图书馆订阅: Guest
国际药用蘑菇期刊

每年出版 12 

ISSN 打印: 1521-9437

ISSN 在线: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Antioxidant, Anticancer, Antimicrobial, and Antibiofilm Properties of the Culinary-Medicinal Fairy Ring Mushroom, Marasmius oreades (Agaricomycetes)

卷 21, 册 6, 2019, pp. 571-582
DOI: 10.1615/IntJMedMushrooms.2019030874
Get accessGet access

摘要

This study is based on the phenolic composition and the antioxidant, anticancer, antimicrobial, and antibiofilm activities of the edible mushroom Marasmius oreades from Turkey. The phenolic composition of an M. oreades ethanol extract was measured by using the Folin-Ciocalteu method, aluminium chloride colorimetry, and ultraperformance liquid chromatography. The antioxidant activity was evaluated on the basis of DPPH radical scavenging activity. The effect of the M. oreades ethanol extract was also screened in order to determine glutathione-S-transferase, glutathione peroxidase, catalase, and superoxide dismutase enzyme activities. The antimicrobial activity of the mushroom extract was evaluated by using well diffusion and was based on the minimum inhibitory concentration. In addition, the antibiofilm potential of M. oreades was analyzed against Gram-positive and -negative bacteria. Finally, the anticancer effects of the mushroom extract were tested on colon (HT-29) and breast (MCF-7 and MDA-MB-231) cancer cell lines by using the MTT assay. The results revealed that the total amount of phenolics in the ethanol extract of M. oreades was 10.990 ± 0.0007 mg gallic acid equivalent/100 g, and the total amount of flavonoids was 1.139 ± 0.0052 mg quercetin equivalent/100 g. The ultraperformance liquid chromatography results indicated that the M. oreades ethanol extract contained various phenolic compounds: catechin, ferulic, gallic acid, and vanillic acid. The M. oreades ethanol extract scavenged about 80% of DPPH free radicals. It did not show any effect on the glutathione-S-transferase, glutathione peroxidase, and catalase enzyme activities, but its maximal concentration (10 mg/mL) increased superoxide dismutase activity (8%). The ethanol extract of M. oreades showed a moderate anticancer effect on the HT-29, MCF-7, and MDA-MB-231 cell lines. Although the ethanolic extract of the mushroom did not show sufficient antibacterial activity, it presented a strong antibiofilm effect against all studied pathogenic strains at the tested concentrations.

参考文献
  1. Lorenzen K, Anke T. Basidiomycetes as a source for new bioactive natural products. Curr Org Chem. 1998;2:329-64.

  2. Petrova RD, Mahajna J, Reznick AZ, Wasser SP, Denchev CM, Nevo E. Fungal substances as modulators of NF-kappaB activation pathway. Mol Biol Rep. 2007;34:145-54.

  3. Ruimi N, Petrova RD, Agbaria R, Sussan S, Wasser SP, Reznick AZ, Mahajna J. Inhibition of TNFa-induced iNOS expression in HSV-tk transduced 9L glioblastoma cell lines by Marasmius oreades substances through NF-kB- and MAPK-dependent mechanisms. Mol Biol Rep. 2010;37:3801-12.

  4. Winter HC, Mostafapour K, Goldstein IJ. The mushroom Marasmius oreades lectin is a blood group type B agglutinin that recognizes the Gala 1,3Gal and Gala 1,3Galp 1,4GlcNAc porcine xenotransplantation epitopes with high affinity. J Biol Chem. 2002;277:14996-5001.

  5. Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, auf dem Keller U, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Kunzler M. Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem. 2011;286:30337-43.

  6. Juillot S, Cott C, Madl J, Claudinon J, Velden NSJ, Kunzler M, Thuenauer R, Romer W. Uptake of Marasmius oreades ag-glutinin disrupts integrin-dependent cell adhesion. Biochim Biophys Acta. 2016;392-401.

  7. Onar O, Akata I, Celep GS, Yildirim O. Antioxidant activity of extracts from the red-belt conk medicinal mushroom, Fomitopsis pinicola (Agaricomycetes), and its modulatory effects on antioxidant enzymes. Int J Med Mushrooms. 2016;18(6):501-8.

  8. Slinkard K, Singleton VL. Total phenol analyses: automation and comparison with manual methods. J Enol Viticul. 1977;28:49-55.

  9. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colori- metric methods. J Food Drug Anal. 2002;10(3):178-82.

  10. Reis FS, Martins A, Barros L, Ferreira ICFR. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol. 2012;50:1201-7.

  11. Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chem. 2009;113:1202-5.

  12. Shomali Moghaddam N, Isgor BS, Isgor YG, Geven F, Yildirim O. The evaluation of inhibitory effects of selected plant extracts on antioxidant enzymes. Fresenius Environ Bull. 2015;24(1):63-70.

  13. Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases the first enzymatic step in mercapturic acid formaion. J Biol Chem. 1974;249:7130-9.

  14. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-69.

  15. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6.

  16. Geller BL, Winge DR. Subcellular distribution of superoxide dismutases in rat liver. Methods Enzymol. 1984;105:105-14.

  17. Khan N, Hadi N, Afaq F, Syed DN, Kweon MH, Mukhtar H. Pomegranate fruit extract inhibits prosurvival pathways in human A549 lung carcinoma cells and tumor growth in athymic nude mice. Carcinogenesis. 2007;28:163-73.

  18. Silici S, Koc AN. Comparative study of in vitro methods to analyse the antifungal activity of propolis against yeasts isolated from patients with superficial mycoses. Lett Appl Microbiol. 2006;43:318-24.

  19. Cinical Laboratory & Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI document M07-A9. Wayne, PA. 2012.

  20. Bala N, Aitken EA, Fechner N, Cusack A, Steadman KJ. Evaluation of antibacterial activity of Australian basidiomycetous macrofungi using a high-throughput 96-well plate assay. Pharm Biol. 2011;49(5):492-500.

  21. Sultanbawa Y, Cusack A, Currie M, Davis C. An innovative microplate assay to facilitate the detection of antimicrobial activity in plant extracts. J Rapid Methods Autom Microbiol. 2009;17:519-34.

  22. Stepanovic S , Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175-9.

  23. Vestby LK, Maretra T, Balance S, Langsrud S, Nesse LL. Survival potential of wild type cellulose deficient Salmonella from the feed industry. BMC Vet Res. 2009;5:43.

  24. Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol. 2004;38:428-32.

  25. Pennerman KK, Yin G, Bennett JW. Health effects of small volatile compounds from East Asian medicinal mushrooms. Mycobiology. 2015;43(1):9-13.

  26. Wang XM, Zhang J, Wu LH, Zhao YL, Li T, Li JQ, Wang YZ, Liu HG. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 2014;15(151):279-85.

  27. Falandysz J, Borovicka J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol. 2013;97(2):477-501.

  28. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telse J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84.

  29. Ramesh C, Pattar MG. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacognosy Res. 2010;2(2):107-12.

  30. Suay I, Arenal F, Asensio FJ, Basilio A, Cabello MA, Diez MT, Garda JB, del Val AG, Gorrochategui J, Hernandez P, Pelaez F, Vicente MF. Screening of basidiomycetes for antimicrobial activities. Antonie Van Leeuwenhoek. 2000;78(2):129-39.

  31. Queiros B, Barreira JC, Sarmento AC, Ferreira IC. In search of synergistic effects in antioxidant capacity of combined edible mushrooms. Int J Food Sci Nutr. 2009;60(Suppl. 6):160-72.

  32. Anke T, Kupka J, Schramm G, Steglich W. Antibiotics from basidiomycetes. X. Scorodonin, a new antibacterial and antifungal metabolite from Marasmius scorodonius (Fr.) Fr. J Antibiot (Tokyo). 1980;33(5):463-7.

  33. Davies DG, Hodge P. Biosynthesis of the allene (-)-marasin in Marasmius ramealis. Org Biomol Chem. 2005;3(9):1690-3.

  34. Tobe Y, Dai Y, Tohru T, Masashi I, Junichi S, Kiyomi K, Kazuy K, Yoshinobu O. Synthesis of (.+-.)-marasmic acid via 1-ox-aspirohexane rearrangement. J Am Chem Soc. 1990;112:775-9.

  35. Bin L, Wei L, Xiaohong C, Mei J, Mingsheng D. In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Ann Microbiol. 2012;62(4):1523-30.

  36. Alves MJ, Ferreira IC, Martins A, Pintado M. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. J Appl Microbiol. 2012;113(2):466-75.

  37. Alves MJ, Ferreira IC, Lourenjo I, Costa E, Martins A, Pintado M. Wild mushroom extracts as inhibitors of bacterial biofilm formation. Pathogens. 2014;3(3):667-79.

  38. Karaca B, Akata I, Cihan AQ. Lentinus edodes, Lactarius delicious ve Ganoderma lucidum'un antibiyofilm ve antimikrobiyal etkinlikleri. Kastamonu Universitesi Orman Fakultesi Dergisi. 2017;17(4):660-8.

对本文的引用
  1. Wong Jack Ho, Ng Tzi Bun, Chan Helen Hei Ling, Liu Qin, Man Gene Chi Wai, Zhang Chris Zhiyi, Guan Suzhen, Ng Charlene Cheuk Wing, Fang Evandro Fei, Wang Hexiang, Liu Fang, Ye Xiuyun, Rolka Krzysztof, Naude Ryno, Zhao Shuang, Sha Ou, Li Chunman, Xia Lixin, Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials, Applied Microbiology and Biotechnology, 104, 11, 2020. Crossref

  2. Chopra Hitesh, Mishra Awdhesh Kumar, Baig Atif Amin, Mohanta Tapan Kumar, Mohanta Yugal Kishore, Baek Kwang-Hyun, Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product, Journal of Fungi, 7, 9, 2021. Crossref

  3. Khatua Somanjana, Sen Gupta Surashree, Ghosh Mahua, Tripathi Sudipta, Acharya Krishnendu, Exploration of nutritional, antioxidative, antibacterial and anticancer status of Russula alatoreticula: towards valorization of a traditionally preferred unique myco-food, Journal of Food Science and Technology, 58, 6, 2021. Crossref

  4. Al-Obaidi Jameel R., Jambari Nuzul Noorahya, Ahmad-Kamil E. I., Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality, Journal of Fungi, 7, 7, 2021. Crossref

  5. Inoue Chisa, Yasuma Taro, D’Alessandro-Gabazza Corina N., Toda Masaaki, Fridman D’Alessandro Valeria, Inoue Ryo, Fujimoto Hajime, Kobori Hajime, Tharavecharak Suphachai, Takeshita Atsuro, Nishihama Kota, Okano Yuko, Wu Jing, Kobayashi Tetsu, Yano Yutaka, Kawagishi Hirokazu, Gabazza Esteban C., The Fairy Chemical Imidazole-4-carboxamide Inhibits the Expression of Axl, PD-L1, and PD-L2 and Improves Response to Cisplatin in Melanoma, Cells, 11, 3, 2022. Crossref

  6. Darmasiwi Sari, Aramsirirujiwet Yaovapa, Kimkong Ingorn, Antibiofilm activity and bioactive phenolic compounds of ethanol extract from the Hericium erinaceus basidiome, Journal of Advanced Pharmaceutical Technology & Research, 13, 2, 2022. Crossref

  7. Nowakowski Patryk, Markiewicz-Żukowska Renata, Bielecka Joanna, Mielcarek Konrad, Grabia Monika, Socha Katarzyna, Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents, Biomedicine & Pharmacotherapy, 143, 2021. Crossref

  8. Dimopoulou Maria, Kolonas Alexandros, Mourtakos Stamatis, Androutsos Odysseas, Gortzi Olga, Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species, Applied Sciences, 12, 16, 2022. Crossref

  9. Karakas Fatma Pehlivan , Turker Arzu Ucar , Bozat Bihter Gokce , Phenolic Content, Antibacterial and Antioxidant Potential of Several Edible Agaricomycetes Mushrooms Sold in Public Bazaar in Bolu, Turkey , International Journal of Medicinal Mushrooms, 25, 1, 2023. Crossref

3623 文章浏览量 40 文章下载 统计数据
3623 文章浏览量 40 下载次数 9 Crossref 引用次数 Google
Scholar
引用次数

相似内容的文章:

Comparison of the Composition and Antioxidant Activities of Phenolics from the Fruiting Bodies of Cultivated Asian Culinary-Medicinal Mushrooms International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 10
Peter Chi Keung Cheung, Shaoling Lin, Lai Tsz Ching, Xinxin Ke
Chemical Composition and Bioctivity of the Giant Polypore or Black-Staining Mushroom, Meripilus giganteus (Agaricomycetes), from Serbia International Journal of Medicinal Mushrooms, Vol.24, 2022, issue 7
Ivana Srbljak, Ana Đurić, Tomislav Tosti, Nevena Petrovic, Marijana Kosanic
Antimicrobial and Cytotoxic Activities of the Sulphur Shelf Medicinal Mushroom, Laetiporus sulphureus (Agaricomycetes), from Serbia International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 6
Tatjana P. Stanojkovic, Tatjana D. Kundakovic, Milan Kojic, Marina D. Kolundzic, Marina T. Milenkovic, Nada O. Grozdanic, Miroslav R. Dinic, Natasa E. Golic
Black Tea Extract: A Supplementary Antioxidant in Radiation-Induced Damage to DNA and Normal Lymphocytes Journal of Environmental Pathology, Toxicology and Oncology, Vol.31, 2012, issue 2
Salil C. Datta , Subrata Kumar Dey, Sandip Pal, Amit Kumar Chakrabarti, Debjani Ghosh, Chabita Saha
The Health Promoting Effects of the Fruiting Bodies Extract of the Peppery Milk Cap Mushroom Lactarius piperatus (Agaricomycetes) from Serbia International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 4
Aleksandra Marković, Tatjana P. Stanojkovic, Olivera Milosevic-Djordjevic, Darko Grujičić, Nevena Petrović, Jovana Tubic, Marijana Kosanic
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain