图书馆订阅: Guest
国际药用蘑菇期刊

每年出版 12 

ISSN 打印: 1521-9437

ISSN 在线: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Effects of Substrates on the Production of Fruiting Bodies and the Bioactive Components by Different Cordyceps militaris Strains (Ascomycetes)

卷 22, 册 1, 2020, pp. 55-63
DOI: 10.1615/IntJMedMushrooms.2019033257
Get accessGet access

摘要

Cordyceps militaris is a type of food and medicinal species and is widely cultured in Asia. Substrate and strain are important factors for the production of fruiting bodies and bioactive components contents in fruiting bodies of C. militaris. This study aimed to select the excellent strains and suitable substrates by six strains of C. militaris cultivated on rice, wheat, and tussah (Antheraea pernyi) pupae. The results showed that the rice and wheat were suitable for fruiting body formation of strain CM3, with yields of 23.19 and 19.07 g per bottle, and biological efficiency of strain CM3 were 62.26% and 54.48%, respectively, which were significantly higher than other strains. Tussah pupae is suitable for fruiting body formation of strain CM9, with fruiting body length, yield, and biological efficiency of 5.57 cm, 6.80 g per each, and 291.70%, respectively, which were significantly higher than other strains. The content of adenosine in fruiting bodies of strain CM9 cultivated on tussah pupae was 2.62 mg g-1, followed by that of strain CM3 on rice of 2.51 mg g-1. The content of cordycepin in fruiting bodies of strain CM4 cultivated on wheat was 5.68 mg g-1, followed by that of strain CM9 on wheat of 5.41 mg g-1. To improve the product quality and the contents of bioactive components, C. militaris strains and substrates should both be considered, that is, different strains should be appropriate for different substrates.

参考文献
  1. Kim HO, Yun JW. A comparative study on the production of exopolysaccharides between two entomopathogenic fungi Cordyceps militaris and Cordyceps sinensis in submerged mycelial cultures. J Appl Microbiol. 2005;99(4):728-38.

  2. Dong JZ, Lei C, Ai XR, Wang Y. Selenium enrichment on Cordyceps militaris link and analysis on its main active components. Appl Biochem Biotechnol. 2012;166:1215-24.

  3. Cunningham KG, Manson W, Spring FS, Hutchinson SA. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature. 1950;166:949.

  4. Xia YL, Luo FF, Shang YF, Chen PL, Lu YZ, Wang CS. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 2017;24(12):1479-89.

  5. Das SK, Masuda M, Sakurai A, Sakakibara M. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 2010;81(8):961-68.

  6. Kim YS, Kim EK, Hwang JW, Han YK, Kim SE, Jeong JH, Moon SH, Jeon BT, Park PJ. Radical scavenging activities of Undaria pinnatifida extracts fermented with Cordyceps militaris mycelia. J Microbiol Biotechnol. 2015;25(6):820-27.

  7. Jung K, Kim IH, Han D. Effect of medicinal plant extracts on forced swimming capacity in mice. J Ethnopharmacol. 2004;93(1):75-81.

  8. Lin YW, Chiang BH. Anti-tumor activity of the fermentation broth of Cordyceps militaris cultured in the medium of Radix astragali. Process Biochem. 2008;43(3):244-50.

  9. Reis FS, Barros L, Calhelha RC, Ciric A, van Griensven LJ, Sokovic M, Ferreira IC. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food Chem Toxicol. 2013;62:91-98.

  10. Dong CH, Yang T, Lian T. A comparative study of the antimicrobial, antioxidant, and cytotoxic activities of methanol extracts from fruit bodies and fermented mycelia of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16(5):485-95.

  11. Shrestha B, Han SK, Sung JM, Sung GH. Fruiting body formation of Cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology. 2012;40(2):100-6.

  12. Kang N, Lee HH, Park I, Seo YS. Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology. 2017;45(1):31-38.

  13. Lim L, Lee C, Chang E. Optimization of solid state culture conditions for the production of adenosine, cordycepin, and D-mannitol in fruiting bodies of medicinal caterpillar fungus Cordyceps militaris Link (Ascomycetes). Int J Med Mushrooms. 2012;14(2):181-87.

  14. Lin QY, Long LK, Wu LL, Zhang FL, Wu SL, Zhang WM, Sun XM. Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive components by medicinal mushroom Cordyceps militaris. J Sci Food Agric. 2017;97:3476-80.

  15. Tu YQ, Zhu HL, Zeng W, Chen SJ. Determination of D-mannitol in cultivated Cordyceps sinensis. J Biol. 2012;29(3):45-47.

  16. Zhu HT, Chu YQ, Chen L. Optimization of content determination of anthrone-sulfuric acid method on Bletilla striata polysaccharide by orthogonal design. Chin Hosp Pharm J. 2014;34(20):1714-18.

  17. Shi XQ, Gu YY, Li HX, Guo G, Zhu H, Qiao P, Yu ZC. A comparison on morphological characters and active component contents of aweto cultured on silkworm larva inoculated with different Cordyceps militaris strains. Sci Sericult. 2015;41(1):134-39.

  18. Wang F, Liu Q, Zhang JJ, Liu KB, Li K, Liu GJ, Dong CH. Comparative transcriptome analysis between a spontaneous albino mutant and its sibling strain of Cordyceps militaris in response to light stress. Front Microbiol. 2018;9:01237.

  19. Wu CY, Liang ZC, Tseng CY, Hu SH. Effects of illumination pattern during cultivation of fruiting body and bioactive compound production by the caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2016;18(7):589-97.

  20. Kim SW, Xu CP, Hwang HJ, Choi JW, Kim CW, Yun JW. Production and characterization of exopolysaccharides from an enthomopathogenic fungus Cordyceps militaris NG3. Biotechnol Progr. 2003;19:428-35.

  21. Park JP, Kim SW, Hwang HJ, Cho YJ, Yun JW. Stimulatory effect of plant oils and fatty acids on the exo-biopolymer production in Cordyceps militaris. Enzyme Microb Tech. 2002;31:250-55.

  22. Liang ZC, Liang CH, Wu CY. Various grain substrates for the production of fruiting bodies and bioactive compounds of the medicinal caterpillar mushroom, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16(6):569-78.

  23. Guo MM, Guo SP, Yang HJ, Bu N, Dong CH. Comparison of major bioactive compounds of the caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), fruiting bodies cultured on wheat substrate and pupae. Int J Med Mushrooms. 2016;18(4):327-36.

  24. Fan DD, Wang W, Zhong JJ. Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem Eng J. 2012;60:30-35.

  25. Hung YP, Wang JJ, Wei BL, Lee CL. Effect of the salts of deep ocean water on the production of cordycepin and adenosine of Cordyceps militaris-fermented product. AMB Expr. 2015;5:53.

  26. Lv Y, Ke HT, Chen XP, Fang XMI, Zhou L, Liu X, Cheng M. Nutritional components and content determination in female and male pupae of Antheraea perny. J Anhui Agr Sci. 2016;44(27):61-64.

  27. Chan JS, Barseghyan GS, Asatiani MD, Wasser SP. Chemical composition and medicinal value of fruiting bodies and submerged cultured mycelia of caterpillar medicinal fungus Cordyceps militaris CBS-132098 (Ascomycetes). Int J Med Mushrooms. 2015;17(7):649-59.

对本文的引用
  1. Turk Ayman, Abdelhamid Mohamed A. A., Yeon Sang Won, Ryu Se Hwan, Lee Solip, Ko Sung Min, Kim Beom Seok, Pack Seung Pil, Hwang Bang Yeon, Lee Mi Kyeong, Cordyceps mushroom with increased cordycepin content by the cultivation on edible insects, Frontiers in Microbiology, 13, 2022. Crossref

2830 文章浏览量 51 文章下载 统计数据
2830 文章浏览量 51 下载次数 1 Crossref 引用次数 Google
Scholar
引用次数

相似内容的文章:

Influence of Strain Preservation Methods on Fruiting Body Growth and Metabolite Production by the Medicinal Mushroom Cordyceps militaris (Ascomycetes) International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 10
Fen Wang, Kuanbo Liu, Caihong Dong, Qing Liu
Effect of Cost-Effective Substrates on Growth Cycle and Yield of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) from Northwestern Himalaya (India) International Journal of Medicinal Mushrooms, Vol.16, 2014, issue 6
Savita Jandaik, Dharmesh Gupta, Sheetal Mehta
Comparative Growth Characteristics and Yield Attributes of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes) on Different Substrates in India International Journal of Medicinal Mushrooms, Vol.15, 2013, issue 5
Savita Jandaik, Mamta Sharma, Rajender Singh
Optimization of Liquid Fermentation Conditions and Protein Nutrition Evaluation of Mycelium from the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes) International Journal of Medicinal Mushrooms, Vol.18, 2016, issue 8
Yanhong Liu, Han Liu, Jie Gang
Hydrophilic Metabolite Composition of Fruiting Bodies and Mycelia of Edible Mushroom Species (Agaricomycetes) International Journal of Medicinal Mushrooms, Vol.25, 2023, issue 11
Rao-Chi Chien, Carolyn M. Slupsky, Shin-Yu Chen, Darya O. Mishchuk
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain