图书馆订阅: Guest
国际流体力学研究期刊

每年出版 6 

ISSN 打印: 2152-5102

ISSN 在线: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Effect of Air Viscosity on Sound Propagation in Human Bronchial Tree

卷 32, 册 3, 2005, pp. 340-352
DOI: 10.1615/InterJFluidMechRes.v32.i3.70
Get accessGet access

摘要

A physical model of sound propagation in a transitional zone of human respiratory tract has been developed within the long-wave approximation. A basic notice was given to analyzing the influence of viscous interaction between the bronchial air, oscillating owing to acoustic excitation, and bronchial wall. To avoid a considering of the effects of wall compliance and sound radiation into pulmonary parenchyma, within this study the respiratory airways were modeled by the tubes with rigid walls. It is shown that the allowance for air viscosity results in not only attenuation, but also profound dispersion of sound waves propagating in the elements of the bronchial tree. These phenomena rapidly increase with the decrease of the bronchus caliber. Also, the viscosity essentially alters frequency dependencies of the input impedance of terminal bronchioles loaded on the system of respiratory airways. Moreover, the impedance of terminal bronchiole depends on boundary conditions at the entrance of the respiratory tract - the glottis (open or closed vocal chords).

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain