vol. 20, no. 1, pp. 197-205, 2018.

  211. Zhang, J., Li, C., Guan, W., Chen, X., Chen, X., Tsang, C.-W., and Laing, C., Promotional Effect of Co and Ni on MoO3 Catalysts for Hydrogenolysis of Dibenzofuran to Biphenyl under Atmospheric Hydrogen Pressure, J. Catal., vol. 383, pp. 311-321, 2020.

  212. Zhao, X., Brown, T.R., and Tyner, W.E., Stochastic Techno-Economic Evaluation of Cellulosic Biofuel Pathways, Bioresour. Technol., vol. 198, pp. 755-763, 2015.

  213. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Zhao, K., Wei, G., He, F., and Li, H., Comparison of the Effect of Wet and Dry Torrefaction on Chemical Structure and Pyrolysis Behavior of Corncobs, Bioresour. Technol., vol. 176, pp. 15-22, 2015.

  214. Zhou, G., Jensen, P.A., Le, D.M., Knudsen, N.O., and Jensen, A.D., Atmospheric Hydrodeoxygenation of Biomass Fast Pyrolysis Vapor by MoO3, ACS Sustain. Chem. Eng., vol. 4, no. 10, pp. 5432-5440, 2016.

  215. Zhou, X., Li, W., Mabon, R., and Broadbelt, L.J., A Mechanistic Model of Fast Pyrolysis of Hemicellulose. Energy Environ. Sci., vol. 11, no. 5, pp. 1240-1260, 2018.

  216. Zitouni, A., Bachir, R., Bendedouche, W., and Bedrane, S., Production of Bio-Jet Fuel Range Hydrocarbons from Catalytic HDO of Biobased Difurfurilydene Acetone over Ni/SiO2-ZrO2 Catalysts, Fuel, vol. 297, p. 120783, 2021.

将发表的论文

APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Low-Cost Photovoltaic Emulator With a High-Dynamic Response for Small Satellite Applications Mauricio Troviano, Germán G. Oggier Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin CFD modeling of the combustion of Ukrainian coal and biomass in a flare boiler unit TPP-210a Alexandr Baranyuk, Nataliya Dunayevska, Artur Rachinsky, Nikita Vorobyov, Petro Merenger, Evgeniy Shevel An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain