图书馆订阅: Guest
真核基因表达评论综述™

每年出版 6 

ISSN 打印: 1045-4403

ISSN 在线: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

Behind the Scene: Surprises and Snags of Pseudogenes

卷 31, 册 5, 2021, pp. 67-78
DOI: 10.1615/CritRevEukaryotGeneExpr.2021039540
Get accessGet access

摘要

The junk DNA "pseudogenes," known as genomic fossils, are characterized by their ubiquitousness and abundance within the genomic structure. These genomics sets are recognized by the potential activity of meta-regulating the parent genes; these are transcribed into interfering RNA, consequently acting on miRNA concentration, thereby shedding light on the crosstalk of the pseudogenes' miRNA, siRNA, lncRNA/tumor therapy co-relationship. Moreover, an upcoming visualization regarding pseudogenes is under investigation, which describes the potentiality of pseudogenes as a fundamental component of cancerous evolutionary processing tools. Accordingly, here is a systematic review covering pseudobirth, pseudosignatures, and functional properties of pseudogenes, concluding that these pseudogenes are hypothetically predictive tumor therapies.

参考文献
  1. Vanin EF. Processed pseudogenes: Characteristics and evolution. Annu Rev Genet. 1985;19(1):253-72.

  2. Mighell A, Smith N, Robinson P, Markham A. Vertebrate pseudogenes. FEBS Lett. 2000;468(2-3):109-14.

  3. Jacq C, Miller J, Brownlee G. A pseudogene structure in 5S DNA of Xenopus laevis. Cell. 1977;12(1):109-20.

  4. Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, Okada N. Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol. 2003;4(11):R74.

  5. Harrison PM, Hegyi H, Balasubramanian S, Luscombe NM, Bertone P, Echols N, Johnson T, Gerstein M. Molecular fossils in the human genome: Identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res. 2002 Feb 1;12(2):272-80.

  6. Roberts TC, Morris KV. Not so pseudo anymore: Pseudogenes as therapeutic targets. Pharmacogenomics. 2013;14(16):2023-34.

  7. Pei B, Sisu C, Frankish A, Howald C, Habegger L, Mu XJ, Harte R, Balasubramanian S, Tanzer A, Diekhans M, Rey- mond A. The GENCODE pseudogene resource. Genome Biol. 2012 Sep;13(9):1-26.

  8. Balakirev ES, Ayala FJ. Pseudogenes: Are they "junk" or functional DNA? Annu Rev Genet. 2003;37(1):123-51.

  9. Goodhead I, Darby AC. Taking the pseudo out of pseudogenes. Curr Opin Microbiol. 2015;23:102-9.

  10. Li W, Yang W, Wang X-J. Pseudogenes: Pseudo or real functional elements? J Genet Genomics. 2013;40(4):171-7.

  11. D'Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: Origin and features. Brief Funct Genomics. 2004;3(2):157-67.

  12. Zhang Z, Carriero N, Gerstein M. Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet. 2004;20(2):62-7.

  13. Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: A comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 2003;13(12):2541-58.

  14. Harrison PM, Zheng D, Zhang Z, Carriero N, Gerstein M. Transcribed processed pseudogenes in the human genome: An intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res. 2005;33(8):2374-83.

  15. Petrov D, Hartl D. Pseudogene evolution and natural selection for a compact genome. J Hered. 2000;91(3):221-7.

  16. Sasidharan R, Gerstein M. Genomics: Protein fossils live on as RNA. Nature. 2008;453(7196):729.

  17. Poliseno L. Pseudogenes: Newly discovered players in human cancer. Sci Signal. 2012;5(242):1-14.

  18. Yusuf T. Pseudogenes. Int J Genom. 2012;2012: 424526.

  19. Brown TA. Genomes 4. New York: Garland Science; 2018.

  20. Liu T, Song M, Xia Y, Zeng X. A tandemly arranged pattern of two 5S rDNA arrays in Amolops mantzorum (Anura, Ranidae). Cytogenet Genome Res. 2017;151(3):161-70.

  21. Logan IS. Pseudogenization of the Humanin gene is common in the mitochondrial DNA of many vertebrates. Zool Res. 2017;38(4):198.

  22. Emerling CA, Widjaja AD, Nguyen NN, Springer MS. Their loss is our gainTegressive evolution in vertebrates provides genomic models for uncovering human disease loci. J Med Genet. 2017;54(12):787-94.

  23. Torrents D, Suyama M, Zdobnov E, Bork P. A genome-wide survey of human pseudogenes. Genome Res. 2003;13(12):2559-67.

  24. Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation. Nucleic Acids Res. 2010;38(9):2757-74.

  25. Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA. 2015;6(2):225-42.

  26. Spyrou G, Wilson W, Padilla AC, Holmgren A, Miranda-Vizuete A. A genome-wide survey of human thioredoxin and glutaredoxin family pseudogenes. Hum Genet. 2001;109(4):429-39.

  27. Kaessmann H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010;20(10):1313-26.

  28. Betran E, Long M. Expansion ofgenome coding regions by acquisition of new genes. Genetica. 2002;115(1):65-80.

  29. Cerbin S, Jiang N. Duplication of host genes by transposable elements. Curr Opin Genet Dev. 2018;49:63-9.

  30. Arkhipova IR, Yushenova IA. Giant transposons in eu-karyotes: Is bigger better? Genome Biol Evol. 2019; 11(3):906-18.

  31. Corbett-Detig RB. Selection on inversion breakpoints favors proximity to pairing sensitive sites in Drosophila melanogaster. Genetics. 2016;204(1):259-65.

  32. Tripp V, Randau L. Evolution of C/D box sRNAs. In: Clouet-d'Orval B, editor. RNA metabolism and gene expression in archaea. Nucleic acids and molecular biology. Cham, Switzerland: Springer; 2017. p. 201-24.

  33. Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: How selection shapes host defence genes. Nat Rev Genet. 2010;11(1):17.

  34. Hahn MW, Demuth JP, Han S-G. Accelerated rate of gene gain and loss in primates. Genetics. 2007;177(3): 1941-9.

  35. Shao Y, Chen C, Shen H, He BZ, Yu D, Jiang S, Zhao S, Gao Z, Zhu Z, Chen X, Fu Y. GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Res. 2019 Apr 1;29(4):682-96.

  36. Hahn BH, Hahn TJ. Alendronate versus alfacalcidol in the prevention of glucocorticoid-induced bone loss. Nat Clin Pract Rheumatol. 2007;3(1):10-1.

  37. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525-8.

  38. Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M. Identification and analysis of unitary pseudogenes: Historic and contemporary gene losses in humans and other primates. Genome Biol. 2010;11(3):R26.

  39. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DRF. Pseudogenes: Pseudo-functional or key regulators in health and disease? RNA. 2011;17(5):792-8.

  40. Ragan MA, Beiko RG. Lateral genetic transfer: Open issues. Phil Trans R Soc B: Biol Sci. 2009;364(1527):2241-51.

  41. Bergthorsson U, Adams KL, Thomason B, Palmer JD. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature. 2003;424(6945):197-201.

  42. Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science. 2007;317(5845):1753-6.

  43. Chandrasekaran C, Betran E. Origins of new genes and pseudogenes. Nat Educ. 2008;1(1):181.

  44. Jones CD, Begun DJ. Parallel evolution of chimeric fusion genes. Proc Natl Acad Sci U S A. 2005;102(32):11373-8.

  45. Begun DJ, Lindfors HA, Kern AD, Jones CD. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics. 2007;176(2):1131-7.

  46. Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci U S A. 2006;103(26):9935-9.

  47. Long M, Langley CH. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science. 1993;260(5104):91-5.

  48. Cordaux R, Udit S, Batzer MA, Feschotte C. Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci U S A. 2006;103(21):8101-6.

  49. Arguello JR, Connallon T. Gene duplication and ectopic gene conversion in Drosophila. Genes. 2011;2(1):131-51.

  50. Zhang X, Zhang R, Yu J. New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation. Front Cell Dev Biol. 2020;8:657.

  51. Copley SD. Evolution of new enzymes by gene duplication and divergence. FEBS J. 2020;287(7):1262-83.

  52. Kazazian HH. Processed pseudogene insertions in somatic cells. Mobile DNA. 2014;5(1):1-5.

  53. Kodack DP, Farago AF, Dastur A, Held MA, Dardaei L, Friboulet L, von Flotow F, Damon LJ, Lee D, Parks M, Dicecca R. Primary patient-derived cancer cells and their potential for personalized cancer patient care. Cell Rep. 2017;21(11):3298-309.

  54. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: From conflicts to benefits. Nat Rev Genet. 2017;18(2):71.

  55. Qi Y, Wang X, Li W, Chen D, Meng H, An S. Pseudogenes in cardiovascular disease. Front Mol Biosci. 2020;7: 622540.

  56. Wang J, Samuels DC, Zhao S, Xiang Y, Zhao Y-Y, Guo Y. Current research on non-coding ribonucleic acid (RNA). Genes. 2017;8(12):366.

  57. Song H, Buhay JE, Whiting MF, Crandall KA. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA. 2008;105(36): 13486-91.

  58. Calabrese FM, Balacco DL, Preste R, Diroma MA, Forino R, Ventura M, Attimonelli M. NumtS colonization in mammalian genomes. Sci Rep. 2017;7(1):1-10.

  59. Kovalenko T, Patrushev L. Pseudogenes as functionally significant elements of the genome. Biochemistry. 2018;83(11):1332-49.

  60. Patrushev L, Kovalenko T. Functions of noncoding sequences in mammalian genomes. Biochemistry. 2014; 79(13):1442-69.

  61. Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M. Identification and analysis of unitary pseudogenes: Historic and contemporary gene losses in humans and other primates. Genome Biol. 2010;11(3):1-17.

  62. Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ, Iyer MK. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149(7):1622-34.

  63. Tonner P, Srinivasasainagendra V, Zhang S, Zhi D. Detecting transcription of ribosomal protein pseudogenes in diverse human tissues from RNA-seq data. BMC Genomics. 2012;13(1):1-10.

  64. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X. The complete genome of an individual by massively parallel DNA sequencing. Nature. 2008;452(7189):872-6.

  65. Zheng D, Gerstein MB. A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol. 2006;7(1):1-10.

  66. Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. Theor Applied Genet. 2020;133(5):1521-39.

  67. Marques AC, Tan J, Lee S, Kong L, Heger A, Ponting CP. Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mR-NAs. Genome Biol. 2012;13(11):1-12.

  68. Khachane AN, Harrison PM. Assessing the genomic evidence for conserved transcribed pseudogenes under selection. BMC Genomics. 2009;10(1):1-14.

  69. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

  70. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012; 2(5); 401-4.

  71. Hu X, Yang L, Mo YY. Role of pseudogenes in tumorigenesis. Cancers. 2018 Aug;10(8):256.

  72. Ho TT, Zhou N, Huang J, Koirala P, Xu M, Fung R, Wu F, Mo YY. Targeting non-coding RNAs with the CRISPR/ Cas9 system in human cell lines. Nucleic Acids Res. 2015;43(3):e17-e.

  73. Hu X, Yang L, Mo Y-Y. Role of pseudogenes in tumorigenesis. Cancers. 2018;10(8):256.

  74. Yang F, Yi F, Han X, Du Q, Liang Z. MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett. 2013;587(19):3175-81.

对本文的引用
  1. Ahmad Hafiz Ishfaq, Afzal Gulnaz, Sadia Sehrish, Haider Ghulam, Ahmed Shakeel, Saeed Saba, Chen Jinping, Cigerci Ibrahim Hakkı, Structural and Evolutionary Adaptations of Nei-Like DNA Glycosylases Proteins Involved in Base Excision Repair of Oxidative DNA Damage in Vertebrates, Oxidative Medicine and Cellular Longevity, 2022, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain