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Electrical impedance tomography (EIT) is a highly unstable problem with respect to measurement and modeling errors.
With clinical measurements, knowledge about the body shape is usually uncertain. Since the use of an incorrect model
domain in the measurement model is bound to lead to severe estimation errors, one possibility is to estimate both the
conductivity and parametrization of the domain boundary. This could in principle be carried out using the Bayesian
inversion paradigm and Markov chain Monte Carlo sampling, but such an approach would lead in clinical situation to
an impractical solution because of the excessive computational complexity. In this paper, we adapt the so-called approx-
imation error approach for approximate recovery of the domain boundary and the conductivity. In the approximation
error approach, the modeling error caused by an inaccurately known boundary is treated as an auxiliary noise process
in the measurement model and sample statistics for the noise process are estimated based on the prior models of the
conductivity and boundary shape. Using the approximation error model, we reconstruct the conductivity and a low
rank approximation for the realization of the modeling error, and then recover an approximation for the domain bound-
ary using the joint distribution of the modeling error and the boundary parametrization. We also compute approximate
spread estimates for the reconstructed boundary. We evaluate the approach with simulated examples of thorax imaging
and also with experimental data from a laboratory setting. The reconstructed boundaries and posterior uncertainty are
feasible; in particular, the actual domain boundaries are essentially within the posterior spread estimates.

KEY WORDS: inverse problems, electrical impedance tomography, statistical inversion, modelling errors,
inaccurately known boundary, model reduction

1. INTRODUCTION

In electrical impedance tomography (EIT), electrodes are attached on the boundary of a body and electric currents
are injected into the body through these electrodes. The resulting voltages on all electrodes are measured and the
conductivity of the body is reconstructed based on the measured voltages and known currents. Mathematically, the
problem amounts to estimating distributed parameters of an elliptic partial differential equation (PDE) based on a
small number of measurement data on the boundary. The biomedical applications of EIT include detection of breast
cancer [1, 2], imaging of brain function [3], and monitoring of lung function [4–6]. For reviews of EIT, see [7–9].

The reconstruction of the conductivity is an ill-posed problem; i.e., the problem is highly unstable with respect
to measurement and modeling errors. The effect of the measurement errors can be reduced by using an accurate
measurement system and by careful modeling of the statistics of the measurement errors. Modeling errors, on the
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other hand, are often related to model reduction, such as the use of coarse finite-element method (FEM) discretization
of the forward model, truncation of the computational domain, or uncertainty in the values of nuisance parameters in
the forward model, such as uncertainty in the values of model parameters that are assumed known.

In biomedical EIT, the most pivotal modeling error arises from inaccurate knowledge of the shape of the target
body. The conventional setup for the EIT problem treats the boundary of the body as known. As an example, consider
EIT measurements of pulmonary function from the surface of the thorax. In principle, the shape of the patient’s thorax
could be obtained from other imaging modalities such as computerized tomography (CT). However, such imaging data
often are not available. Furthermore, the shape of the thorax varies in time due to breathing and is also dependent on
the orientation of the patient. Therefore, the body shape—or the domain boundary in general—would be inaccurately
known even at best. The use of an incorrect domain boundary in the measurement model has been shown to produce
severe errors in the reconstructed conductivity images, see [10–13].

Since errors in the model domain lead to large reconstruction artifacts, one should in principle attempt to re-
construct both the conductivity and parametrization of the domain boundary. This could potentially be achieved, for
example, by using the Bayesian inversion paradigm and Markov chain Monte Carlo sampling techniques. Once all
the samples would be drawn, the marginalization of the posterior density model with respect to the nuisance parame-
ters and computation of the estimates would be straightforward. However, such a sampling-based approach would be
impractical in clinical use because of the excessive computational complexity and time—each sample would require
solution of the FEM approximation of an elliptic PDE and construction of a FEM mesh for the domain corresponding
to the drawn boundary parametrization. The reconstruction of the conductivity and a partially unknown boundary in
an industrial process tomography application using an optimization-based approach has been considered in [14, 15].
However, the problem set up in these papers is significantly different compared to the present case and the methods
would not be applicable as such. In these papers, the part of the boundary where the measurement electrodes are
located (i.e., the walls of the process pipeline) are known and the only unknown boundary is the nearly flat air-liquid
surface inside the process pipeline.

Instead of reconstructing both the conductivity and the domain boundary, there are a few distinct approaches to
compensate for the errors caused by an inaccurately known boundary. A traditional (ad hoc) way for circumventing
the problem of inaccurately known boundary has been to use difference imaging, where the objective is to recon-
struct only the change in the conductivity between two measurement times (or two frequencies) using a first-order
linear perturbation model [16]. The approach is highly approximative since the actual nonlinear forward mapping is
approximated by a linear one and iterations are not possible in the first place. Furthermore, the choice of reconstruct-
ing conductivity differences based on differences of measurements is known to reduce the effect of an inaccurately
known boundary only to an extent. In spite of the difference imaging modality being able to suppress some of the
effects of model uncertainties, it has been shown that the breathing artifacts are still present in the reconstructions
[17]. Furthermore, in high-contrast cases, such as accumulation of well conducting liquid (haematothorax) or poorly
conducting air (pneumothorax) in the lungs, the linear approximation used in difference imaging may be insufficient
for the detection of the clinically relevant conditions in the lungs [18]. Also, the detection of pneumothorax becomes
difficult using difference imaging if the change in the lungs has occurred prior to the measurements [19].

Simultaneous reconstruction of the conductivity and electrode movement have been proposed for difference imag-
ing in [20, 21]. These approaches are based on a linearized perturbation model and have been evaluated only for
relatively small movements of the boundary between the measurement states. Recently, it has been demonstrated that
the so-called D-bar method, which is a direct method based on a constructive uniqueness proof for two-dimensional
(2D) EIT [22], has some tolerance against domain modeling errors [23]. The method proposed in [24, 25] eliminates
the errors caused by an inaccurately known boundary in 2D EIT by using the theory of Teichmuller mappings. The
method is based on the result that there is a unique anisotropic conductivity in the model domain that corresponds to
the (noiseless) boundary data on the boundary of the true domain, and has minimal anisotropy. The numerical imple-
mentation of the method finds the minimally anisotropic conductivity by minimization of a regularized least-squares
functional and displays the determinant of the anisotropic conductivity in the (incorrect) model domain as a deformed
image of the original isotropic conductivity. The extension of the method to three-dimensional (3D) EIT was consid-
ered in [26]. For a discussion on the relation of the unknown boundary shape and anisotropic conductivities, also see
[27].
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In [28], we adapted the so-called approximation error approach for the compensation of the errors caused by an
inaccurately known boundary in EIT. The approximation error approach is based on the Bayesian inversion paradigm.
The key idea in the approximation error approach is, loosely speaking, to represent not only the measurement error,
but also the effects of the computational model errors and uncertainties as an auxiliary additive noise process in the
measurement model [29, 30]. The realization of the modeling error noise is obviously unknown since its value de-
pends on the actual unknown conductivity and domain boundary. However, an approximation for the distribution of
the modeling error can be estimated before the measurements using the prior probability distribution models of the
conductivity and parametrization of the boundary. The estimated statistics are included (formally, by approximate
marginalization) into the likelihood density to model the uncertainty in the measurement model caused by the uncer-
tainty in the knowledge of the domain boundary. The approach was shown to remove efficiently the reconstruction
artifacts caused by an inaccurately known boundary, producing deformed reconstructions of the target conductivity in
the (incorrect) model domain.

The approximation error approach was originally developed and applied for discretization error in EIT with nu-
merical examples in [29]. For this reason, the term “approximation error” also is commonly used where “modeling
error” might be a more appropriate term. The approach was verified with real EIT data in [31], where the approach
was employed for the compensation of discretization errors and the errors caused by an inaccurately known height of
the air-liquid surface in an industrial mixing tank. The application of the approximation error approach for the dis-
cretization errors and the truncation of the computational domain was studied in [32], and for the linearization error
in [33]. In [34] the approach was evaluated for the compensation of errors caused by coarse discretization, domain
truncation, and unknown contact impedances with real EIT data. In addition to EIT, the approximation error approach
has also been applied to other inverse problems and other types of (modeling) errors: Model reduction, domain trun-
cation, and unknown anisotropy structures in optical diffusion tomography were treated in [35–38]. Missing boundary
data in the case of image processing was considered in [39]. In [40], again related to optical tomography, an approx-
imative physical model (diffusion model instead of the radiative transfer model) was used for the forward problem.
In [41], an unknown uninteresting distributed parameter (scattering coefficient) was treated with the approximation
error approach. The extension and application of the modeling error approach to time-dependent inverse problems
was considered in [42–44].

In this paper, we propose an approach for reconstructing both the conductivity and the domain boundary. This is
accomplished by employing the approximation error approach in a novel way. Instead of approximate marginalization
over the modeling error, we split the modeling error noise process into two orthogonal components in the eigenvector
basis of the estimated approximation error covariance, and then reformulate the EIT problem such that we also esti-
mate, in addition to the conductivity, a low rank approximation for the realization of the modeling error in the basis
formed by a few of principal eigenvectors. The estimate of the modeling error is then used to compute an approxi-
mation for the domain boundary based on approximate joint distribution of the modeling error and boundary shape
parametrization. The approach is evaluated with simulated examples of thorax imaging as well as with measured EIT
data from a chest-shaped laboratory tank. The results show that the approach gives feasible reconstruction of the con-
ductivity and boundary shape when the target boundary is plausible with respect to the prior model for the boundary
parametrization. Moreover, the posterior uncertainty estimates for the boundary shape are feasible.

The rest of this paper is organized as follows. In Section 2, a brief review of the EIT observation model, the
Bayesian formulation of the EIT problem, and the approximation error approach is given. The practical construction
of the approximation error method for the particular problem of an inaccurately known boundary shape is explained
in Section 3. The proposed approach is evaluated using simulated 2D EIT data in Section 4 and with experimental
EIT data in Section 5. Conclusions are given in Section 6.

2. METHODS

2.1 Forward Model of EIT and Notation

Let Ω ⊂ Rd, d = 2, 3, denote the measurement domain and letγ denote a parametrization of the domain bound-
ary ∂Ω. In an EIT experiment, a set ofNel contact electrodes are attached on the boundary∂Ω. Using the elec-
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trodes, electric currents are injected into the bodyΩ and corresponding voltages are measured using the same elec-
trodes.

We model these measurements with the so-called complete electrode model [45, 46]:

∇ · σ(x)∇u(x) = 0, x ∈ Ω (1)

u(x) + z`σ(x)
∂u(x)
∂n

= U`, x ∈ e` ⊂ ∂Ω, (2)
∫

e`

σ(x)
∂u(x)
∂n

dS = I`, x ∈ e` ⊂ ∂Ω, (3)

σ(x)
∂u(x)
∂n

= 0, x ∈ ∂Ω \
Nel⋃

l=1

e`. (4)

wherex ∈ Rd, u(x) is the potential distribution insideΩ, n is the outward unit normal vector at∂Ω, σ(x) is the
conductivity, andz` is the contact impedance between the object and the electrodee`. The currents satisfy the charge
conservation law

Nel∑

`=1

I` = 0, (5)

and a ground level for the voltages can be fixed by

Nel∑

`=1

U` = 0. (6)

The numerical approximation of the forward model [Eqs. (1)–(6)] is based on the FEM approximation, see [8, 47].
In the following, we use notationσ = (σ1, . . . , σN )T ∈ RN for the coefficients of the finite-dimensional repre-
sentation

σ(x) =
N∑

k=1

σkϕk(x) (7)

in the FEM approximation (in this study,ϕk are the piecewise linear nodal basis functions of the FEM mesh) and

U(σ,γ) ∈ Rm (8)

for the FEM-based forward solution corresponding to a single EIT experiment; i.e., the vectorU(σ, γ) contains
computed voltages for all the input currents in the chosen measurement paradigm. The dependence of the forward
solution on the domainΩ is expressed by the parametrizationγ of the boundary∂Ω. In the conventional setup for the
EIT problem, the boundary parametrizationγ plays the role of nuisance parameters. In the later sections, we consider
only the modeling errors caused by inaccurately known domain boundary∂Ω and approximate that mesh element size
in the FEM mesh is chosen sufficiently small so that modeling errors caused by discretization are negligible.

The measurement noise in EIT experiments is commonly modeled as Gaussian additive noise that is mutually
independent with the unknown conductivity. This leads to measurement model

V = U(σ, γ) + e, e ∼ N (e∗, Γe) (9)

whereV ∈ Rm is the vector of the measured voltages,σ ∈ RN ande ∈ Rm are Gaussian distributed measurement
noise with meane∗ ∈ Rm and covariance matrixΓe.

Note that if boundary∂Ω of the target body is not known accurately (realization of the nuisance parametersγ

is incorrect), the error in the FEM approximationU(σ,γ) may become significant compared to measurement error
e. Together with the fact that the reconstruction of the conductivity is an ill-posed problem, this modeling error can
easily lead to significant artifacts in the reconstructed conductivity.
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2.2 Bayesian Approach for EIT Inverse Problem

In this section, the Bayesian framework for the EIT inverse problem is reviewed briefly. For more details of the
Bayesian framework for inverse problems in general, see [8, 29, 48, 49], and the approximation error approach, in
particular, for example [29, 30, 35, 41].

In the Bayesian framework, all unknowns and measurements are considered as random variables and the un-
certainty related to their values is encoded in their probability distribution models. The joint probability density of
conductivityσ, boundary parametrizationγ, and measurementsV can be written as

π(σ,γ, V ) = π(σ, γ)π(V | σ, γ) = π(V )π(σ, γ | V ), (10)

whereπ(V | σ,γ) is the likelihood modeland the probability densityπ(σ,γ) is theprior modelof σ andγ. The
posterior density, which is given by the Bayes formula

π(σ,γ | V ) =
π(V | σ,γ)π(σ, γ)

π(V )
, (11)

is the complete probabilistic model of the EIT problem and represents the uncertainty in the unknowns given the
measurements.

In the conventional setup for the EIT problem, the domain boundary is assumed to be known. LetΩ̃ denote an
inaccurate model of the (actual) measurement domainΩ, and letγ̃ be a parametrization for boundary∂Ω̃. In the
sequel, the tilde refers to the models that are to be used in the inversion. In the Bayesian formulation, all variables that
are known, such as measurements, orare treated asfixed (nuisance) parameters, appear as conditioning variables.
Thus, if we fixγ = γ̃, instead ofπ(σ, γ | V ) in Eq. (11), we actually consider

π(σ | V, γ = γ̃) =
π(V | σ, γ = γ̃)π(σ)

π(V )
(12)

Formally, the uncertainty in the primary interesting unknownσ is obtained by marginalization (integrating) overγ in
Eq. (11)

π(σ | V ) =
∫

π(σ, γ | V ) dγ. (13)

The posterior uncertainty ofσ that is predicted by Eq. (12) is usually significantly overoptimistic when compared
to the actual uncertainty given by Eq. (13). With this we mean that the density [Eq. (12)] tends to be significantly
narrower than Eq. (13), and also most of the mass of the density [Eq. (12)] may be located differently than the mass
of Eq. (13). In particular, any point estimates, such as the maximum a posteriori estimate, are bound to be highly
misleading. It is clear thatπ(σ | V ) 6= π(σ | V, γ′) generally with anyγ′.

Unfortunately, the integral in Eq. (13) does not generally have an analytical solution and can be computed only
with the often excessively resource demanding Markov chain Monte Carlo approach, see for example [29]. For this
reason, approximations are usually needed to be considered in applications with limited computational resources.

Assuming that the conductivity and the boundary shape are mutually independent with the additive noise in Eq. (9),
it follows that the likelihood can be written as

π(V | σ,γ) = πe[V − U(σ, γ)], (14)

whereπe is the probability density of noisee. In the following, we make a technical approximation that(σ,γ) are
modeled as mutually independent so thatπ(σ, γ) = π(σ)π(γ). Moreover, let the prior model be the Gaussian distri-
butionN (σ∗, Γσ) equipped with the positivity constraint, so that we can write

π(σ) ∝ π+(σ) exp
[
−1

2
(σ− σ∗)TΓ−1

σ (σ− σ∗)
]

whereσ∗ ∈ RN is the prior mean,Γσ is the prior covariance matrix, andπ+(σ) = 1 when all elements ofσ are
nonnegative, and zero otherwise.
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Then, the posterior density ofσ givenboththe measurementsV andthe nuisance parameters (boundary shape)γ

becomes

π(σ | V, γ) ∝ π+(σ) exp
{
−1

2
(σ− σ∗)TΓ−1

σ (σ− σ∗)− 1
2
[V − U(σ,γ)− e∗]TΓ−1

e [V − U(σ,γ)− e∗]
}

. (15)

Note that distribution (15) represents the posterior uncertainty inσ only if realizationγ, which is used as a fixed
parameter in Eq. (15), corresponds to the actual boundary.

In the Bayesian approach, the solution is analyzed and visualized by computing point and spread estimates for the
posterior model [Eq. (15)], see for example [29]. In practical problems with restricted computational resources, the
most commonly computed point estimate is the maximum a posteriori (MAP) estimate, which in the case of Eq. (15)
leads to the following minimization problem:

σMAP = arg max
σ≥0

π(σ | V, γ) = arg min
σ≥0

{‖Le[V − U(σ, γ)− e∗]‖2 + ‖Lσ(σ− σ∗)‖2
}

, (16)

whereLe andLσ are Cholesky factors such that

Γ−1
e = LT

e Le, Γ−1
σ = LT

σLσ.

The minimization problem [Eq. (16)] can be solved, for example, by the Gauss-Newton algorithm [50]. We refer
to the solution of Eq. (16) as theMAP with conventional error model(MAP-CEM). A computationally efficient
approximation for the spread estimates (posterior covariance) can be obtained by forming a Gaussian approximation
for the posterior density by linearization of the forward mappingU(σ, γ) at the MAP-estimateσMAP, see [29]. Note
that when Eq. (16) is computed,γ may or may not correspond to the actual boundary.

2.3 Reconstruction of the Conductivity and Domain Boundary Using the Approximation Error
Approach

2.3.1 Measurement Models

Let
V = U(σ̄, γ) + e, (17)

denote a (sufficiently) accurate model between the unknowns and measurements. Here, parametersγ of boundary
∂Ω are such that the error due to the FEM approximation is smaller than the measurement error. Conductivityσ̄ is a
parametrization in the actualΩ and is dense enough in the above sense.

As explained above, in practical clinical measurements one usually lacks accurate knowledge of the shape of body
Ω and, therefore, the reconstruction is carried out using an approximatemodel domaiñΩ. In such a case, the accurate
model [Eq. (17)] is traditionally replaced by the approximate measurement model:

V ≈ U(σ, γ̃) + e, (18)

whereγ̃ is a parametrization of boundary∂Ω̃ of the model domain. It has been shown that the use of an incorrect
model boundary∂Ω̃ produces significant errors to the conductivity estimates [11]. The model,U(σ, γ̃), in Eq. (18) is
the forward model that is to be used in the inversion and we refer to modelU(σ, γ̃) as thetarget model.

The relation of the representation of the conductivities in Eqs. (17) and (18) is of the formσ̄(x) = σ[T (x)], where

T (Ω, Ω̃) : Ω 7→ Ω̃ (19)

is a bijective mapping that models the deformation of domainΩ to Ω̃. Obviously, the true deformation,T , between
the measurement domain and model domain is not unique and not known, and one has to choose a model for the
deformation. The deformation of the conductivity can be represented by a linear transformation

P σ̄ = σ, (20)

whereP (Ω, Ω̃) is a matrix that interpolates the nodal conductivityσ ∈ RN in Ω into a nodal conductivity iñΩ
according to deformation modelT .
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2.3.2 Approximation Error Model

In the approximation error approach, instead of writing the approximation [Eq. (18)], theaccurate measurement model
[Eq. (17)] is written in the form

V = U(σ, γ̃) + [U(σ̄,γ)− U(σ, γ̃)] + e = U(σ, γ̃) + ε(σ̄, γ) + e = U(σ, γ̃) + η, (21)

where we denoteη = ε+ e andε(σ̄, γ) represents the modeling error due to the incorrect boundary, that is, the model
discrepancy by using the incorrect boundary,∂Ω̃, instead of the correct one,∂Ω. Notice that only the term in Eq. (21),
which depends on nuisance parameterγ, is approximation errorε.

Being a function of random variables,ε is a random variable and the joint densityπ(σ̄, ε) can be computed in
principle, but in most cases it does not have an analytical expression. Furthermore, in what follows, since we are to
use variableσ in the inversion andσ = P σ̄, we consider joint distributionπ(ε, σ).

In previous applications of the approximation error approach, the objective has been to derive a computation-
ally efficient approximatioñπ(σ|V ) ∝ π̃(V |σ)π(σ) for posterior densityπ(σ|V ) based on the measurement model
[Eq. (21)] and then use this model in the computations to compensate for the modeling errors. Sinceσ andγ are
approximated as mutually independent, and the only term that depends on the random variableγ in Eq. (21) isη, the
posterior model corresponding to Eq. (21) can be written as

π̃(σ|V ) = πη|σ[V − U(σ, γ̃)|σ]︸ ︷︷ ︸
π(V |σ)

π(σ), (22)

see [41] for details. A complication is that the likelihood,π(V |σ), in Eq. (22) does not in general have an analytic
expression. However, a computationally efficient approximationπ̃(V |σ) can be obtained by writing a Gaussian ap-
proximation for the joint density of(σ, η), and by conditioning over the nuisance parameterη = e + ε we get the
approximation forπη|σ. This is the core of the implementation of the approximation error approach, in particular,
when computational efficiency is sought. For further details, see [41].

2.3.3 Simultaneous Estimation of the Conductivity and Approximation Error

In this paper, we propose another way of utilizing the approximation error model in order to facilitate the approximate
recovery of boundary∂Ω.

First, note that
ε− ε∗ ∈ sp{w1, . . . , wm},

wherewi ∈ Rm are the mutually orthogonal eigenvectors of covariance matrixΓε. Using this relation, we decompose
the realization of the modeling error to mean plus two orthogonal components(ε′, ε′′); that is, we write

ε = ε∗ +
p∑

k=1

αkwk

︸ ︷︷ ︸
ε′

+
m∑

j=p+1

βjwj

︸ ︷︷ ︸
ε′′

. (23)

Note thatE(ε′) = 0 andE(ε′′) = 0. Formally,αk andβj are the projection coefficientsαk = 〈ε − ε∗, wk〉 and
βj = 〈ε − ε∗, wj〉, respectively. In the following, we denote byW = [w1, w2, . . . , wp] (m × p matrix) andQ =
[wp+1, wp+2, . . . , wm] (m×m− p matrix). Using Eq. (23), we write the measurement model [Eq. (21)] in the form

V = U(σ, γ̃) +
p∑

k=1

αkwk + e + ε∗ + ε′′ = U(σ, γ̃) + Wα + ε∗ + ε′′ + e, (24)

whereα = (α1,α2, . . . , αp)T ∈ Rp and dimensionp is chosen (significantly) smaller thanm, so thatε′ represents a
low-rank projection ofε in the basis of principal eigenvectors ofΓε. By the properties of the eigenvalue decomposi-
tion, the prior distribution for the projection coefficients isα ∼ N (0, Γα), whereΓα = diag(λ1, λ2, . . . , λp) andλj
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are the eigenvalues ofΓε. The dependence of the measurement model [Eq. (24)] on the boundary parametrization is
embedded in the approximation errorε = ε∗ + Wα + ε′′.

Our objective now is to construct an approximation for the posterior density,π(σ, α|V ), using the measurement
model [Eq. (24)] and estimate both the conductivity and projection coefficientsα ∈ Rp. To obtain a computationally
efficient approximation,̃π(σ, α|V ), we make the technical approximation that(σ,α, e, ε′′) are mutually Gaussian and
uncorrelated. Following the approach in [41], we obtain approximate likelihood

π̃(V |σ,α) = N (V − U(σ, γ̃)−Wα− ε∗ − e∗, Γε′′ + Γe)

and the approximate posterior density becomes

π̃(σ,α | V ) ∝ π+(σ) exp
{
− 1

2
(σ− σ∗)TΓ−1

σ (σ− σ∗)− 1
2
αTΓ−1

α α− 1
2
[V − U(σ, γ̃)−Wα− ε∗ − e∗]T

× (Γ′′ε + Γe)−1[V − U(σ, γ̃)−Wα− ε∗ − e∗]
}

, (25)

whereΓε′′ =
∑m

p+1 λjwjw
T
j .

The computation of the MAP estimate from the posterior model [Eq. (25)] amounts to solving the minimization
problem

(σ, α)MAP = arg min
σ≥0,α

{|| Lε′′+e[V − U(σ, γ̃)−Wα− ε∗ − e∗] ||2 + || Lσ(σ− σ∗) ||2 + || Lαα ||2} , (26)

where the Cholesky factorLT
ε′′+eLε′′+e = (Γε′′ + Γe)−1.

2.3.4 Reconstruction of the Boundary Shape

Once the MAP estimation problem [Eq. (26)] has been solved, an approximate estimate for boundary parametersγ of
actual domainΩ are estimated. For this, we use the Gaussian approximation of the joint density ofε′ = Wα andγ

and find the MAP estimate
γMAP = arg max π̃(γ|ε̂′), (27)

given by
γ̂ = Γγε′Γ−1

ε′ ε̂′ + γ∗, (28)

whereε̂′ = WαMAP andγ∗ is the prior mean of the boundary parameters. Spread estimates for the boundary shape
are obtained from the covariance ofπ̃(γ|ε̂′), given by

Γγ̂|ε̂′ = Γγ − Γγε′Γ−1
ε′ ΓT

γε′ . (29)

Note that the estimation [Eq. (26)] of conductivityσ and projection coefficientsα is carried out in model domain
Ω̃. Once the MAP estimates ofσ, α, andγ̂ have been computed, the estimated conductivity,σ, is mapped from model
domainΩ̃ into the reconstructed domain,Ω̂ (that corresponds to MAP estimateγ̂), by a linear interpolation

σ̂MAP = P̃σMAP, (30)

whereP̃ implements interpolation from the domain to another according to inverseT−1 of the domain deformation
model [Eq. (19)]. We refer to the MAP estimate [Eqs. (26)–(30)] as the MAP with theapproximation error model
(MAP-AEM).

3. ESTIMATES AND CONSTRUCTION OF THE APPROXIMATION ERROR STATISTICS

In Section 4 we consider two test cases of 2D EIT with simulated measurement data and in Section 5 one 3D example
with real measurement data from a laboratory experiment. In both the 2D and 3D cases the prior model is constructed
similarly, and the approximation error statistics are computed likewise. In this section, we discuss these constructions
with parameter values given for the 2D examples. The parameter values for the 3D cases are given in Section 5.

International Journal for Uncertainty Quantification



Reconstruction of Domain Boundary and Conductivity in EIT 211

3.1 Estimates to Be Computed

Model domainΩ̃ that is to be used in the inversion is circular with diameterρ. For all test cases, the following
reconstructions were computed:

1. σMAP with the conventional noise model [Eq. (16)] (MAP-CEM) in correct domainΩ [forward modelU(σ̄, γ)],
this reconstruction serves as the reference reconstruction with the conventional measurement error model when
no domain modeling errors are present.

2. MAP-CEM σMAP in model domainΩ̃ [forward modelU(σ, γ̃)], representing conventional reconstruction in
the presence of domain modelling errors.

3. MAP-AEM with the approximation error approach using model domainΩ̃. We first compute(σMAP,αMAP)
with Eq. (26) inΩ̃ [forward modelU(σ, γ̃) + Wα]. Given αMAP, estimateγ̂ of the boundary parametriza-
tion is computed using Eq. (28). The reconstructed conductivityσMAP is mapped from model domaiñΩ to
reconstructed domain̂Ω (that corresponds to estimateγ̂) by mappinĝσMAP = P̃σMAP in Eq. (30).

The minimization problems [Eqs. (16) and (26)] were solved with the Gauss-Newton algorithm using a line search
algorithm [50].

3.2 Prior Models

3.2.1 Prior Model for Conductivity

As the prior modelπ(σ), we used a proper Gaussian smoothness prior, constructed similarly as in [29, 35, 36]. In the
construction of the prior model, the conductivity is considered in the form

σ(x) = σin(x) + σhg(x)

whereσin(x) is a spatially inhomogeneous conductivity with zero mean, andσhg(x) is a spatially homogeneous
conductivity of nonzero mean. For the latter, we can writeσhg(x) = cI, whereI is a vector of ones andR 3 c ∼
N (σ∗,µ2

hg). Setting the basis for conductivity, we have the coordinatesσin ∈ RN , I ∈ RN , and setσin ∼ N (0, Γin).
We modelσin andc as mutually independent; that is, with respect to the prior model, the background conductivity is
modeled mutually independent with the inhomogeneities in the conductivity.

For the homogeneous background, we setσ∗ = 2 (arbitrary units) andµhg = 0.5. When constructing prior
covarianceΓin, we set the variance of elements (diagonal elements ofΓin) to µin = 1, and the correlation length to
7 cm. The correlation length roughly expresses our prior estimate about the expected size of the inhomogeneities in
the medium. This also means that in the model forσin, any two elements that correspond to spatial locations that are
further away from each other than the correlation length are (approximately) mutually independent.

Thus, we have the prior covarianceΓσ = Γin + µ2
hgIIT and

π(σ) = N (σ∗I,Γσ).

This prior model is a proper distribution, in that the covariance exists in the first place. This model also allows
(restricted) variation for the background (see Fig. 1).

Traditional smoothness prior models are improper, that is, the variances are infinite, and samples cannot be drawn
from such distributions. The approximation error approach, on the other hand, is based on computing the statistics of
ε over the prior distribution. This is not possible with a prior of unbounded variances.

3.2.2 Prior Model for Boundary Parametrization

As the prior model,π(γ), we use a sample-based Gaussian approximation that is constructed based on an atlas of
chest CT images ofNpr different individuals in the population. In this paper, we used an atlas ofNpr = 150 images.
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FIG. 1: Four 2D samples{σ̄(`), Ω(`)} for the construction of the approximation error model. The sample domains
{Ω(`)} are from an ensemble of chest CT images of different individuals and the conductivities are drawn from the
prior modelπ(σ̄). The unit of the 2D conductivity is arbitrary. The color scale denotes the common minimum to
maximum scale of the conductivity values in the samples.

For this, the CT images were segmented to the interior and exterior of the body domain, leading to an ensemble
of chest domains{Ω(`), ` = 1, 2, . . . , Npr}. The domains were scaled so that the horizontal diameter is equivalent
to diameterρ of circular model domaiñΩ. To obtain the corresponding parametric representations for the chest
boundaries,{∂Ω(`)}, we extracted boundaries{∂Ω(`)} from the scaled and segmented CT images and then employed
a Fourier parametrization

b =
q∑

k=1

γkvk = Fγ, (31)

for the representation of the boundaries. Here, vectorb represents a set of points on the boundary, vectorsvk are the
discretized sine and cosine functions on the unit circle,F = [v1, . . . , vq], andγ ∈ Rq. In this paper, the number
of sine and cosine functions wasq = 20. This way, we obtained an ensemble{γ(`), ` = 1, . . . , Npr} of parametric
representations of chest shapes. Using the ensemble, the marginal prior model forγ was constructed asπ(γ) =
N (γ∗, Γγ), where

γ∗ =
1

Npr

Npr∑

k=1

γ(k) (32)

Γγ =
1

Npr − 1

Npr∑

k=1

(γ(k) − γ∗)(γ(k) − γ∗)T. (33)

This Gaussian approximation can be thought to reflect the natural variation in the chest shape in the population.

3.3 Estimation of Modeling Error Statistics

In cases in which the measurement model is linear and the prior model is Gaussian, the approximation error statistics
can be computed analytically, see [29]. In other cases, the statistics typically are estimated by Monte Carlo simulation.

For the Monte Carlo simulation, we generate a set ofNs draws from prior modelsπ(γ) andπ(σ̄). In both the
simulation and real data cases,Ns = 1000 random draws{γ(`), σ̄(`)} were used for the estimation of joint sam-
ple statistics for(ε,γ). Using boundary parameter sampleγ(`), a FEM mesh was automatically created using the
MATLAB and Comsol mesh generators for sample domainΩ(`) for computation of accurate modelU(σ̄(`), γ(`)).
Conductivity samplēσ(`) in sample domainΩ(`) was drawn from the smoothness prior model, which was constructed
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as in Section 3.2. To simplify the sampling process, modelπ(σ̄) was defined on a FEM mesh in the rectangular do-
main that encloses all sample domains{Ω(`)}. To create samplēσ(`), a random sample was then drawn fromπ(σ̄)
in the rectangular domain and interpolated into nodal valuesσ̄i in sample domainΩ(`) [see Eq. (7)]. Figure 1 shows
four samples{σ̄(`)} on sample domains{Ω(`)}. The samples were then used for the computation of accurate forward
solutionU(σ̄(`), γ(`)) for each of theNs samples.

To compute the target model,U(σ(`), γ̃), the conductivity samples were mapped fromΩ(`) to model domaiñΩ by

σ(`) = P (`)σ̄(`), P (`) : Ω(`) 7→ Ω̃,

whereP (`) = P (`)(Ω(`), Ω̃) is a matrix that interpolates nodal conductivity fromΩ(`) to Ω̃ according to deformation
T [see Eqs. (19)–(20)]. In the numerical examples considered in this study,T is chosen such that the angle and relative
distance (between the center of the domain and the boundary) of a coordinate point is preserved. Although this simple
deformation model seems to work well with the test cases we have considered, we note that other transformation
models may be used as well. More advanced choices for the transformation model can be sought for from the literature
of image registration, see e.g. [51].

Given the accurate and target forward solutions, samplesε(`) of the approximation error were obtained as

ε(`) = U(σ̄(`), γ(`))− U(σ(`), γ̃)

The means and covariances,ε∗, γ∗, Γε, Γε′′ , Γε′ andΓγε′ , for the Gaussian approximations were computed as sample
averages based on the samples,{ε(`),γ(`), ` = 1, . . . , 1000}. For this task, samplesε

′(`), ε
′′(`) of the projection

components were obtained from samples{ε(`)} by

ε
′(`) = WWT(ε(`) − ε∗), ε

′′(`) = QQT(ε(`) − ε∗),

whereε∗ is the sample average.
Note that the estimation of the approximation error statistics by Monte Carlo simulation is a computationally

extensive task. However, this task can be done offline before the measurements and needs to be done only once for
a given measurement setup, and for the expected range of uncertainties—in this paper, the range of boundary shapes
and the specified prior model for the conductivity.

4. TEST CASES WITH SIMULATED DATA AND 2D FEM MODEL

4.1 Target Conductivity and Simulation Parameters for Cases 1 and 2

The actual thorax domainΩ and the target conductivityσtrue for the simulation examples (Cases 1 and 2) are shown in
Fig. 3. The thorax domains as well as the subdomains for the lungs and the heart were obtained from two segmented
CT reconstructions of the human thorax. Note that ensemble{∂Ω(`)} of the CT-based chest boundaries that was used
to construct the prior modelπ(γ) did not include either of these particular CT samples. The horizontal diameter of
domainsΩ was scaled toρ = 35 cm, which is also used as the diameter of circular model domainΩ̃ (see Fig. 3).

The true measurement domains also are shown together with the boundaries corresponding to the prior mean and
two standard deviation limits in the sample-based Gaussian prior model,π(γ), in Fig. 2. The solid line shows mean
boundaryFγ∗, see (31), and the dashed lines show the two standard deviation limits around the mean [the standard
deviations are obtained as

√
diag(FΓγFT)]. Notice that in the first simulation (Case 1), the true measurement domain

lies mainly inside the two standard deviation limits of prior modelπ(γ), whereas the measurement domain in Case 2
is clearly outside the two standard deviation limits of the prior model. Thus, Case 2 represents a difficult case since
the actual measurement domain has a small probability with respect to prior modelπ(γ).

In both cases, 16 equally spaced measurement electrodes were modeled on boundary∂Ω. The locations of the
electrodes and the locations of the lungs and the heart are indicated in Fig. 3. The target conductivities were set
to 1.2, 2, and 3.6 (arbitrary units) for the lungs, background, and heart, respectively. In the simulation of the EIT
measurements, 16 adjacent current patterns were used and the voltages were measured between adjacent electrode
pairs, leading to 256 voltage measurements; that is,V ∈ R256. The simulated measurements were computed with
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(Case 1) (Case 2) (Case 3)

FIG. 2: The actual measurement domainsΩ are shown as gray patch. Cases 1 & 2 are the test cases with simulated
measurement data and case 3 is the example with measurement data from a laboratory experiment. The solid line
shows the boundary corresponding to meanγ∗ of prior modelπ(γ) and dashed line shows the 2 standard deviation
limits of π(γ).

(Case 1)

(Case 2)

FIG. 3: Left: The actual measurement domainsΩ are shown as gray patch. The circular model domainΩ̃ is shown by
solid line. The locations of the 16 electrodes on the boundaries∂Ω and∂Ω̃ are shown with thick line segments. Right:
Arrangement of lungs and heart in the actual domains.

2D FEM approximation. To avoid an “inverse crime,”1 the simulated measurement data were generated using a finer
discretization level than is used in the inverse problem computations. Further, Gaussian mutually independent noise
was added to the simulated measurements. The added noise,e, was zero mean and the standard deviation of the noise
was 1% of the computed simulated voltages corresponding to the signal-to-noise ratio, SNR = 40 dB.

4.2 Reconstructions for Cases 1 and 2

In the present implementation, one tuning parameter is dimensionp of parameter vectorα ∈ Rp, which defines the
dimension of projection componentε′ [see Eq. (23)]. To find a suitablep, we seek the smallestp such thatvar‖e‖ =
tr(Γe) > tr(Γε′′) = var‖ε′′‖. The rationale behind this choice is to find a level where the magnitude of residual
modeling errorε′′ gets smaller than the magnitude of random measurement noisee. We found that this criterion was
met withp = 32, which is used in the following. To verify the sensibility of this choice, we computed MAP-AEM
reconstructions [Eqs. (26)–(30)] for Case 1 using different values ofp in the rangep ∈ [3, 100]. Reconstructed domain
and conductivity for valuesp ∈ {3, 10, 30, 60, 100} are shown in Fig. 4. As can be seen, the (visual) quality of the

1Inverse crime refers to an overly optimistic test setting where an identical forward model is used for both simulation of the
measurement data and in the inverse problem.
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(Case 1)

FIG. 4: MAP-AEM reconstructionŝσMAP with different dimension of parameter vectorα ∈ Rp (see 23 and 26).
The right column shows the reconstructed boundaryF γ̂ with solid line and thea posterioritwo standard deviation

limits for the approximate posterior̃π(γ|ε̂′) [the standard deviation limits are obtained as
√

diag(FΓγ̂|ε̂′FT)]. The

values ofp are from top to bottom: 3, 10, 30, 60 and 100.

estimate does not improve oncep exceeds the level whereε′′ gets smaller than noisee, giving support to our choice
of dimensionp for projection componentε′.

The reconstructions of Type 1–3 described in Section 3.1 are shown for Case 1 in Fig. 5. The top left shows the
target conductivity,σtrue, the top right show the MAP-CEM estimate using correct domainΩ, the middle left shows
the MAP-CEM using incorrect model domaiñΩ, and the middle right show the MAP-AEM estimateσ̂MAP, which
was computed using the same incorrect model domainΩ̃. The bottom row shows the reconstructed boundaryF γ̂ with
a solid line, two standard deviation limits for posteriorπ̃(γ|ε̂′) with a dashed line, and true measurement domainΩ
with a gray patch. The relative estimation errors

∆σ =
|| Pσtrue − σ ||
|| Pσtrue || · 100% , (34)

for the estimates are listed in Table 1.
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(Case 1)

FIG. 5: Top left: Actual conductivityσtrue. Top right: MAP-CEM estimate using the correct domainΩ. Middle left:
MAP-CEM using the incorrect model domaiñΩ. Middle right: MAP-AEM using the incorrect model domaiñΩ.
Bottom: The actual domainΩ is shown as gray patch. The reconstructed boundary is shown with solid line and 2 (a
posteriori) standard deviation limits with dashed lines.

TABLE 1: The relative estimation errors (Case 1).

Estimate Forward model ∆σ

MAP-CEM U(σ̄,γ) 19.63
MAP-CEM U(σ, γ̃) 37.56
MAP-AEM U(σ, γ̃) 19.67

The MAP-CEM with accurate forward modelU(σ̄,γ) using correct measurement domainΩ can be taken as a
reference estimate. The error in the estimate is due to the ill-posed nature of the EIT problem. We note, however, that
the particular prior modelπ(σ̄), which has been used here, has been proven to be well suited for diffuse tomography,
see for example [29, 35]. As explained in Section 3.2, the prior model is proper; that is, it has finite covariances.
Furthermore, by construction, the model can accommodate an unknown background conductivity.

The MAP-CEM reconstruction in which the incorrect model domain is used but the approximation error is not
accounted for, shows intolerable errors. In contrast, the MAP-AEM reconstruction in which the approximation errors
are accounted for, is mostly free of these artifacts and is comparable to the conventional reconstruction in the correct
domain. The shape of domainΩ also has been found quite well, and moreover, the posterior spread estimates are
feasible. In addition to the reconstruction of the shapes of the organs, the actual conductivity values also match the
reality quite well.

In addition to the Case 1, we conducted tests using several different target chest domains. The results for a difficult
case (Case 2) are shown in Fig. 6 and Table 2. The results were computed with exactly the same models and settings,
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(Case 2)

FIG. 6: Results for case 2. Arrangement of images is similar as in Fig. 5.

TABLE 2: The relative estimation errors (Case 2).
Estimate Forward model ∆σ

MAP-CEM U(σ̄,γ) 20.25
MAP-CEM U(σ, γ̃) 44.47
MAP-AEM U(σ, γ̃) 25.26

and the images are organized similarly as the results for Case 1 in Fig. 5. The central difference between Cases 1 and
2 is that whereas actual domainΩ in Case 1 is plausible with respect to sample-based prior modelπ(γ), the actual
domain in Case 2 has low probability with respect to the sample-based prior (see Fig. 2). As can be seen, the MAP-
CEM using the incorrect model domain again shows intolerable errors. The MAP-AEM, on the other hand, has still
succeeded in recovering the conductivity and the domain shape to some extent, but the degradation compared to the
reference estimate (MAP-CEM using the correct domain) is evident and the usefulness of the estimate is questionable.
This gives us some indication of the limits of the MAP-AEM approach; the performance (obviously) depends on the
prior models that are used and, roughly speaking, one can expect poor estimates whenever the actual domain is
improbable with respect to the prior model.

Note that in the present implementation we made the technical approximation that(ε,σ, e, γ) are mutually uncor-
related. This assumption cannot be sustained in principle since a perturbation of the boundary effects indirectly also
the conductivity via the mappingP [see Eqs. (19)–(20)] andε is a function of the random variables(σ, γ). However,
based on the results this technical approximation seems to be acceptable in practice.

5. TEST CASE USING EXPERIMENTAL DATA AND 3D FEM MODEL

5.1 Experimental Setup

The experimental data were measured from a vertically symmetric measurement tankΩ (see the top left in Fig. 8).
Sixteen equally spaced stainless steel electrodes were attached on boundary∂Ω of the tank. The (incorrect) model

Volume 1, Number 3, 2011



218 Nissinen, Kolehmainen & Kaipio

domainΩ̃ was a cylinder with a diameter equivalent to the diameter of the measurement domain (see Fig. 7). The
height of tankΩ and model domaiñΩ was 5 cm. Thus, no model error caused by truncation of the computational
domain in the vertical direction was present. To construct the phantom, heart- and lung-shaped inclusions were made
of agar and placed in the measurement tank filled with saline with a conductivity of 3.0 mS/cm−1. The inclusions were
constructed using vertically symmetric molds. The conductivity of the lung and heart targets were 0.73 mS/cm−1 and
5.8 mS/cm−1, respectively.

The measurements were carried out with the KIT 4 measurement system [52]. Sixteen adjacent current patterns
were used and the voltage differences between the adjacent electrodes were used as measurements, leading to 256
voltage measurements. The amplitude of the injected currents was 5 mA with a frequency of 10 kHz.

For the estimation of measurement error statistics, 40,000 realizations were measured. The distribution of the
measurement noise conformed well with the Gaussian model. The meanse∗,k and covariancesΓe,k were formed
separately as sample averages for each of thek = 1, . . . , 16 current patterns. In KIT 4, different current patterns use
partially different circuit boards and have different switch states, which may result in different measurement error
statistics for different current patterns. Significant external low-frequency sources were not present, and the serial
autocorrelation was verified to essentially vanish after the zeroth lag. Thus, the errors in the demodulated voltages
could be modeled as mutually independent between current patterns and overall covarianceΓe was constructed as a
block diagonal matrix,

Γe = BlockDiag(Γe,1, . . . , Γe,16)

The standard deviations[diag(Γe)]1/2 of the noise were in the range from 0.01% to 2.64% of the mean of the measured
voltages and the SNR computed as

SNR = 10 ln
(

E{|| V ||2}
1
m tr(Γe)

)
(35)

was 65.52 dB. The structure of (essentially) nonzero elements in estimatesΓe,k was tridiagonal, implying that the
three voltage difference measurements (between adjacent electrode pairs) that involve electrode` are correlated.

Prior π(σ̄) for the 3D model was constructed similarly as for the 2D model explained in Section 3.2. The cor-
relation length in the prior model was set to 7 cm as in the simulation case. The other prior parameters were set as
follows. The prior mean was set to the conductivity of the saline background; that is,σ∗ = 3.0 mS/cm−1, µin = 0.6
mS/cm−1, andµhg = 0.15 mS/cm−1. The correlation length of 7 cm in a 5-cm-tall tank means that (according to the
prior model) the conductivities on the bottom and top layers are almost mutually independent. These choices mean, in
particular, that we assume that the background conductivity is between(2.5, 3.5) with approximately 99% probability.

The statistics of the modeling errors was again estimated usingNs = 1000 conductivity and boundary samples,
similarly as explained in Section 3.3. The conductivity samples were drawn from the 3D prior model. The cross
sections of the (vertically symmetric) boundary samples were the samples that were used in the 2D case.

Estimates for contact impedancesz and homogeneous initialization for the conductivity were computed before
the actual reconstruction by solving the least-squares problem

(Case 3; real data)

FIG. 7: Left: The cross section of the actual domainΩ is shown as gray patch. The shape of the domain was extracted
from a segmented CT image of the thorax. The cross section of the cylindrical model domainΩ̃ is shown as solid line.
The locations of the 16 electrodes attached on the boundaries are shown with line segments. Right: Arrangement of
lung and heart phantoms in the measurement tank.
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(σ0, z) = arg min
σ0>0,z>0

{‖L[V − U(σ0, z, γ0)− n∗]‖2
}

(36)

whereσ0 ∈ R is a homogeneous conductivity value andz ∈ R16 are the electrode contact impedances. Parameters
γ0 are fixed to correspond to the model; that is,γ0 = γ when using correct domainΩ andγ0 = γ̃ when using model
domainΩ̃ in the forward model. Likewise, meann∗ of the total additive errors and Cholesky factorL depend on the
estimate, withn∗ = e∗, L = Le when computing initial estimates with the conventional error model (MAP-CEM)
andn∗ = e∗+ ε∗, L = Le+ε when computing initial estimates with the approximation error approach (MAP-AEM).
Similar least-squares approaches for estimation of contact impedances have been proposed in [25, 53, 54].

5.2 Reconstructions Using Experimental Data (Case 3)

The reconstructions of Types 1–3 described in Section 3.1 are shown in Fig. 8, together with a photograph of the
measurement phantom. The images that are shown are the central horizontal cross sections of the reconstructed 3D
conductivity; that is, 2.5 cm from both the top and bottom layers.

The characteristics of the reconstructions in Fig. 8 are similar to those with Case 1 shown in Fig. 5. Again, the
MAP-AEM using incorrect model domaiñΩ is able to capture the domain shape and geometry of the organs well,

(Case 3)

FIG. 8: Top left: The measurement tank. Top right: MAP-CEM estimate using the correct domainΩ. Middle left:
MAP-CEM using the incorrect model domaiñΩ. Middle right: MAP-AEM using the incorrect model domaiñΩ. The
images show the central horizontal cross sections from the 3D reconstructions. Bottom: The cross section of the actual
domainΩ is shown as gray patch. The reconstructed boundary is shown with solid line and 2 (a posteriori) standard
deviation limits with dashed lines.
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producing almost as good a reconstruction as the conventional reference estimate (MAP-CEM) that is computed using
correct domainΩ. The electrode artifacts that are visible in both the MAP-CEM reference estimate using the correct
domain and the MAP-AEM reconstruction are due to the errors in the estimated contact impedances in Eq. (36);
values of the contact impedances that are too large have been compensated by an increase in conductivity underneath
the electrodes, and vice versa.

6. CONCLUSIONS

In this paper, we considered electrical impedance tomography and the recovery from are incorrectly modeled bound-
ary shape. An incorrectly modeled boundary has been known to induce significant errors to the estimates, typically
making absolute EIT imaging impossible in the clinical setting. We applied the recently proposed approximation error
approach to the modeling of the errors induced by the unknown boundary shape and approximate reconstruction of
the boundary shape. The approximation error approach is based on the Bayesian framework for statistics, in which
statistical models for all unknowns and uncertainties, or prior models, are constructed. In this approach, the approx-
imate statistics of the modeling errors are computed over the prior models, and the likelihood model is formulated
accordingly. We formulated the approximation error approach in a novel way such that, in addition to the primary
unknowns (conductivity), also a low-rank approximation for the realization of the modeling error is estimated and
then used for approximate recovery of the domain boundary.

We considered both simulation examples as well as a real tank measurement case, corresponding to a thorax
imaging problem. For the construction of the prior distribution for the thorax shape, CT images were used. The results
show that the proposed approach is well suited for the recovery from uncertainty in the boundary shape, allowing
feasible reconstructions of both the conductivity and domain boundary when the prior models are plausible. Moreover,
the posterior spread estimates for the uncertainty in the boundary shape are also feasible.

In biomedical applications of EIT, the boundary shape is seldom known to the accuracy required by absolute
imaging. The results of this paper, together with earlier results concerning the handling of the truncation of the com-
putational domain, suggest that absolute EIT imaging might be a clinically relevant possibility.
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