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A new class of methods for propagation of uncertainty through complex models nonlinear-in-parameters is proposed.

It is derived from a recent idea of propagating covariance within the unscented Kalman filter. The nonlinearity could

be due to a pole-zero parametrization of a dynamic model in the Laplace domain, finite element model (FEM) or other

large computer models, models of mechanical fatigue etc. Two approximate methods of this class are evaluated against

Monte Carlo simulations and compared to the application of the Gauss approximation formula. Three elementary static

models illustrate pros and cons of the methods, while one dynamic model provides a realistic simple example of its use.
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1. INTRODUCTION

The variability or uncertainty of modeling is an important indicator of quality in many fields of science and engineer-
ing. Models are also used to evaluate the measurement uncertainty [1]. Typically, the uncertainties and correlations of
parameters are more or less known or estimated from experiments, assumptions, or first principles. This information
should then bepropagatedto the result of modeling. In this propagation there is no statistical evaluation, as the basic
statistical information is already encoded in the parametric uncertainty. The widely spread approach to propagate the
uncertainty [1, 2] is based on linearization and propagation of variances (LIN), according to the so-called “Gauss
approximation formula.” The resulting variance of the model is often expanded to a confidence interval by assignment
of a coverage factor. Two important approximations are involved in LIN, namely (i) the model is linearized within
the interval of interest and (ii) the statistical properties of the sources of uncertainty beyond their first and second
statistical moments are neglected. The second approximation is usually unavoidable due to limited knowledge. More
statistical details can be propagated with random sampling, or Monte Carlo simulations (MC) [3]. For the targeted
complex models, none of these methods is satisfactory: The large computational burden of MC distinctively prohibits
its application. Linearization is effective but may resultin large errors.

Ever since their first utilization for propagation of uncertainty, the basic ideas of model approximations as in LIN,
and statistical sampling [4] as in MC, have been refined. In polynomial chaos expansions (PCE) [5] the random fields
of interest are approximated by expanding them in truncatedseries of random so-called polynomial chaos. Inserting
these expansions into the original model, the governing equations are derived, which determine the unknown deter-
ministic expansion coefficients [6]. Since the governing equations differ from the model equation, the PCE technique
is invasive. Thus, for models with limited accessibility, PCE may not be applicable. Stratified sampling techniques,
such as latin hypercube sampling (LHS), are used to improve the generation of random samples to allow for smaller
sets giving higher computational efficiency. In LHS, a deterministic rule is used to obtain a complete set of stratas, i.e.,
disjoint subspacesεp which enclose the entire probability spaceQ of all parameters,∪pεp = Q, εp∩εq = �, p 6= q.

∗Correspond to Jan Peter Hessling, E-mail: peter.hessling@sp.se, URL: http://www.sp.se/

DOI: 10.1615/Int.J.UncertaintyQuantification.2012004275

2152–5080/13/$35.00 c© 2013 by Begell House, Inc. 421



422 Hessling & Svensson

A given number of samples are then randomly drawn from each subspaceεp. In stochastic collocation (SCL) [7] a
particular grid of so-called collocation points are used toevaluate integral statistics such as statistical moments by
means of quadrature rules [8]. In contrast to sample points,the collocation points have no statistical meaning. Re-
sponse surface methodology (RSM) [9] utilizes model approximations as well as statistical sampling. Collocation
points are used in RSM to determine approximate simple surrogate models. This model is then sampled randomly,
usually densely as in conventional “brute force” MC, even though stratified techniques are perfectly allowed. The
two-stage techniques of SCL and RSM are similar but different from our approach: Collocation points will not be
used here to determine any model approximation to be denselysampled (RSM) or integrated (SCL), but rather to
determine a minimal secondary set of points. The confidence interval of any quantity related to the modeling result
is then obtaineddirectly by sampling the model at these points, without any model approximation. Our method thus
differs from all established methods for uncertainty propagation, LIN, MC, PCE, LHS, SCL, and RSM. The targets
for our methods are the most complex uncertain models which can only be evaluated, but not analyzed as required in
PCE. All proposed methods must thus be noninvasive. Our primary goal is to maximize computational efficiency by
minimizing the number of model evalutions, but still account for nonlinear propagation of uncertainty.

An alternative todeterministic samplingis used in the “unscented Kalman filter” (UKF) [10–12]. The novel class
of methods for estimating confidence intervals to be presented is related to the UKF, but also a recently proposed
approach by one of the authors [13]. The latter method is heregeneralized from essentially one to any number of
uncertain parameters and brought into the large perspective of deterministic sampling suggested by the UKF: Two
“confidence boundaries” are first estimated. These areuniquelydefined as the two disjoint sets of points in parameter
space mapped to the desired confidence interval limits of themodel result. Each estimated boundary is then sampled
once to give two “lambda points” in total. Evaluating the model for these lambda points will by definition estimate
the confidence interval limits of the model. In contrast to the LIN method [1], the expansion to the desired confidence
level is madebeforeevaluating the model. Errors of this expansion due to the nonlinear mapping through the model
are then in principle eliminated. The coverage factors are also easier to estimate as they relate to the multivariate
distribution of theparameters, instead of the output of a complex model. Non-linearities-in-parameters as well as
dynamically induced correlations provide two major error sources of the coverage factors used in LIN, but none for
the lambda points. The difficulty of our methods lies entirely in the estimation of the confidence boundaries. Two
general approximate methods to estimate these boundaries will be discussed and illustrated. For a monotonic model
of one uncertain parameter the confidence boundaries are just two points, the two given percentiles of the parameter.
Since the confidence boundaries are then known, the confidence interval of the model can be determined exactly.
Also in the multivariate case, the dependence on many details of the probability distribution of the parameters (in the
interior) is often weak. For all linear models, the confidence boundaries can be determined exactly if the coverage
factor is known. These facts will be extensively explored inthis study.

The article is organized as follows: Before presenting our approach, its presumably less known background is given
in a primer (Section 2). The confidence boundaries are introduced (Section 3) before they are sampled (Section 4),
utilizing our novel Unscented Nondegenerate sampling withcentral Gradient approximation (UNG, Section 4.1) and
Unscented Nondegenerate sampling using linear Regression(UNR, Section 4.2) methods. Their accuracy and applica-
bility is then explored (Section 4.3). The determination ofcoverage factors provides a separate problem (Section 4.4).
Dynamic models expressed by ordinary differential/difference equations require some generalization (Section 5). The
result of using the methods are illustrated in three rudimentary static examples (Sections 6.1–6.3), and one realistic
dynamic example (Section 6.4). Finally, a comparison to theseemingly closely related RSM (Section 7) precedes
our conclusions (Section 8). For reference, the methods RSM(Appendix A) and linearization with regression (Ap-
pendix B) used for evaluating our methods are also briefly described.

2. PRIMER

The background and foundation for our approach is given in this primer, which includes the concept determinis-
tic sampling (Section 2.1), aspects of nonlinear propagation (Section 2.2), and the formulation of the UKF (Sec-
tion 2.3).
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2.1 Deterministic Sampling

Deterministic sampling is contrasted to random sampling techniques, or MC simulations where samples are drawn
with a random generator. Both classes of methods sample statistical information to a finite number of sets of param-
eters collected intoensembles. The finite ensembles describe, orrepresent, the statistical information of the model.
Deterministic sampling methods do not utilize random generators at all. A definite deterministic rule constructs sam-
ples from the available statistical information. Still, the deterministic ensemble isstatistical [4], as it has a definite
statistical meaning. As with all sampling, more or less information is unconditionally lost. Random sampling is con-
structed to yield a complete asymptotically correct representation of statistical information. Deterministic sampling is
devised and optimized for a particular task of interest, like propagation of covariance [11]. Random sampling usually
requires large ensembles (typically103 − 106 samples), while deterministic ensembles may, as in this work, contain
as few as two(!) samples. The difference in efficiency between deterministic and random sampling may therefore be
profound. The superior accuracy of random sampling makes itan ideal tool for verification, but at a very high compu-
tational cost. Deterministic sampling may employ any mathematical operation on the available statistical information.
This freedom and lack of completeness makes the class of deterministic sampling techniques large and complex.

2.2 Nonlinear Propagation of Uncertainty

For nonlinear propagation of uncertainty, the asymmetry ofthe resulting probability distribution is important. It can
be expressed as a lack of commutation between nonlinear propagation and statistical evaluation. Thescentfor a model
h(q) : <n → < will be defined as

ζ = hc(q) − h(qc). (1)

This is the commutator for evaluating the realized models[h(·)] and the center(·c) of the confidence interval, or
domain. The method for evaluating the center is left unspecified, as there are many alternatives. The second moment
〈(q − qc)

2〉, where〈·〉 denotes statistical expectation, is for instance minimized by choosingqc = 〈q〉. A nonlinear
mappingh of the mean〈q〉 differs from the mean of the mapping,h(〈q〉) 6= 〈h(q)〉. The associated scent〈h(q)〉 −
h(〈q〉) is completely neglected when the model is linearized. The lowest order approximation of the scent is in this
case directly obtained with a Taylor expansion,ζ ≈ Tr[H(h)cov(q)]/2, whereH(h)jk = ∂2h/∂qk∂qj is the Hessian
matrix evaluated atq = 〈q〉. The scent is related to the skewness [14],γ = 〈δq3〉/〈δq2〉3/2, δq = q − 〈q〉, of a
univariate probability distribution ofq. Theadditionalasymmetry caused by the nonlinearity of the model is measured
with the “scent,” but differently: Even if the distributionof a parameterq has no skewness, a nonlinear modelh(q)
will likely have a finite scentζ = hc(q) − h(qc) 6= 0, differing from its skewness〈[δh(q)]3〉/〈[δh(q)]2〉3/2, δh(q) =
h(q)−〈h(q)〉. Scent is to be distinguished from bias. The bias is a property of an estimator while the scent is a property
of an uncertain model: In the definition (1) there is no reference to any estimator; the center(·c) is defined and not
estimated. An estimator of a confidence interval (such as UNG/UNR to be proposed) is unbiased if it yields a finite
scent equal to the true scent of the model. An unbiased estimator of hc may hence also be quoted “unscented” if the
error of the estimated scent vanishes. A rather accurate estimation of scent is probably the most important property of
the unscented Kalman filter (UKF), as well as the methods to beproposed in Section 4. We interpret this as the origin
of the name unscented in the UKF. This context provides the motivation to introduce scent as a convenient concept
when discussing nonlinear propagation of uncertainty.

The scent is generally larger and hence more important to evaluate than the nonlinear shift∆hp of the half-
width hp of probabilistically symmetric confidence intervals. The half-width hp is complex to evaluate, but the
lowest order nonlinear shift of the related variance is given by, ∆[var(h)] ≈ ∑

jkl〈δqjδqkδql〉∂h/∂qjH(h)kl +
∑

jklm〈δqjδqkδqlδqm〉 × [H(h)jkH(h)lm/4 + ∂h/∂qj∂
3h/∂qk∂ql∂qm/3]. For symmetric probability distributions

the first term vanishes. Ignoring the nonlinear shift of the coverage factor, the nonlinear correction∆hp is thus at least
one but often two orders less than the scentζ.

2.3 Propagation of Covariance in the Unscented Kalman Filte r

For optimal state estimation in the time domain, Kalman filtering has been extensively studied since it was first pro-
posed about half a century ago [15]. For nonlinear systems, the standard Kalman filter was developed into the extended
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Kalman filter (EKF) based on Taylor expansions [12]. To further improve the performance for nonlinear problems,
the UKF was proposed around 15 years ago [10]. It took quite a different route for propagation of covariance, as the
traditional approach of Taylor expansions and focus on probability density functions (pdf’s) was largely avoided. The
method is based on the intuition that [11]: “it is easier to approximate a probability distribution than it is to approximate
an arbitrary nonlinear function or transformation.” The variant which will shortly be referred to as the UKF is readily
described. The covariance of any modelh(q) which depends on uncertain parametersq = ( q1 q2 · · · qn )T ,
with mean〈q〉 and covariance cov(q), can be estimated as follows. Sample the statistical information in2n so-called

sigma pointsσ(s)
k by calculating a square root of cov(q). That renders a deterministic ensemble,

σ
(s)
k = 〈q〉 + s · δq(k),

{

k = 1, 2, . . . n,
s = ±,

(2)

δq(k) =
√

n · ∆:,k, ∆∆T = cov(q). (3)

The quantity∆:,k denotes thekth column of∆. As for any finite ensemble, the mean〈h〉 and the second moment
around the meanhσ, or any other statistical moment of the modelh(q) are then estimated with expectations〈·〉σ over
all 2n sigma points. In contrast to the EKF, the UKF estimates the scent,ζ = 〈h(σ)〉σ −h(〈σ〉σ) 6= 0. The covariance
is correctly propagated for linear models. For nonlinear equations, the covariance is not correctly propagated, but
usually considerably better than in the EKF, or LIN. A serious deficiency is that for many parameters with large
covariance, the scaling with

√
n may cause failure: The scaling is not related to the variability of the parameters, only

their total number. The model may not be applicable for parametric variations beyond their range and may be strongly
inaccurate, or even incorrect. The samples may be statistically (range of pdf) and/or physically (range of model)
allowed. A possible solution is provided by the scaled unscented transformation [16]. There is no scaling problem for
the UN approach to be proposed. It utilizes the minimum number of only two samples, i.e.,n = 1.

The sigma points of the UKF are however not unique. A candidate for∆ can be found by a Cholesky factorization
[17]. Any linear transformation of its rows,∆′ = ∆U with only a ’half’-unitary matrixU : UUT = I (I being the
identity matrix,UT U = I is not required), results in another equally valid matrix∆′ but different sigma points, since
∆′∆′T = ∆U [∆U ]T = ∆UUT ∆T = ∆∆T . These half-unitary transformations can be used to also increase the size
of the ensemble, which for other sampling rules sometimes might be required to obtain allowed samples [18]. The
invariance to complete unitary transformations (U : UT U = UUT = I) or arbitrary rotations will here be utilized to
sample at confidence boundaries (Section 4).

3. CONFIDENCE BOUNDARIES

The confidence interval of the modeling result is here assumed to be of primary interest, rather than the second moment
around the mean as in the UKF. For simplicity, the confidence interval of the model is here defined symmetrically with
equal total probability above and below the interval. Asymmetric intervals require a trivial generalization which will
be stated in Section 4.1.

3.1 One Parameter

The basic idea of our approach is most easily illustrated fora modelh depending on only one uncertain parameter.
In Fig. 1, the assumed known pdf of the uncertain variable (top) and the propagated pdf of the model (bottom) are
indicated.

The possible values of the parameterq are indicated by the domainQ in Fig. 1. The parametersqc, hc denote
the centersof the probabilistically symmetric confidence intervals, neither the mean〈q〉, 〈h〉 nor the corresponding
medians. The half-widths of the intervals for confidencep are labeledqp, hp, while qσ, hσ (omitted in Fig. 1 for

clarity) refer to standard deviations. They are related by coverage factorskp, qp = k
(q)
p qσ, hp = k

(h)
p hσ. These factors

differ for models nonlinear-in-parameters,k
(q)
p 6= k

(h)
p . The variationsσ(±) = 〈q〉 ± qσ are for obvious reasons

called sigma points in the UKF. Here we are interested in confidence intervals and instead focus on theconfidence
boundariesη(±) : h(η(±)) = hc ± hp. In Fig. 1, the upper and lower superscripts ofη relate to increasing (“I”) and

International Journal for Uncertainty Quantification



Sampling on Confidence Boundaries 425

q  

c
q  pc

qq qq
)((

 pc
qq qq

)(m(m
 

pc
hh h  pc hh h  

Q  

c
h

)(qh  

)(
c
qh  

00  

I I 
D D 

FIG. 1: The pdf of one uncertain parameterq (top) propagated to the modelh (bottom). The notation is explained in
the text.

decreasing (“D”)h, respectively. The inverse centroid boundaryη(0) : h(η(0)) = hc is also of interest sinceη(0) − qc

reflects the scentζ = hc − h(qc). Ideally, the modelh is sampled at thelambdapointsλ(±) ∈ η(±) to directly give
the exact confidence interval as[hc − hp, hc + hp] = [h(λ(−)), h(λ(+))].

If a modelh of one parameterq is monotonic, it preserves or reverses the order: Ifq1 ≤ q2, h(q1) ≤ h(q2)
or h(q1) ≥ h(q2), ∀q1, q2 ∈ Q. The symmetricp percentiles of the variableq are then mappedexactlyto thep
percentiles of the mapping, eitherh(qc±qp) = hc±hp, orh(qc±qp) = hc∓hp. The confidence boundaries can then
be determined exactly,η(±) = qc ± qp for increasing, andη(±) = qc ∓ qp for decreasingh. Sampling atλ(±) = η(±)

then results in the exact confidence interval.

3.2 Several Parameters and Uniqueness

For two parameters, the confidence boundariesη(±) are two lines. Hypothetical confidence boundaries are shownin
Fig. 2. The associatedconfidence domainis defined by{q ∈ Ω : η(−) < h(q) < η(+)}. Similar illustrations are
included in the static examples in Sections 6.2 (Fig. 3) and 6.3 (Fig. 4).

The generalization ton parameters is straightforward. The two confidence boundariesη(±) will have dimen-
sion n − 1 and the confidence domainΩ dimensionn. Other types of confidence domains can be defined without
any reference to a model. In that case they may not be uniquelydefined and can have any topology, hyper-cubes
or -ellipses, connected or not. The only requirement of sucha confidence domain is to contain the correct accumu-
lated probability. By defining the confidence boundaries of the modelh asη(±) : h(η(±)) = hc ± hp, the confidence
domain becomes uniquely defined and thus an object that can beestimated.

In one dimension, monotonicity of the model was central for finding the exact confidence boundaries. The geom-
etry is more complex in higher dimensions and stronger restrictions on the model are required to solve the problem
exactly. If the gradient exists almost everywhere and its direction is constant, the exact confidence boundaries can be
determined for any number of parameters. This case proposesplausible approximations which will be utilized.

4. SAMPLING ON CONFIDENCE BOUNDARIES

Sampling on estimated confidence boundaries atλ(±) ∈ η̂(±) ≈ η(±) will directly estimate the desired confidence
interval of the model,

[hc − hp, hc + hp] ≡ [h(η(−)), h(η(+))] ≈ [h(λ(−)), h(λ(+))]. (4)
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FIG. 2: Hypothetical confidence boundariesη(±) and inverse centroidη(0) for two uncertain parameters. The notation
is explained in the text.

Since it is generally not possible to determineη(±) exactly, one has to resort to approximate methods such as theUNG
and UNR methods to be described below. The statistical problem of determining the confidence interval of the model
h is effectively transformed to a geometric problem. The topology of the confidence domain is largely determined by
the model structure, while the statistical variation of theparameters mainly affects its size. It is therefore appropriate
to carefully study the complexity of the model structure, instead of focusing on the parametric uncertainty. That idea
is fundamentally different to the approximating LIN and RSM, as well as the sampling UKF and LHS methods.

4.1 The UNG Method

As all points in each of the boundariesη(±) are mapped to exactly the same value, the model is completelydegenerate
in all n − 1 directions within each boundary. In the directions orthogonal to η(±), the variation ofh is maximal.
All the n − 1 degrees-of-freedom of a model inn dimensions which spanη(±) may hence safely be ignored. The
degeneracyis then removed from the model, which is thereby locally reduced to one dimension. The direction of
maximal variation is however varying. One plausible approximation among others, is to neglect this variation and
set the directioñd of maximum variation equal to the normalized gradientd̃ ≡ ∇̃qh = ∇qh/||∇qh||, evaluated at
the centerqc. The boundariesη(±) as well asη(0) are then approximated to be parallel. Still,η(0) may be anywhere
betweenη(±) and is able to describe a finite scentζ. The model will depend on only one nondegenerate “gradient
parameter”q∇ ≡ (∇̃qh)T (q − qc), without any restriction on how it varies beyond monotonicity. Applying the
standard UKF described in Section 2.3 results in two lambda pointsλ(±), corresponding to the sigma pointsσ(±).
Expanded to the desired confidence levelp, as suggested in Section 3.1,

λ(s) = qc + s · k(s)
p σd̃, d̃ = ∇̃qh, s = ±, (5)

σ ≡
√

d̃T cov(q)d̃, (6)

wherek
(s)
p is the estimated coverage factor for the marginal probability distribution ofq∇. This isnota linear approx-

imation of the modelh itself. Linearization is only made to estimate thetopologybut not the size of the confidence
domain, and definitely not the magnitude of the model variation. A finite scent will indeed be obtained, contrary to
the LIN method. The trivial generalization to account for asymmetric confidence intervals has here been made by al-
lowing for different coverage factors in the two directions: For increasing models,k(+)

p corresponds to the upper limit
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of the confidence interval forq∇, and the reverse fork(−)
p . For decreasing models,k

(±)
p should be interchanged. The

confidence interval is finally obtained from Eq. (4). This constitutes our simplest method ofUnscented Nondegenerate
sampling with central Gradient approximation(UNG).

The scalar displacementσ in Eq. (6) is the standard deviation of the marginal distribution of the only relevant
(within the current approximation) parameterq∇. It fuses thepotential variation of the modelh with the actual
variation of the parametersq. The propagation of covariance fromq to q∇ = (∇̃qh)T (q − qc) is exact since this
transformation is linear. For the very same reason it is alsosimpler to estimate the coverage factor here than in the
LIN method for which the coverage factor refers to thenonlinear modelh. This is further explored in Section 4.4.
Nonlinearities as well as the statistical information are thus generally more accurately described in the UNG, than in
the LIN method.

4.2 Higher Order Methods—The UNR Method

More refined approximations than a constant gradient can be utilized to further increase the accuracy. Typically,
sampling of the model is made twice in all UN methods:

1. Determine mu points{µ(i), i = 1, 2, . . . , j ≥ n + 1} where the model will be tested for estimating confidence
boundariesη(±). These will be the equivalent collocation points [7, 8].

2. Sample the model at collocation points{µ(i)} to obtain{h(µ(i))}.

3. Determine sampling pointsλ(s) from {h(µ(i))}, cov(q), and estimatedk(s)
p .

4. Sample the model atλ(s) to obtain the estimated confidence limitsh(λ(s)); see Eq. (4).

A simple difference quotient approximation [13] of the gradient is one example of this type of doubled sampling. The
steps 1–2 are similar to but different from the first step of model approximation in RSM [9]. One difference is that the
sampling of{µ} here is made to findlocal approximations ofh(q) at theboundariesη(±), not for the whole range of
parameter valuesq ∈ Q. Instead of applying massive random sampling of the whole model approximation as in RSM,
each confidence boundary is estimated in just one point in step 3. This allows for an absolutelyminimalset of samples
λ(s) but also anexactevaluation of the modelh in step 4. The numberj can be chosen as large as is affordable by the
model complexity and computational power. In total,j + 2 ≥ n + 3 model evaluations are required forn parameters.

An obvious generalization of the UNG method along these lines is to allow for nonparallel and more relevant
estimateŝη(±) of confidence boundariesη(±). The lambda pointsλ(s) are then constructed withdifferent direc-
tions d̃(±) of maximum variation fromqc to η̂(±): The ascending directioñd(+) indicates the direction of largest
increase of the modelh and is used to assignλ(+), while the descending directioñd(−) of largest decrease givesλ(−).
These directions can be found with linear approximations ontwo different subsets of samples atM (s) = {µ(s,0) =
qc, µ

(s,1), µ(s,2), . . . , µ(s,k), k ≥ n}, whereqc is included as the reference point. Any sufficient number ofµ samples
may be used to find good robust estimates ofd̃(s). Linear regression is here the obvious generalization of the difference
quotient approximation of a gradient [13], to determine theoffsetsh(s)

0 and directions̃d(s) [Eq. (7)],

h(µ(s,i)) ≈
(

1 [µ(s,i)]T
)

(

h
(s)
0

d(s)

)

,















i = 0, 1, 2, . . . , k ≥ n, s = ±,

µ(s,i) =
(

µ
(s,i)
1 µ

(s,i)
2 · · · µ

(s,i)
n

)T

,

d(s) ≡
(

d
(s)
1 d

(s)
2 · · · d

(s)
n

)T

,

(7)

λ(s) = qc + k(s)
p σ(s)d̃(s), d̃(s) ≡ d(s)/||d(s)||, (8)

σ(s) ≡
√

[d̃(s)]T cov(q)d̃(s). (9)

Finally, specific rules for selecting{µ(i)} and subsetsM (s) are needed. To account for correlations and be as rele-
vant as possible, select{µ(i)} along theprincipal directions of cov(q) and as close as possible to potential confidence
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boundaries (without knowledge ofh). That is, diagonalize cov(q) by finding a unitary matrixU : UT U = UUT = I
such thatUcov(q)UT is diagonal and let (µ(i) be given by columni of {µ}),

{µ} = qc + 〈k(s)
p 〉sUT

√

Ucov(q)UT V, V =
(

I −I
)

. (10)

The setsM (s) can be chosen by first sorting{µ} into {µ(i) : h(µ(1)) ≤ h(µ(2)) ≤ · · · ≤ h(µ(2n))}. Then, extract
M (−) = {qc, µ

(1), µ(2), . . . , µ(n+m)} andM (+) = {qc, µ
(n+1−m), µ(n+2−m), . . . , µ(2n)}. If m = 0 is chosen,

minimal setsM (s) are used and Eq. (7) yields a perfect linear approximation. If the regression matrix with rowi
given by( 1 [µ(s,i)]T ) happens to be rank deficient, the regression becomes ill-conditioned. To obtain a definite
directiond(s), either use the Moore-Penrose pseudoinverse [17] of the regression matrix, or letm > 0. If m = n,
M (−) = M (+), giving d(−) = d(+) = d. The UNR method is then reduced to the UNG method with a secant
approximation of the gradient,∇qh ≈ d. This completes the method ofUnscented Nondegenerate sampling using
linear Regression(UNR). It is applicable for any number of parameters, for static as well as dynamic models, and is
illustrated in Sections 6.3 and 6.4.

4.3 Accuracy of UNG and UNR

The UNG and UNR approximations belong to a class of methods based on Unscented Nondegenerate sampling (UN)
at confidence boundaries which has no generic error associated to it. Common to all UN methods is that all errors
are due to incorrect determination of the lambda points. Thediscussion of accuracy here will therefore be limited to
errorsδλ(s) of λ(s). The modelh will be assumed to be at least twice differentiable.

4.3.1 Constant Gradient Direction

Both UNG and UNR methods approximate the gradient∇h to have a constant directioñd when calculatingλ. Their
accuracy can be estimated by first assuming a constant gradient direction∇̃h, but a limited directional errorδd̃ =
d̃−∇̃h, |δd̃| � 1, in the expressions forλ. The appropriate gradient̃∇h to use below will be derived in Section 4.3.2.
To lowest order,

δλ(s)

∣

∣λ(s) − qc

∣

∣

=
δ

(

qc + kpσd̃(s)
)

kpσ
=

δσ

σ
d̃(s) + δd̃(s). (11)

Even though the only error is due to incorrect directiond̃(s), λ(s) is defective in both magnitude (first term) and
direction (second term), relative toqc. Since variations within the confidence boundaries do not influence the model,
projectδλ(s) on s∇̃h to find the relevant error (sign included) ofλ(s). Being a relative error it also valid forδλ(s)

calculated along̃d(s),

δλ
(s)
‖

∣

∣λ(s) − qc

∣

∣

=

[

δσ

σ
[s∇̃h]T d̃(s) + [s∇̃h]T δd̃(s)

]

d̃(s) = s





√

[d̃(s)]T cov(q)d̃(s)

√

[∇̃h]T cov(q)∇̃h
[∇̃h]T d̃(s) − 1



 d̃(s). (12)

To further analyze the error, make an eigenvalue decomposition, cov(q) = UT Σ2U, Σjk = δjkσ̄k, whereσ̄k is the
standard deviation in uncorrelated parametersUq. Then,

δλ
(s)
‖

∣

∣λ(s) − qc

∣

∣

= s





∣

∣

∣ΣUd̃(s)
∣

∣

∣

∣

∣

∣ΣU∇̃h
∣

∣

∣

[∇̃h]T d̃(s) − 1



 d̃(s). (13)

Since there is no preferred basis, the evaluation may equally well be made in a canonical basis̄q = Σ−1Uq for
which cov(q̄) = I. The canonical basis is not unique if cov(q) is degenerate, i.e., at least two of its eigenvalues
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are identical. Any such basis is appropriate here. The normalized gradient and direction (assuming it transforms as
the gradient), evaluated in a canonical basis, but expressed in the original basis, read̄∇h = ΣU∇̃h/|ΣU∇̃h| and
d̄(s) = ΣUd̃(s)/|ΣUd̃(s)|. Then,|ΣU∇̃h| = |ΣUd̃(s)| = 1 due to normalization of̄∇h andd̄(s),

δλ̄
(s)
‖

∣

∣λ̄(s) − qc

∣

∣

= s
[

(∇̃h)T d̃(s) − 1
]

d̃(s) = R(|δd̃|2)d̃(s), (14)

whereR(x) is of orderx. The first-order contribution to the error is thus eliminated if λ(s) is evaluated in a canon-
ical basis. Evaluation in a canonical basis is consequentlyprescribed if||ΣUd̃(s)| − |ΣU∇̃h|| > R(|δd̃(s)|2), i.e.,
∣

∣

∣

∣

√

[d̃(s)]T cov(q)d̃(s) −
√

[∇̃h]T cov(q)∇̃h

∣

∣

∣

∣

> R(|δd̃(s)|2). This can only happen for|δd̃(s)| � 1 if mink σ̄k �
maxk σ̄k.

The lambda points may be evaluated in a canonical basis without formally changing the basis. The modified
lambda points̄λ(s) should then be expressed in the gradient∇̃h and the directiond̃(s) in the original basis with
parametersq,

λ̄(s) = qc + kpU
T Σ

(

∣

∣

∣ΣUd̃(s)
∣

∣

∣

−1

ΣUd̃(s)

)

= qc +
kp

√

[d̃(s)]T cov(q)d̃(s)

cov(q)d̃(s). (15)

The original directioñd(s) is rotated and rescaled—the magnitude of the lambda-point variationλ(s) − qc changes to

∣

∣

∣λ̄
(s) − qc

∣

∣

∣ = kp

∣

∣

∣ΣUd̃(s)
∣

∣

∣

−1 ∣

∣

∣Σ2Ud̃(s)
∣

∣

∣ 6= kp

∣

∣

∣ΣUd̃(s)
∣

∣

∣ =
∣

∣

∣λ
(s) − qc

∣

∣

∣ . (16)

If either (Ud̃(s))jk = δjk or Σ ∝ I, the variations are equal. In both cases, the scaling withΣ does not change the
directionUd̃(s). To simplify the presentation, calculation in a canonical basis is not considered (or required) in any
example in Section 6. For evaluation in a canonical basis, simply use Eq. (15) instead of Eqs. (5) and (8) for evaluating
λ(s).

4.3.2 Variable Gradient Direction

When the gradientdirectionvaries overΩ, the lambda points will be defective for two reasons: (1) Thedifferent level
hypersurfaces of the model are not parallel. (2) Each hypersurface is bent or buckled. In short, the gradient directions
vary between(1) as well aswithin (2) the hypersurfaces. The directional variation between different hypersurfaces
(1) makes it difficult to propagate the covariance exactly, as the traditional approach [1] prescribe. In the absence of
buckling (2), theconfidence boundariesmay nevertheless be determined exactly. The reason is that each confidence
boundary is only dependent on a single-level hypersurfaceh(q ∈ η) = h(λ), while the covariance relates to all of
them. The proper direction for calculatingλ(s) is consequentlỹd(s) = s∇̃h(λ(s)). In detail, this can be understood as
follows. With the transformationq → qd ≡ [d̃(s)]T (q − qc), the multi variate pdff(q) is marginalized tofd(qd) over
all degrees of freedom orthogonal tõd(s) (temporarily omittings to simplify notation),

fd(qd ≥ 0) ≡
∫

S⊥(qd)

f(q1, q2, . . . , qn) dq̂1dq̂2 . . . dq̂n−1,
{

q̂ ∈ S⊥(qd) : dT (q̂ − qc) = qd

}

. (17)

The univariate pdffd(qd) also has an associated coverage factorkp(d̃). Considering both directions̃d(s), the region
{q ∈ Ω(+) : [d(s)]T q ≥ 0, s = ±} will be integrated twice while the domain{q ∈ Ω(−) : [d(s)]T q ≤ 0, s = ±}
is omitted. However, ifkp(d̃

(s)) = kp, there will be no error: By mirror imaging throughqc, q − qc → −(q − qc),
the integration overΩ(+) will be equivalent to an integration overΩ(−). The covariance matrix is left invariant by this
transformation as it has a quadratic dependence onq− qc. If alsokp(d̃

(s)) is independent of̃d(s), the integrations over
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the domainsΩ(s) are exchangeable so the errors cancel exactly. Thus for eachregion defined byqd ≥ 0, integrate the
marginalized pdffd to the boundaryqd = [d̃(s)]T (λ − qc) = η to yield the probabilityP/2,

P

2
=

∫

η

0

fd(qd)dqd. (18)

If d̃(s) = ∇̃h({q : qd = η(s)}) = ∇̃h(λ(s)), h(q1 : qd = η(s)) = h(q2 : qd = η(s)), ∀q1, q2 ∈ Q(s). Hence, the
boundaryqd = η(s) is a level hypersurface of the modelh, i.e., the correct confidence boundary. In other words:
(1) The hypersurface forh(λ(s)) must be planar. (2) The directioñd(s) coincides withs∇̃h(λ(s)) at the estimated
confidence boundary. Clearly, UNR may be much more accurate than UNG, as it is possible to haved(−) 6= d(+)

in UNR but not in UNG. The magnitude error due to incorrect directionsd̃(s) for calculatingλ(s) can be determined
from Eq. (12) by evaluating the gradient at the lambda points, ∇̃h = ∇̃h(λ(s)). Note that with varying direction of the
gradient, an incorrect directioñd(s) also will result in an incorrect estimate of the gradient at the confidence boundary,
∇̃h(λ(s)) 6= ∇̃h(η(s)). If the direction of the gradient has a moderate variation overδd̃, the error will be limited, as
illustrated in examples in Sections 6.2 and 6.3.

4.3.3 Buckled Confidence Boundaries

If λ(s) is determined for the correct directioñd(s) = s∇̃h(λ(s)), all errors are due to buckling of the level hypersurfaces
given byh(q ∈ Q(s)) = h(η(s)) ≈ h(λ(s)). Buckling of a level surface is here defined by the variation of the gradient

direction within the level surface. An upper bound of the error δλ
(s)
B of the lambda pointλ(s) due to this buckling is

readily estimated. First, expand the model variationδh aroundq = λ(s) to second order,

δh(s) = [∇h(λ(s))]T δq +
1

2
[δq]T H(λ(s))δq + R(|δq|3), δq = q − λ(s), (19)

whereH(λ(s)) is the Hessian matrix ofh, evaluated atλ(s). Define the planeη(s)
⊥ to be tangent to the buckled surface

η(s) at q = λ(s). Now maximize the transverse variation|δh
(s)
⊥ | by varying δq

(s)
⊥ ≡ q − λ(s) ∈ η

(s)
⊥ over the

whole allowed rangeq ∈ η
(s)
⊥ ∩ Q. To estimate the buckling of the level surfaceh(λ(s)), also find a compensating

longitudinal model variationδh
(s)
‖ = −δh

(s)
⊥ with the variationδq

(s)
‖ ≡ q − λ(s) : [δq

(s)
‖ ]T δq

(s)
⊥ = 0. Switching

from the approximate(η(s)
⊥ ) to the true boundary(η(s)) while maintaining the enclosed probability between the

corresponding surfaces fors = ±, λ(s) has to be adjusted by an amount|δλ(s)| < |δq
(s)
‖ |. By assuming a (locally)

uniform probability distribution, using a quadratic modelof buckling as in Eq. (19), and equalizing the two integrations
of probability for the planar and buckled surfaces, the bound can be narrowed down to|δλ(s)| ≤ |δq

(s)
‖ |/3. This will

yield an upper bound of the magnitude of the lambda-point error |δλ(s)| due to buckling. To also account for the sign

of δλ(s), useδλ
(s)
B ≡ δ|q(s)

‖ |/3, δ|q(s)
‖ | ≡ sign(δq

(s)
‖ )|δq

(s)
‖ | as a conservative measure of the buckling error ofλ(s).

While this provides the principle for how the error can be estimated, the relevant quantities will be evaluated below.
For the transverse variation,[∇h]T δq

(s)
⊥ = 0 in Eq. (19). A rough estimate of the relevant range ofδq

(s)
⊥ in

directiond̃
(s)
⊥ ∈ η

(s)
⊥ is given by the (marginalized) standard deviationσ

(s)
⊥ =

√

[d
(s)
⊥ ]T cov(q)d(s)

⊥ . To find the largest

relevant buckling, the corresponding model variation in Eq. (19) should be maximized forδq
(s)
⊥ = σ

(s)
⊥ d̃

(s)
⊥ ,

max
∣

∣

∣δh
(s)
⊥

∣

∣

∣ =
1

2
max

|d̃
(s)
⊥

|=1

∣

∣

∣[d̃
(s)
⊥ ]T cov(q)d̃(s)

⊥ [d̃
(s)
⊥ ]T Hd̃

(s)
⊥

∣

∣

∣, d̄
(s)
⊥ ∈ η

(s)
⊥ ∩ Q. (20)

This constrained quartic(4) form of d̃
(s)
⊥ may be converted to a simpler quadratic(2) form by changing to canon-

ical parameters satisfying cov(q̄) = 1, as in Section 4.3.2. The Hessian transforms according to how the gradient
transforms,H = [∇⊗∇T ]h → H̄ = [(ΣU∇) ⊗ (ΣU∇)T )]h, where⊗ denotes outer product,

max
∣

∣

∣δh
(s)
⊥

∣

∣

∣ =
1

2
max

|d̄
(s)
⊥

|=1

∣

∣

∣[d̄
(s)
⊥ ]T H̄d̄

(s)
⊥

∣

∣

∣, d̄
(s)
⊥ ∈ η

(s)
⊥ ∩ Q, H̄ ≡ ΣUHUT Σ. (21)
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To satisfyd̄
(s)
⊥ ∈ η

(s)
⊥ , express the variation in an orthonormal (ON) basis contained in η

(s)
⊥ . It can be obtained by

projecting the unit basis vectors onη(s)
⊥ , or equivalently, by subtracting their projections on the gradient. This will

result inn vectors inη
(s)
⊥ . These are neither mutually orhogonal nor normalized but spanη

(s)
⊥ with n − 1 degrees of

freedom. One vector becomes redundant after the projection. To eliminate this redundancy and convert the remaining
vectors to an ON-basisE(s) with basis vectors in columnsek, k = 1, . . . , n− 1, apply Gram-Schmidt orthogonaliza-
tion [14]. It will here be formulated in terms of an operatorG, which includes elimination of redundancy. It is easily
identified, as redundant vectors will vanish in the orthogonalization. In the canonical basis used here,

E(s) = G
(

I − ∇̄h(s) ⊗ [∇̄h(s)]T
)

= G

(

I −
∣

∣

∣ΣU∇̃h(s)
∣

∣

∣

−2

ΣU∇̃h(s) ⊗ [∇̃h(s)]T UT Σ

)

. (22)

Expressed in this basis,̄d
(s)
⊥ = Ed̂

(s)
⊥ , whered̂(s)

⊥ is the column vector of coordinates in theE basis. If the transformed
Hessian is also diagonalized, Eq. (21) reads

max
∣

∣

∣δh
(s)
⊥

∣

∣

∣ =
1

2
max

|d̂
(s)
⊥

|=1

∣

∣

∣[d̂
(s)
⊥ ]T Ĥd̂

(s)
⊥

∣

∣

∣, Ĥ ≡ ET ΣUHUT ΣE = V̂ T Γ̂V̂ ,

Γ̂jk = δjkγ̂k, V̂ T V̂ = V̂ V̂ T = I. (23)

The constraint̄d(s)
⊥ ∈ η

(s)
⊥ has here been eliminated by one additional transformationE. According to the spectral

theorem [14], diagonalization of the symmetric matrixĤ is always possible and the eigenvaluesγ̂k are real-valued.
Since also|d̂(s)

⊥ | = 1, the largest variation is given by the eigenvalue with the largest magnitude,

max
∣

∣

∣
δh

(s)
⊥

∣

∣

∣
=

1

2
max

k
|γ̂k|, k = 1, 2, . . . , n − 1. (24)

For the longitudinal variation,[∇h]T δq
(s)
‖ 6= 0 in Eq. (19). A linear model approximation is then presumably

sufficient. The variation is here along the gradient direction,δq
(s)
‖ = δ|q(s)

‖ |s∇̃h(λ(s)), giving the model variation

δh
(s)
‖ = [∇h(λ(s))]T δq

(s)
‖ = s |∇h| δ|q(s)

‖ |. (25)

Inferring δh
(s)
⊥ = −δh

(s)
‖ andδλB ≡ δ|q(s)

‖ |/3 as argued above, upper bounds for the lambda-point errors due to
buckling of the confidence boundaries are found,

δλ
(s)
B

∣

∣λ(s) − qc

∣

∣

= −s

6

maxk |γ̂k|

|∇h|kp

√

[∇̃h]T cov(q)∇̃h
. (26)

4.4 Coverage Factors

All studied approximate methods (LIN, UNG, UNR) require estimates of coverage factors. For all UN methods,
removing the degeneracy is equivalent to marginalization [19] of the multivariate distribution ofq − qc into a univariate
distribution over a directional parameterqd = d̃T (q − qc) (in simplified notation). Instead of estimating coverage
factorskp and propagating covariance as in Eqs. (5)–(6) or (8)–(9), each sample pointλ = qc + hdd̃ may be directly
determined from the marginal distribution ofqd. The step lengthhd may easily be found numerically with rudimentary
MC:

1. Diagonalize the covariance matrix, i.e., findU : UT U = UUT = I such thatUcov(q)UT is diagonal.

2. Generate a random multivariate ensemble ofm samples ofn independent parameters and collect in matrixW
of sizen × m, {W : WWT /m = Ucov(q)UT } .
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3. Transform and marginalize{q − qc} = UT W along directiond̃ to obtain the univariate ensemble (row vector)
D = d̃T UT W .

4. SortD and extract percentilehd.

Since no evaluation of the complex model is needed and the marginalization only consists of a linear transformation,
random sampling is in this case numerically very inexpensive. The error of evaluatingkp may thus in practice be
reduced to a minimum for all UN methods, for static as well as dynamic models. That is important since the estimation
of kp may be a dominating source of calculation errors.

In stark contrast, the coverage factor of the LIN method relates to the complex model. Thus, there is no equivalent
effective numerical method to findkp. It must instead be estimated, or rather guessed, from general aspects of the
model parameters and their distribution [1]. In particular, for a dynamic measurement it must be assigned to aconstant,
despite it is varying in time; see Fig. 7. This will directly render a lower bound of the error of evaluatinghp, as argued
in Section 6.4.2.

5. DYNAMIC MODELS

Evaluation of dynamic models [20] is synonymous to dynamic simulations over an entire time epoch: The models are
ordinary differential equations in the time domain, which can be expressed in terms of transfer functionsG(q, s), or
G(q, z). These functions are the Laplace- orz transforms of impulse responsesg(q, t). A dynamic modelh(y, q, t) is
evaluated by convolving(∗), the impulse response of the systemg(q, t), with its input signaly(t), h(y, q, t) = g(q, t)∗
y(t). The modelh(y, q, t) is thus an implicit function of timet via thewholesignaly(t) and not only its instantaneous
amplitudey(t) (as for static models). The model systemg(q, t) as well as the gradient system∇qg(q, t) can often be
realized with digital filters [18]. Due to imposed correlations of the dynamic systemg(q, t), most quantities become
generically time-dependent signals or objects, then-dimensional gradient∇qh(y, q, t) = [∇qg(q, τ) ∗ y(τ)]τ=t, the
confidence boundariesη(±)(t), as well as the coverage factorkp(t). The lambda pointsλ(s)(t) in Eq. (4) are thus
unique for each time instantt. The gradient column vector∇qh is for dynamic models conveniently generalized to a
matrix of sensitivity signals arranged in rows, its element[∇qh]kl = [∇qh(y, q, tl)]k is the sensitivity for parameter
qk at timetl.

Throwing away all evaluated samples for every pair of lambdapoints except att makes UN sampling potentially
inefficient but is an unavoidable consequence of the time dependence ofη(±)(t). Fortunately, the response times
τ(λ(s)) of the impulse responsesg(λ(s)(t), t) are for all practical purposes finite, also for infinite impulse response
(IIR) systems. Therefore it is sufficient to apply the filtersfrom t − τ(λ(s)). For asymmetric time-reversed correction
[18, 21], there are two response times,τD(λ(s)) for direct andτR(λ(s)) for time-reversed filtering. We are then allowed
to only apply the digital filtersg(λ(s)(t), t) to y(t) for t − τD(λ(s)) ≤ t ≤ t + τR(λ(s)). This is usually a minute
fraction of the whole time intervalt.

Applying the LIN method on dynamic measurements [18, 22], the centerhc and half-widthhp of the confidence
interval at timetl are given by

hc(tl) = [g(qc, t) ∗ y(t)]t=tl
, (27)

hp(tl) = kp

√

∇qh(y, qc, tl)T cov(q)∇qh(y, qc, tl). (28)

As stated in Section 3.1,k(h)
p 6= k

(q)
p . Consistency requires the same model approximation (linearization) for estimat-

ing kp as for propagating cov(q). That erroneously impliesk(h)
p = k

(q)
p for LIN. The induced temporal correlations in

a dynamic measurement also causek
(h)
p (t) but notk(q)

p to be time-dependent. Both nonlinearities-in-parametersand
dynamic effects are thus error sources ofkp in LIN but neither of them results in errors ofkp in the UN methods.

6. EXAMPLES

The examples are not selected to be representative for the complexity of typical applications, but rather to provide
simple and transparent illustrations of the performance ofUN methods. Throughout, the confidence level will be
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chosen equal to 95% with symmetric intervals (equal probability below and above the interval). For all static examples,
the distributions of all parameters are assumed normal. Thedistribution ofqd = d̃T q is then also normal∀ d̃. That
solves the problem of estimating coverage factors for all studied methods,kp = 1.96. This also allows for simple and
straightforward comparisons to MC simulations, as a diagonalization of cov(q) also results in independent parameters.
The samples may thus be correctly created by unitary transformations of random samples of independent parameters.
In the dynamic example the parameters are bounded. Therefore, a uniform distribution is chosen. A bonus of this
choice is that it will illustrate the time dependence of coverage factors in dynamic measurements, and that they can
be estimated with the proposed UN methods. To further emphasize nonlinear effects and differences between various
methods, the covariance matrices are set very large.

6.1 Static Model 1

An illustrative example of a simple static model equation is

h = (q1 + q2)
3

qc = (0, 0)T

cov(q) =

(

0.104 −0.019
−0.019 0.196

)

.

(29)

The LIN method is clearly a poor and also invalid approximation which results in zero uncertainty since the gradient
∇qh = 3(q1 + q2)

2( 1 1 )T vanishes atqc. For application of the UNG method, it is the normalized gradient that is

of interest,∇̃qh = 1/
√

2
(

1 1
)T

, q1 + q2 6= 0. It does not exist along the lineq1 + q2 = 0 but may be continued
to the same value it has in all other points. The direction of maximum variation is then constant. The lambda points
will be

λ(±) = ±k(±)
p

√

(∇̃qh)T cov(q)∇̃qh∇̃qh = ±0.501

(

1
1

)

. (30)

According to Eq. (4),[hc − hp, hc + hp] = [h(λ−), h(λ+)] = [−1.007, 1.007]. In this case the UNG method is exact:
The direction of maximum variation is constant so there is noapproximation to use a constant gradient to estimate the
shape of the confidence domain.

This result may immediately be generalized: For anyh[w = aT (q − qc)], {a, qc, q} ∈ <(n×1), whereh(w) is
monotonic andq has a multivariate normal distribution, the UNG method is exact. The transformation to the gradient
parameterq∇ = (∇̃qh)T (q − qc) = ||a||−1aT (q − qc) results in a strictly one-dimensional modelh(||a||q∇). Disre-
garding the problem of determining the coverage factor, theUNG method is exact for all such one-dimensional (1D)
models (see Section 3.1 and Fig. 1). In stark contrast, the LIN method is a more or less crude approximation whenever
h is nonlinear-in-parameters.

6.2 Static Model 2

Another closely related example of a static model is

h = αq1q
3
2 , α = 3.2 × 10−3

qc = (20, 2.5)T

cov(q) =

(

0.104 −0.019
−0.019 0.196

)

.
(31)

The constantα is a fixed scaling factor. Opposite to the previous example, the direction of maximal variation of the
model varies. A finite error of the UNG method will thus be obtained. To enable a numerical comparison to the LIN
method,qc is displaced from the origin. The accuracy of the UNG method was determined by MC simulations with
107 realizations, see Table 1. Its uncertainty was estimated from the typical variation for repeated simulations and
transferred to the result of the UNG and LIN methods.
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The correct scentζ = 33% is given by the negative error of estimatinghc with the LIN method. It is large, as
expected from the asymmetry of the strongly nonlinear model. The nonlinear shift of the half-widthhp is similarly
obtained as the negative error for LIN,∆hp = 4%. Expanding the model to a higher order only to improve the
calculation ofhp would be inconsistent and hardly improve the result. The accuracy of the UNG method is high:
There is essentially no error of eitherhc nor the halfwidthhp of the confidence interval. The confidence domain is
illustrated in Fig. 3. The estimated and true (shown) confidence domains were indistinguishable.

Methods to test the validity of UNG without reference methods were derived in Section 4.3. The result of applying
them here is presented in Table 2. The directional errorφ is less than 1 degree so the estimates are accurate. As this
applies for both UNG directions̃d = s∇̃h(qc), the confidence boundaries are very close to be parallel. Themagnitude

TABLE 1: Estimates of the confidence interval for the static example 2(Section 6.2). The errors
are relative to the half-widthhp = 1.078 for the MC simulation. For repeated MC simulations,
the limits[hc − hp, hc + hp] typically varied±0.2% of hp

Method [hc ± hp] [hc − hp, hc + hp] Error (%) Scent error δζ (%)

MC / RSM(3) [1.358 ± 1.078] [0.280, 2.437] [0, 0] 0

LIN [1.000 ± 1.038] [−0.038, 2.038] [−29,−37] −33

LIR / RSM(1) [1.185 ± 1.172] [0.014, 2.357] [−12,−4] −8

RSM(2) [1.343 ± 1.054] [0.289, 2.396] [1,−4] −1

UNG [1.360 ± 1.080] [0.280, 2.440] [0.1, 0.3] 0.2

FIG. 3: Lambda pointsλ(±) of the UNG method for the static example 2 (Section 6.2), constructed from the gradient
∇h. The confidence boundariesη(±) and the inverse centroid lineη(0) indicating the scent are defined by,h(η(±)) =
hc ± hp, h(η(0)) = hc. The six pointsν (+) provides a minimal set of samples for application of RSM(2), a second
order RSM.

TABLE 2: Directional errors (φ) with resulting errors of the magnitude (δλ‖)
of the lambda-point variationsλ − qc, and errors due to buckling (δλB) of the
confidence boundaryη for the static example 2 (Section 6.2)

Method φ ≡ acos(∇̃hT d̃)(deg) δλ‖/|λ − qc|(%) δλB/|λ − qc|(%)

UNG [0.8, 0.8] [0.3, 0.3] [0.0, 0.0]
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error δλ‖ appears to be consistent with Fig. 3, even though the precision (0.2%) of the MC simulation is too low
to resolve the discrepancy. The minute buckling errorδλB clearly indicates why the planar approximation of the
confidence boundary works well. In Fig. 3 it is indeed difficult to discern any curvature at all that would render a
buckling error.

6.3 Static Model 3

An example of a static model which motivates higher order UN methods than the UNG is

h = α(q3
1 − q3

2), α = 4 × 10−2

qc = (1, 1)T

cov(q) =

(

1.962 0.192
0.192 1.038

)

.

(32)

The covariance is very large to illustrate the breakdown of the UNG method. The direction of the gradient of the
model changes considerably over the large confidence domainΩ. It results in a substantial error of the UNG method,
see Table 3. Also in this case, the MC simulation was made with107 samples. In Fig. 4, the confidence boundaries
η(±) are shown and the lambda points of the UNG and UNR methods are compared.

TABLE 3: Estimates of the confidence interval for the static example 3(Section 6.3)

Method [hc ± hp] [hc − hp, hc + hp] Error (%) Scent error δζ (%)
MC [0.479 ± 1.444] [−0.965, 1.922] [0, 0] 0

LIN [0 ± 0.380] [−0.380, 0.380] [41,−107] −33

RSM(1) [−0.035± 0.862] [−0.896, 0.827] [2,−38] −18

RSM(2) [0.626 ± 1.356] [−0.730, 1.982] [16, 4] 10

UNG [0 ± 0.699] [−0.699, 0.699] [18,−85] −33

UNR [0.546 ± 1.485] [−0.939, 2.032] [2, 8] 5

FIG. 4: Lambda pointsλ(±)
R of the UNR method (Section 4.2) and the corresponding pointsλ

(±)
G of the UNG method

(Section 4.1). The confidence boundariesη(±) and the lineη(0) indicating the scent are defined byh(η(±)) = hc ±
hp, h(η(0)) = hc. The four mu samplesµ (◦) are used for determining the directions from the centerqc to the two

lambda-pointsλ(±)
R . The six pointsν (+) provides a minimal set of samples for application of RSM(2),a second-order

RSM.
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The UNG method mainly fails to estimate the upper confidence limit due to the very large variation of the direction
of the gradient. The UNG method incorrectly claimsζ = 0. Using different directions to estimate the upper and lower
confidence limits as in the UNR method results in a substantial improvement. Considering the large covariance, the
estimated scentζ = 0.546 for UNR is quite close to the correct valueζ = 0.479. Even though the directionsd(±)

from qc to λ
(±)
R do not cross the proper confidence boundariesη(+) andη(−) orthogonally, they nevertheless hit these

boundaries fairly well. Consequently, the error of the estimated confidence interval of the model is acceptable for the
UNR method, and much less than for the UNG method. This illustrates how the UNG method might fail and that it is
possible to construct higher order methods with better performance. Finally, note that the computational cost is almost
identical for the UNG and UNR methods. Only seven evaluations of the models are made with the UNR method, and
six with the UNG method if the gradient is evaluated with a secant approximation [13].

Further comparison is provided here by application of RSM aswell as a variant of LIN based on regression,
denoted LIR. The RSM(n) calculation of ordern here utilizes surrogate models with mixed polynomials of ordern.
Details are given in Appendix A. Compared to the Gauss approximation formula, LIR offers an additional constant
offset ofhc from h(qc). This additional degree of freedom allows for an estimate ofthe scent. The linear model is
identical to RSM(1) while the confidence interval is evaluated as in LIN, see Appendix B.

Methods to test the validity of UNG and UNR without referencemethods were derived in Section 4.3. The result
of applying them here is presented in Table 4. In contrast to example 2 in Section 6.2, the directional errorsφ are
substantial, so the accuracy of the error estimates may be questionable. Based on the large misalignments ofλ of the
UNG, it is fair to state that it fails in this example. For the UNR, φ may be regarded acceptable as the relevant scalar
productsd̃T ∇̃h will only be [−5%,−2%] off. Even though the UNR method may be accurate for this reason, it does
not imply that the error estimates are equally good. The gradient as well as the Hessians can differ substantially since
the estimated and idealλ(s) are well separated inQ. This is difficult to account for in any other way than iteratively re-
evaluatingλ(s) with directionsd̃(s) better aligned with̃∇h(λ(s)). Indeed, in Fig. 4λ(s) appears to be close to inflection
points with a large variation of the Hessian, especiallyλ(−). That could make the quadratic expansion inaccurate in
Eq. (19). Comparing with Fig. 4, we find the error estimates give a fair but not accurate (in particularδλB) estimate of
how far the pointsλ(s) are from the true confidence boundaryη(s). The error estimates are thus not good for correction
but detect failures qualitatively correct.

6.4 Dynamic Correction of Measurement

High-voltage voltage dividers are widely used in high-voltage measurements and testing in laboratories. Voltage di-
viders are required to reduce high voltages to measurable levels. The lightning test to be analyzed here is rather
fierce for many components and important in the development of safe electrical high-voltage equipment. The typical
response times of common voltage dividers are comparable tothe rise time of lightning. The measurement is thus
dynamic [20] and consequently needs to be analyzed as such [23]. The task considered here is to correct the measured
signal with a digital correction filter [21] and associate a time-dependent uncertainty to the corrected signal [22].

6.4.1 The Measurement and Its Correction

Neglecting the (high) load impedance of the measurement equipment attached to the low-voltage connection, the
equivalent circuit of the voltage divider is shown in Fig. 5.The parameters given in Table 5 were chosen to reflect

TABLE 4: Directional errors (φ) with resulting errors of the magnitude (δλ‖)
of the lambda-point variationsλ − qc, and errors due to buckling (δλB) of the
confidence boundaryη for the static example 3 (Section 6.3)

Method φ ≡ acos(∇̃hT d̃)(deg) δλ‖/|λ − qc|(%) δλB/|λ − qc|(%)

UNG [42, 42] [4.9,−49.9] [−2.6,−1.4]

UNR [19, 12] [6.5, 2.1] [1.3, 1.1]
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FIG. 5: Equivalent electrical circuit diagram of a high voltage voltage divider (Section 6.4), with resistiveR, inductive
L, and capacitiveC parts. The high-voltage connectionuHV to the device under test is to the left, while the low-voltage
connectionuLV to the high-impedance voltmeter is to the right.

TABLE 5: Nominal resonance parameters of voltage divider. The nom-
inal resistanceRc, inductanceLc, and capacitanceCc are related as,
LcCc = 1/4π2φ2, RcCc = ξ/πφ

c0 1/1000 Nominal ratio of voltage division
[φHV , φLV ] [2.3, 0.8] Resonance freq. (MHz) HV, LV circuits
[ξHV , ξLV ] [1.2, 0.4] Relative damping HV, LV circuits

common voltage dividers [24], rather than identified [25, 26] from calibration measurements, or calculated from first
principles.

The dynamic model, or transfer functionF (s) of the voltage divider, is directly found by means of the standard
rule of voltage division with impedances expressed in theirLaplace transform,

F (q = c−1
0 , a1, a2, b1, b2, s) = c0

b1s
2 + b2s + 1

a1s2 + a2s + 1
, c0 ≡ 1

1 + CLV /CHV
� 1,

{

b1 ≡LLV CLV

b2 ≡RLV CLV

,

{

a1 ≡ (LHV + LLV )(C−1
HV + C−1

LV )−1

a2 ≡ (RHV + RLV )(C−1
HV + C−1

LV )−1
.

(33)

The correction is given by the regularized approximation ofthe inverse transfer function,̂F−1(s) ≈ 1/F (s) ≡ H(s).
Since the modelF is independent of the currentiHV (see Fig. 5), the prototype1/F (s) for the correction has five
uncertain parameters even though there are six electrical elements of the voltage divider. The sampling rate was set
to 50 MHz. Simplifications were made to focus on the propagation ofuncertainty of the correction: The simple
exponential mapping of poles and zeros was utilized to sample the continuous time correctionH(s) into the digi-
tal filter g(q, t). Explicit regularization with low-pass noise filtering [21] was excluded since that was not required
with the simplified model [23]. The filter coefficientsq = c−1

0 , a1, a2, b1, b2 were linearized in electrical parameters
ρ = RHV , LHV , CHV , RLV , LLV , CLV to focus on the nonlinear dynamic mapping fromq to H(q, s) and to disre-
gard any additional nonlinear static mapping fromρ to q.

The measurable quantity of interest is a normalized standard lightning test pulse [27] [Θ(t) is the Heaviside step
function],

x(t) = Θ(t)[exp(−t/TF ) − exp(−t/TR)]/xmax,

{

TR = 0.403µs
TF = 71.3µs

. (34)

The lambda points (vectors)λ(s)(t) depend on the coefficientsc−1
0 , a1, a2, b1, b2 of the correctionH(s). These are

positive, as they are given by products ofR, L, andC. This constraint is controlled by choosing a uniform distribution.
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The covariance matrix cov(ρ) shown in Table 6 must be positive semi definite. This was verified, eig[cov(ρ)] ≥ 0.
Note that even though the covariance cov(ρ) between different electrical parameters is small, cov(q) is large between
different parameters of the correction and must not be neglected.

The measured signal and confidence interval for the correction, evaluated with MC simulations of106 realizations,
are shown in Fig. 6.

Initially, the measured pulsey(t) = f(qc, t) ∗ x(t) is well outside the confidence interval of the correction.
The correction thus gives a distinctive improvement. Afteraround 1µs though,y(t) ∈ [hc − hp, hc + hp] and
the improvement with dynamic correctiong(qc, t) ∗ y(t) may be questioned. Obviously, dynamic correction does
not always guarantee a better result. To decide if correction should be applied or not, accurate estimation of the
dynamic uncertainty as addressed here is essential. In thisstrongly idealized simulation the correction of the simulated
measurement is exact as it recovers the original signal without any error,g(qc, t) ∗ [f(qc, t) ∗ x(t)] ≡ x(t)—the
example thus demonstrates aspects of dynamic uncertainty propagation in the most transparent way.

6.4.2 The LIN Method

The LIN method described in Section 5 relies upon the gradient signals for the correction and assigment of a universal
approximation of the coverage factor signal, shown in Fig. 7.

TABLE 6: The relative covariance matrix for electrical parameters,ρ = RHV , LHV , CHV ,
RLV , LLV , CLV , linearly transformed to the relative covariance of the coefficients of cor-
rectionq = c−1

0 , a1, a2, b1, b2

cov({ρk/(ρc)k}) cov({qk/(qc)k})

10−4



















62 42 0 0 0 0

42 72 0 0 0 0

0 0 12 0 0 0

0 0 0 72 52 0

0 0 0 52 92 0

0 0 0 0 0 22



















10−4













5.0 −1.0 −1.0 6.2 4.0

−1.0 49 17 1.1 0.2

−1.0 17 37 0.0 0.1

6.2 1.1 0.0 208 45

4.0 0.2 0.1 45 53













FIG. 6: Results of applying the reference MC method in the dynamic example (Section 6.4): The measured impulse
y(t) = f(qc, t) ∗ x(t) (solid) and the estimated confidence interval limits[hc(t)− hp(t), hc(t) + hp(t)] (dotted) and
centerhc(t) (dashed) of the dynamic correctionh(y, q, t) = g(q, t) ∗ y(t), whereg(q, t) is the impulse response of
the correction filter. Only the fast rising edge of the lightning impulse [Eq. (34)] is shown, as the other parts of the
pulse contain minor dynamic effects.
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FIG. 7: The componentsq = c−1
0 , a1, a2, b1, b2 of the gradient∇qh(y, q̄, t), for correction of the lightning impulse

measured with the voltage divider. Thetime-dependentcoverage factorkp is evaluated with the same MC simulations
as used in Fig. 6. The limiting dashed lines at1.645, 1.96 indicate coverage factors of uniform and normal distribu-
tions, respectively. In the static limit of constant signal, kp → 1.645, since then there is only one uniformly distributed
static parameter (c−1

0 ).

The mere variation of the cover factor,kp(t) ∈ [1.640, 1.866] results in an error|∆hp|/hp ≥ 7% of any ap-
proximate constantkp. As stated in Section 2.2, the LIN method will always result in zero scent,ζ(t) ≡ 0. Rather
than more or less arbitrarily assign or guess a constant value of kp for LIN, which will grossly affecthp, no further
evaluation of LIN is made in this example. We conclude that itwill give at least7% relative error of the half-width
hp in at least one instant of time (without additional compensating errors), and completely neglect the scentζ(t) at all
times. This sets the scale for comparing the proposed UN methods (UNG and UNR) with MC simulations.

6.4.3 The UN Methods

The lambda pointsλ(±)(t) were calculated according to Section 4.4 with106 random samples, using the covariance
matrix cov(q) in Table 6. For the UNG method, the matrix of gradient signals∇qh(y, qc, t) was obtained with digital
filtering as described in Section 5, and is shown in Fig. 7. Forthe UNR method, correction filters of allµ(s) were
realized and linear regression applied according to Section 4.2. The correction filtersg(λ(s)(t), t) were then for both
methods synthesized to filter the simulated measured lightning pulsey(t) = f(qc, t) ∗ x(t), wherex(t) is given by
Eq. (34), andf(qc, t) is the digital filter forF (qc, s) in Eq. (33). From the two resulting signals the corrections at
the associated time instantt were extracted to give the confidence interval limits according to Eq. (4). The resulting
estimated scentζ(t) = hc(y, q, t) − h(y, qc, t) and error of half-width∆hp(t) are displayed in Fig. 8. The accuracy
of the UN methods were determined with Monte Carlo simulations. Acceptable accuracy required106 realizations.

Similarly to the static examples, the scentζ strongly dominates nonlinear effects, as typical for nonlinear propaga-
tion of uncertainty (Section 2.2). The correct scentζ(t) can be read off from the MC simulations (top, “MC”). Relative
to the half-widthhp it peaks around10%. The UNG method (“UNG”) generally underestimates the scentand also
fails in reproducing the oscillations after 0.5µs. The UNR method (“UNR”) is more accurate for the intervals with
large scent. For 0.5µs≤ t ≤ 1.0 µs there is a noticable difference. Even if the error is not larger than about2% of
hp, it illustrates inaccuracies of UNR. This happens when there is a substantial influence on the correction from many
parameters, see the gradient signal in Fig. 7. The time-dependent confidence domain is then most complex and is
extending in many of the possible directions of the five-dimensional parameter space. The half-widthhp is accurately
evaluated with both UN methods; the relative maximum error according to Fig. 8 (bottom) is about1% of hp. Initially
though, the UNG method underestimateshp by about2%. After about 0.3µs, the UNG method is more accurate
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FIG. 8: Top: The estimated scentζ(t) for the UNG, UNR, and MC (reference) methods. For LIN,ζ ≡ 0. Bottom:
The difference of calculated half-widths, for the UNG and UNR methods, relative MC. For LIN,∆hp/hp ≥ 7%, see
Section 6.4.2. The reduced half-widthshp/10 andhp/100 are included for comparison.

than UNR, which has an oscillating error. The error signals of the UNR method (top, bottom) are thus qualitatively
similar. Overall, the error of the UNR method is slightly less than the UNG method. Their confidence intervals are
nevertheless almost identical since the absolute errors are small. As anticipated, the errors are the largest where the
correction is the strongest, see Fig. 6. Evaluating the performance, remember that confidence, or coverage intervals,
almost without expectations are fairly approximate due to limited statistical knowledge.

7. DISCUSSION

The proposed UN approach has an apparent resemblance to RSM,which is described in Appendix A. In both cases,
the model is first sampled in collocation points to find a modelapproximation. The subsequent steps are however
distinctively different. RSM explores all possible variations of the parameters with a full MC simulation. The UN
approachcombinesthe potential variation of the approximate model with the actual variation of the parameters to
determine the smallest possible set of pointsλ(s), at which the model should be sampled in a second stage. This
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maximum sparse sampling is made with the exact and not approximate model (as in RSM), to estimate the desired
interval directly and not from a complete propagated pdf (asin RSM). The differences are substantial and result in
different accuracy and computational efficiency for RSM andUN methods. The RSM errors relate to approximated
sampling of themodel, while all UN errors are due to approximate sampling ofparameters. The efficiency defined
by the minimal number of evaluations of the original model isgiven for some numbers of parameters and methods in
Table 7.

Clearly, the LIN and LIR methods are most efficient but also contain the coarsest approximations. The LIR (but
not LIN) method roughly indicates the scentζ, as can been seen in examples in Sections 6.2 and 6.3. Estimating a
nonlinear contribution to the result as the scent with a linear model may appear contradictory. It is possible since
the linear model represents the mean, rather than a local (asin LIN) variation of the model, over a finite range
of the parameters. If the distributions are normal, RSM(1) yields the same result as LIR, with the same efficiency.
Increasing the order to RSM(2), the accuracy of the confidence intervals may improve substantially, see the examples
in Sections 6.2 and 6.3. Unfortunately, the efficiency decreases rapidly with the number of parameters. An average-
sized model with20 parameters requires as many as231 model evaluations to determine the surrogate model of RSM.
For many finite element models, computational fluid dynamic,and dynamic models this may lead to unacceptable
computation times. To improve the accuracy further, the order r of the RSM(r) may be increased. If100 model
evaluations is the acceptable limit, at mostn = 6 uncertain parameters are allowed forr = 3, n = 4 for r = 4,
and not more thann = 3 parameters forr = 5. For moderate values ofr and largen, RSM should not be used at
all since determining the surrogate model may require as many models evaluations as a brute force MC simulation.
High-ordersr should generally be avoided due to the poor behavior of high-order polynomials.

The efficiency of the proposed UN methods scales linearly with the number of parameters. UNG requiresn + 3
model evaluations if the gradient∇h(qc) is estimated with a minimal number of points in the vicinity of qc. To avoid
using any sample (exceptqc) more than once in UNR, at least2n + 3 samples are required. UNR thus has about half
the efficiency of UNG, but is often considerably more accurate, as can be seen in the examples in in Sections 6.3
and 6.4. The main complications with the UN methods belong totwo categories, one is related to accuracy and one
to efficiency. Both the UNG and UNR method rely upon a (piecewise) constant direction of the gradient over the
relevant part of the true confidence domain. Whenever this isviolated (as in example in the Section 6.3), the accuracy
is reduced. The other difficulty related to efficiency occursfor higher dimensional modelsh ∈ <m, m � 1, or
fieldsh ∈ <m×k, m, k � 1. The confidence domains will generally be different for different componentshm and
λ(s) should be estimated independently, as in the example in Section 6.4. This complication is shared with RSM,
which also need unique surrogate models for allhm. To obtain any result at all in this case, the high efficiency of
UNG/UNR displayed in Table 7 may be crucial. There are also other variants of deterministic sampling which are
more appropriate for vector and field models. Instead of focusing on varying confidence domains, it is more efficient
to study quantities invariant over different componentshm, such as the statistical moments of the parameters. The
two lambda points are then substituted with a larger set of samples which instead is universally (∀hm) valid. This
alternative was recently illustrated for a simple dynamic example [18] and will be further investigated in the future.

TABLE 7: Computational efficiency for RSM(n) [Eq. (A.3)]
for selected ordersn, and UNG/UNR

Parameters 2 5 10 20 30
method

LIN/LIR/RSM(1) 3 6 11 21 31
RSM(2) 6 21 66 231 496
RSM(3) 10 56 286 1,771 5,456
RSM(4) 15 126 1001 10,626 46,376
RSM(5) 21 252 3003 53,130 324,632
UNG 5 8 13 23 33
UNR 7 13 23 43 63
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By no means do the proposed UN methods exhaust all possible approximations. Higher order methods should
account for the variation of the gradient direction. That includes rotation of the level hyperplanes of the model, as well
as the buckling of each such hyperplane. By necessity, the complexity of the method will increase and the efficiency
will decrease. The primary goal here is to propose a novel UN approach and illustrate that it can be efficient and
accurate, rather than exploring all possible approximations.

8. CONCLUSIONS

A novel “UN” class of methods for nonlinear propagation of uncertainty by sampling at confidence boundaries has
been introduced. The proposed UNG and UNR methods are two approximate methods of this class. The main lim-
itation of these methods is their rudimentary topology of the estimated confidence domain. The main criterion for
their validity is a low variation of the direction of maximalvariation of the model in the parameter space, over the
relevant range of parametric variation. That is analogous but different from the requirement of a low residual error
of truncation in any finite Taylor expansion. The magnitude of model variation is irrelevant for the UNG and UNR
methods, which makes them accurate and robust. For several reasons, the approach focuses on the complexity of the
model equation, rather than the fidelity of statistical information (as is conventional):

1. Models are often more complex than probability distributions.

2. For confidence intervals, the dependence on statistical details is usually weak.

3. Statistical information is seldom known accurately.

More comparisons between the traditional and various approaches based on sampling on confidence boundaries
are strongly desired, as well as refinements and more verification of the proposed methods for evaluating their validity.
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APPENDIX A. RESPONSE SURFACE METHODOLOGY WITH POLYNOMIAL S URROGATE MODELS

A presumably complex model can be approximated with a modelh(RSM) simple enough to perform a full MC
simulation [9, 28]. This simulation is then made as if the approximate model would be the true model. Anrth-order
model approximation can be chosen as a mixedrth-order polynomial,

h ≈ h(RSM(r)) =

r
∑

k=0

w(n,k)
∑

m=1

akm

n
∏

j=1

q
ejkm

j :

{ ∑n
j=1 ejkm = k

ejkm ≥ 0, ∀{j, k, m}. (A.1)

The numberw(n, k) of termsakm can be found recursively,

w(n, k) =







∑min(n,k)
j=1

(

n
j

)

w(j, k − j), k > 0

1, k = 0.
(A.2)

Unique determination of the surrogate model requires a fullrank regression matrix. The true model must thus be
sampled in at leastp collocation pointsν = ( ν1 ν2 . . . νp ),

p(r) =

r
∑

k=0

w(n, k). (A.3)
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This number determines the efficiency of the RSM, provided the numerical cost for evaluating the true model domi-
nates over the cost for the MC simulation of the surrogate model. The coefficients can be found using linear regression,
similar to how the linear model parametersh

(s)
0 , d(s) are determined from the collocation pointsµ of the UNR method

[Section 4.2, Eqs. (7)–(9)]. A difference is thath[RSM(r)] is nonlinear forr > 1. It may indeed be possible to use the
same setsµ andν, but it may not be sufficient or optimal for RSM.

It is nontrivial to find optimalν points which are evenly distributed in the most relevant region and are as few as
possible for maximum computational efficiency. The matrixV = ±I for {µ} in Eq. (10) can be adapted to describe
the primary variations of{ν},

{ν} = qc + 〈k(s)
p 〉sUT

√

Ucov(q)UT V, (A.4)

V =
(

V (1) V (2) . . . V (n)
)

. (A.5)

The variations are described by the columns ofV , divided into submatricesV (k). Theν points contained inV (k)

are here defined to have the same magnitude||V (k)
:,q || = ρ(k), ∀q and are thus contained within one “shell.” The

samples should be uniformly distributed within each shellV (k), with appropriate offset rotations between the shells.
Selectedν points are preferably checked to be sufficient by verifying full rank of the regression matrix. This spherical
geometry is appropriate since the scale

√

Ucov(q)UT has been extracted. Ifρ(k) = 1, ∀k, the regression matrix will
be rank deficient forr > 1 andh[RSM(r)] becomes ambiguous. Theµ points chosen in Section 4.2 will thus not yield
appropriateν points for RSM ifr > 1. In the examples in Sections 6.2 and 6.3,ρ(k) = max (1, k)/r with w(n, k) ν

points in the shell described byV (k) for k > 1, butw(n, 1) + 1 ν points fork = 1.

APPENDIX B. LINEARIZATION WITH REGRESSION (LIR)

For RSM(1), MC simulations are not needed to propagate the covariance of the parameters. However, for non-normal
probability distributions the evaluation of the coverage factorkp requires an MC simulation, as described in Sec-
tion 4.4. The only difference between linearization with regression (LIR) and LIN [1] is one added degree of freedom
describing an offset. Instead of blind assignment of the central point of the confidence interval of the modeling result
to h(qc), it is an additional free parameter. In contrast to LIN, the LIR method gives a rough but not accurate indication
of the scent. The confidence interval is given by

[h(LIR)
c ± h(LIR)

p ] =
(

1 qT
c

)

(

a01

a1:

)

± k(s)
p

√

[a1:]T cov(q)a1:, a1: ≡
(

a11 a12 · · · a1n

)T
, (B.1)

whereh(RSM(1))(q) =
(

1 qT
)

(

a01

a1:

)

is the linear surrogate model of RSM(1), see Appendix A.
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