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A new class of methods for propagation of uncertainty through complex models nonlinear-in-parameters is proposed.
It is derived from a recent idea of propagating covariance within the unscented Kalman filter. The nonlinearity could
be due to a pole-zero parametrization of a dynamic model in the Laplace domain, finite element model (FEM) or other
large computer models, models of mechanical fatigue etc. Two approximate methods of this class are evaluated against
Monte Carlo simulations and compared to the application of the Gauss approximation formula. Three elementary static
models illustrate pros and cons of the methods, while one dynamic model provides a realistic simple example of its use.
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1. INTRODUCTION

The variability or uncertainty of modeling is an importamtlicator of quality in many fields of science and engineer-
ing. Models are also used to evaluate the measurement aimtgfil]. Typically, the uncertainties and correlatioris o
parameters are more or less known or estimated from expetsyessumptions, or first principles. This information
should then b@ropagatedo the result of modeling. In this propagation there is ntisttaal evaluation, as the basic
statistical information is already encoded in the paraimeticertainty. The widely spread approach to propagate the
uncertainty [1, 2] is based on linearization and propagatibvariances (LIN), according to the so-called “Gauss
approximation formula.” The resulting variance of the miageften expanded to a confidence interval by assignment
of a coverage factor. Two important approximations arelwea in LIN, namely (i) the model is linearized within
the interval of interest and (ii) the statistical propesta the sources of uncertainty beyond their first and second
statistical moments are neglected. The second approximatusually unavoidable due to limited knowledge. More
statistical details can be propagated with random samptindylonte Carlo simulations (MC) [3]. For the targeted
complex models, none of these methods is satisfactory:drge computational burden of MC distinctively prohibits
its application. Linearization is effective but may redaltarge errors.

Ever since their first utilization for propagation of uneénty, the basic ideas of model approximations as in LIN,
and statistical sampling [4] as in MC, have been refined. Igmmmial chaos expansions (PCE) [5] the random fields
of interest are approximated by expanding them in truncsgei@s of random so-called polynomial chaos. Inserting
these expansions into the original model, the governinggops are derived, which determine the unknown deter-
ministic expansion coefficients [6]. Since the governingagpns differ from the model equation, the PCE technique
is invasive. Thus, for models with limited accessibilityzIP may not be applicable. Stratified sampling techniques,
such as latin hypercube sampling (LHS), are used to impilwwgéneration of random samples to allow for smaller
sets giving higher computational efficiency. In LHS, a deiti@istic rule is used to obtain a complete set of stratas, i.e
disjoint subspaces, which enclose the entire probability spagef all parameters,, e, = Q,e,Neqa = @, p # q.
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A given number of samples are then randomly drawn from eabbpacee,,. In stochastic collocation (SCL) [7] a
particular grid of so-called collocation points are usecavtaluate integral statistics such as statistical moments b
means of quadrature rules [8]. In contrast to sample padingscollocation points have no statistical meaning. Re-
sponse surface methodology (RSM) [9] utilizes model apjpnations as well as statistical sampling. Collocation
points are used in RSM to determine approximate simple gateomodels. This model is then sampled randomly,
usually densely as in conventional “brute force” MC, eveauthh stratified techniques are perfectly allowed. The
two-stage techniques of SCL and RSM are similar but diffefiem our approach: Collocation points will not be
used here to determine any model approximation to be dessetpled (RSM) or integrated (SCL), but rather to
determine a minimal secondary set of points. The confidemeegvial of any quantity related to the modeling result
is then obtainedlirectly by sampling the model at these points, without any model@ppration. Our method thus
differs from all established methods for uncertainty pigadéon, LIN, MC, PCE, LHS, SCL, and RSM. The targets
for our methods are the most complex uncertain models whaatoaly be evaluated, but not analyzed as required in
PCE. All proposed methods must thus be noninvasive. Ourasyimgoal is to maximize computational efficiency by
minimizing the number of model evalutions, but still accbiam nonlinear propagation of uncertainty.

An alternative tadeterministic samplings used in the “unscented Kalman filter” (UKF) [10-12]. Thevalkclass
of methods for estimating confidence intervals to be preski#t related to the UKF, but also a recently proposed
approach by one of the authors [13]. The latter method is heneralized from essentially one to any number of
uncertain parameters and brought into the large persjeatideterministic sampling suggested by the UKF: Two
“confidence boundaries” are first estimated. Theseiniguelydefined as the two disjoint sets of points in parameter
space mapped to the desired confidence interval limits afnibel result. Each estimated boundary is then sampled
once to give two “lambda points” in total. Evaluating the rebfbr these lambda points will by definition estimate
the confidence interval limits of the model. In contrast ® thN method [1], the expansion to the desired confidence
level is madebeforeevaluating the model. Errors of this expansion due to thdimear mapping through the model
are then in principle eliminated. The coverage factors &e @asier to estimate as they relate to the multivariate
distribution of theparametersinstead of the output of a complex model. Non-linearitieparameters as well as
dynamically induced correlations provide two major errourses of the coverage factors used in LIN, but none for
the lambda points. The difficulty of our methods lies entirgl the estimation of the confidence boundaries. Two
general approximate methods to estimate these boundaligewliscussed and illustrated. For a monotonic model
of one uncertain parameter the confidence boundaries drsvjugoints, the two given percentiles of the parameter.
Since the confidence boundaries are then known, the conéidaterval of the model can be determined exactly.
Also in the multivariate case, the dependence on many dethihe probability distribution of the parameters (in the
interior) is often weak. For all linear models, the confidehoundaries can be determined exactly if the coverage
factor is known. These facts will be extensively explorethiis study.

The article is organized as follows: Before presenting gyraach, its presumably less known background s given
in a primer (Section 2). The confidence boundaries are inted (Section 3) before they are sampled (Section 4),
utilizing our novel Unscented Nondegenerate sampling e&thtral Gradient approximation (UNG, Section 4.1) and
Unscented Nondegenerate sampling using linear Regreé$idiR, Section 4.2) methods. Their accuracy and applica-
bility is then explored (Section 4.3). The determinatioma¥erage factors provides a separate problem (Section 4.4)
Dynamic models expressed by ordinary differential/défere equations require some generalization (Section 8). Th
result of using the methods are illustrated in three rudisrgrstatic examples (Sections 6.1-6.3), and one realistic
dynamic example (Section 6.4). Finally, a comparison tosthemingly closely related RSM (Section 7) precedes
our conclusions (Section 8). For reference, the methods R§Nendix A) and linearization with regression (Ap-
pendix B) used for evaluating our methods are also brieflgilmsd.

2. PRIMER
The background and foundation for our approach is given is phimer, which includes the concept determinis-

tic sampling (Section 2.1), aspects of nonlinear propagatSection 2.2), and the formulation of the UKF (Sec-
tion 2.3).
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2.1 Deterministic Sampling

Deterministic sampling is contrasted to random samplichn&ues, or MC simulations where samples are drawn
with a random generator. Both classes of methods sampististatinformation to a finite number of sets of param-
eters collected intensemblesThe finite ensembles describe,representthe statistical information of the model.
Deterministic sampling methods do not utilize random getwes at all. A definite deterministic rule constructs sam-
ples from the available statistical information. Stilletdeterministic ensemble &atistical[4], as it has a definite
statistical meaning. As with all sampling, more or less infation is unconditionally lost. Random sampling is con-
structed to yield a complete asymptotically correct repnéstion of statistical information. Deterministic saimglis
devised and optimized for a particular task of interesg fkopagation of covariance [11]. Random sampling usually
requires large ensembles (typically® — 106 samples), while deterministic ensembles may, as in thigwmamtain

as few as two(!) samples. The difference in efficiency betwaeterministic and random sampling may therefore be
profound. The superior accuracy of random sampling makasideal tool for verification, but at a very high compu-
tational cost. Deterministic sampling may employ any matatcal operation on the available statistical informatio
This freedom and lack of completeness makes the class ahtiaistic sampling techniques large and complex.

2.2 Nonlinear Propagation of Uncertainty

For nonlinear propagation of uncertainty, the asymmetrthefresulting probability distribution is important. Itrca
be expressed as a lack of commutation between nonlineaagatipn and statistical evaluation. Téeentfor a model
h(q) : R™ — R will be defined as

¢= hc(Q) - h(‘]c)- (1)
This is the commutator for evaluating the realized modk(s)] and the cente(:.) of the confidence interval, or
domain. The method for evaluating the center is left undietias there are many alternatives. The second moment
{(¢ — q.)?), where(-) denotes statistical expectation, is for instance minichizg choosing;. = (g). A nonlinear
mappingh of the mean(q) differs from the mean of the mappinbi({(¢)) # (h(q)). The associated sceffi(q)) —
h({q)) is completely neglected when the model is linearized. The#b order approximation of the scent is in this
case directly obtained with a Taylor expansiamy Tr[H (h)cov(q)]/2, whereH (h) jx, = 8%h/dqiq; is the Hessian
matrix evaluated ag = (q). The scent is related to the skewness [d}= (5¢3)/(6¢%)3/2, 8¢ = q — (¢), of a
univariate probability distribution of. Theadditionalasymmetry caused by the nonlinearity of the model is medsure
with the “scent,” but differently: Even if the distributioof a parameteg has no skewness, a nonlinear motg})
will likely have a finite scent, = h.(q) — h(q.) # 0, differing from its skewnesg5h(q)]*)/([5h(¢)]?)3/2, Sh(q) =
h(q)—(h(q)). Scentis to be distinguished from bias. The bias is a prgpéen estimator while the scent is a property
of an uncertain model: In the definition (1) there is no refereto any estimator; the center) is defined and not
estimated. An estimator of a confidence interval (such as WNR to be proposed) is unbiased if it yields a finite
scent equal to the true scent of the model. An unbiased dstimmbh. may hence also be quoted “unscented” if the
error of the estimated scent vanishes. A rather accurate estimattiscent is probably the most important property of
the unscented Kalman filter (UKF), as well as the methods farbposed in Section 4. We interpret this as the origin
of the name unscented in the UKF. This context provides thivatmn to introduce scent as a convenient concept
when discussing nonlinear propagation of uncertainty.

The scent is generally larger and hence more important tu@eathan the nonlinear shithh, of the half-
width h, of probabilistically symmetric confidence intervals. Thalfkwidth £, is complex to evaluate, but the
lowest order nonlinear shift of the related variance is gy, A[var(h)] ~ > .;,(5q;0q18¢)0h/dq; H (k) +
> ikim (84580k8G18Gum) X [H (R) ji. H(R)im /4 + Oh/Dq;0°h ) 0qx0q10q:m /3]. For symmetric probability distributions
the first term vanishes. Ignoring the nonlinear shift of theerage factor, the nonlinear correcti, is thus at least
one but often two orders less than the saent

2.3 Propagation of Covariance in the Unscented Kalman Filte r

For optimal state estimation in the time domain, Kalmanrfitig has been extensively studied since it was first pro-
posed about half a century ago [15]. For nonlinear systdrastandard Kalman filter was developed into the extended
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Kalman filter (EKF) based on Taylor expansions [12]. To fertmprove the performance for nonlinear problems,
the UKF was proposed around 15 years ago [10]. It took quitéferent route for propagation of covariance, as the
traditional approach of Taylor expansions and focus onahdity density functions (pdf’s) was largely avoided. The
method is based on the intuition that [11]: “it is easier tprximate a probability distribution than it is to approxta

an arbitrary nonlinear function or transformation.” Theigat which will shortly be referred to as the UKF is readily
described. The covariance of any modé}) which depends on uncertain parametgrs ( ¢ ¢ -+ qn )7,
with mean(q) and covariance cdy), can be estimated as follows. Sample the statistical irdion in 2n so-called

sigma pointsﬁj) by calculating a square root of c@y. That renders a deterministic ensemble,

\ ko= 1,2,...m,
o) = @rses® {2 L @

5¢ = n- A, AAT =cov(g). ©)

The quantityA. ;, denotes théth column of A. As for any finite ensemble, the meah) and the second moment
around the meah,, or any other statistical moment of the modé}) are then estimated with expectatidrys, over

all 2n sigma points. In contrast to the EKF, the UKF estimates teats¢ = (h(0))s — h((0)s) # 0. The covariance

is correctly propagated for linear models. For nonlinearatipns, the covariance is not correctly propagated, but
usually considerably better than in the EKF, or LIN. A sesdaleficiency is that for many parameters with large
covariance, the scaling witffn may cause failure: The scaling is not related to the vaitgluf the parameters, only
their total number. The model may not be applicable for pataimvariations beyond their range and may be strongly
inaccurate, or even incorrect. The samples may be stafigtirange of pdf) and/or physically (range of model)
allowed. A possible solution is provided by the scaled unss@transformation [16]. There is no scaling problem for
the UN approach to be proposed. It utilizes the minimum nurobenly two samples, i.en = 1.

The sigma points of the UKF are however not unique. A candittatA can be found by a Cholesky factorization
[17]. Any linear transformation of its rowg\’ = AU with only a 'half’-unitary matrixzU : UUT = I (I being the
identity matrix,U”U = I is not required), results in another equally valid matkixbut different sigma points, since
AA'T = AU[AU)T = AUUTAT = AAT. These half-unitary transformations can be used to alsease the size
of the ensemble, which for other sampling rules sometimaghtibe required to obtain allowed samples [18]. The
invariance to complete unitary transformatiobs(U”U = UUT = I) or arbitrary rotations will here be utilized to
sample at confidence boundaries (Section 4).

3. CONFIDENCE BOUNDARIES

The confidence interval of the modeling result is here assitmie of primary interest, rather than the second moment
around the mean as in the UKF. For simplicity, the confidentarval of the model is here defined symmetrically with
equal total probability above and below the interval. Asyetc intervals require a trivial generalization which il
be stated in Section 4.1.

3.1 One Parameter

The basic idea of our approach is most easily illustratecaforodelh depending on only one uncertain parameter.
In Fig. 1, the assumed known pdf of the uncertain variablp)(énd the propagated pdf of the model (bottom) are
indicated.

The possible values of the paramegeare indicated by the domaif in Fig. 1. The parameterg., h. denote
the centersof the probabilistically symmetric confidence intervalsjther the meariq), (k) nor the corresponding
medians. The half-widths of the intervals for confidepcare labeledy,, h,, while ¢s, hs (omitted in Fig. 1 for

clarity) refer to standard deviations. They are relateddyecage factors,, ¢, = kéq)qc, hy = kéh)hc. These factors

differ for models nonlinear—in—parameteféf’) # k,(,h). The variationss™*) = (¢) & ¢, are for obvious reasons
called sigma points in the UKF. Here we are interested in denfie intervals and instead focus on doafidence
boundaries1*) : h(n*)) = h. + h,. In Fig. 1, the upper and lower superscriptsiaklate to increasing (“I") and
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h.—h, h. h(q,) h +h,

FIG. 1. The pdf of one uncertain parametgftop) propagated to the model(bottom). The notation is explained in
the text.

decreasing (“D"), respectively. The inverse centroid boundaty) : h(n(®) = h, is also of interest sincg(®) — ¢,
reflects the scent = h. — h(q.). Ideally, the modeh is sampled at thteambdapointsA(*) € n(+) to directly give
the exact confidence interval Bs. — hy, he + hy] = [R(A)), L(AH)].

If a modelh of one parameteg is monotonic, it preserves or reverses the ordeg; If< g2, h(q1) < h(ge)
or h(q1) > h(g2),Vq1,q2 € Q. The symmetrip percentiles of the variable are then mappedxactlyto thep
percentiles of the mapping, eithefq. +q,) = h.+hy, Orh(q. £q,) = heF h,. The confidence boundaries can then
be determined exactly(*) = q. + g, for increasing, and*) = ¢, F g, for decreasing.. Sampling ah(+) =n*)
then results in the exact confidence interval.

3.2 Several Parameters and Unigueness

For two parameters, the confidence boundafiés are two lines. Hypothetical confidence boundaries are shown
Fig. 2. The associatecbnfidence domaiis defined by{q € Q : n=) < h(q) < n")}. Similar illustrations are
included in the static examples in Sections 6.2 (Fig. 3) aBdfeg. 4).

The generalization te parameters is straightforward. The two confidence bouesdgfi®) will have dimen-
sionn — 1 and the confidence domafh dimensionn. Other types of confidence domains can be defined without
any reference to a model. In that case they may not be uniglefiged and can have any topology, hyper-cubes
or -ellipses, connected or not. The only requirement of sucbnfidence domain is to contain the correct accumu-
lated probability. By defining the confidence boundariesefmodel asn™®) : h(n™*)) = h. + h,, the confidence
domain becomes uniquely defined and thus an object that cestineated.

In one dimension, monotonicity of the model was central fiodifig the exact confidence boundaries. The geom-
etry is more complex in higher dimensions and strongeriotisins on the model are required to solve the problem
exactly. If the gradient exists almost everywhere and itsdfiion is constant, the exact confidence boundaries can be
determined for any number of parameters. This case propiesesible approximations which will be utilized.

4. SAMPLING ON CONFIDENCE BOUNDARIES

Sampling on estimated confidence boundariesat € 7(£) ~ n(+) will directly estimate the desired confidence
interval of the model,
[he = iy, he + hyp] = [h(0 7)), AT & [AAT)), Q)] (4)
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FIG. 2: Hypothetical confidence boundarigs®) and inverse centroig(®) for two uncertain parameters. The notation
is explained in the text.

Since itis generally not possible to determifié) exactly, one has to resort to approximate methods such afiNfe

and UNR methods to be described below. The statistical prolif determining the confidence interval of the model
h is effectively transformed to a geometric problem. The togg of the confidence domain is largely determined by
the model structure, while the statistical variation of pfagameters mainly affects its size. It is therefore appater

to carefully study the complexity of the model structurest@ad of focusing on the parametric uncertainty. That idea
is fundamentally different to the approximating LIN and RSa8 well as the sampling UKF and LHS methods.

4.1 The UNG Method

As all points in each of the boundarigs™) are mapped to exactly the same value, the model is compligghnerate

in all n — 1 directions within each boundary. In the directions ortheajdon(®), the variation ofh is maximal.

All the n — 1 degrees-of-freedom of a model indimensions which span® may hence safely be ignored. The
degeneracys then removed from the model, which is thereby locally tlto one dimension. The direction of
maximal variation is however varying. One plausible appr@ation among others, is to neglect this variation and
set the directionl of maximum variation equal to the normalized gradiént V,h = V,h/||V,h||, evaluated at
the center,.. The boundarieg(®) as well a:(“) are then approximated to be parallel. S#i® may be anywhere
betweerm(*) and is able to describe a finite scéntThe model will depend on only one nondegenerate “gradient
parameter’gy = (@qh)T(q — q.), without any restriction on how it varies beyond monotayicApplying the
standard UKF described in Section 2.3 results in two lamhmatpA (), corresponding to the sigma points®™.
Expanded to the desired confidence lgyeds suggested in Section 3.1,

A = go+s-kVod, d=V,h, s=4, (5)

o dTcov(q)d, (6)

Wherekés) is the estimated coverage factor for the marginal proligtiistribution ofgy . This isnota linear approx-
imation of the modeh itself. Linearization is only made to estimate ttopologybut not the size of the confidence
domain, and definitely not the magnitude of the model vammati finite scent will indeed be obtained, contrary to
the LIN method. The trivial generalization to account foyrasnetric confidence intervals has here been made by al-

lowing for different coverage factors in the two directioRsr increasing modelkﬁ) corresponds to the upper limit
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of the confidence interval fayy, and the reverse fdf,(,’). For decreasing modell%,gi) should be interchanged. The
confidence interval is finally obtained from Eq. (4). This stitutes our simplest method bihscented Nondegenerate
sampling with central Gradient approximatigNG).

The scalar displacementin Eq. (6) is the standard deviation of the marginal distiiu of the only relevant
(within the current approximation) parameigy. It fuses thepotential variation of the modeh with the actual
variation of the parameters The propagation of covariance frogto ¢v = (@qh)T(q — ¢.) is exact since this
transformation is linear. For the very same reason it is silsgpler to estimate the coverage factor here than in the
LIN method for which the coverage factor refers to timlinear modelh. This is further explored in Section 4.4.
Nonlinearities as well as the statistical information dmestgenerally more accurately described in the UNG, than in
the LIN method.

4.2 Higher Order Methods—The UNR Method

More refined approximations than a constant gradient cantibeed to further increase the accuracy. Typically,
sampling of the model is made twice in all UN methods:

1. Determine mu pointéu(®, i =1,2,...,j > n+ 1} where the model will be tested for estimating confidence
boundaries)(*). These will be the equivalent collocation points [7, 8].

2. Sample the model at collocation poitiis® } to obtain{A(u(9)}.

3. Determine sampling poindé®) from {1(1(®)}, cov(q), and estimated'* .
4. Sample the model &f*) to obtain the estimated confidence limita\(*)); see Eq. (4).

A simple difference quotient approximation [13] of the geatd is one example of this type of doubled sampling. The
steps 1-2 are similar to but different from the first step oflel@pproximation in RSM [9]. One difference is that the
sampling of{u} here is made to fintbcal approximations of.(q) at theboundaries)*), not for the whole range of
parameter valueg € Q. Instead of applying massive random sampling of the wholdehapproximation as in RSM,
each confidence boundary is estimated in just one pointjin3tehis allows for an absolutelyinimalset of samples
A() but also arexactevaluation of the model in step 4. The numbeircan be chosen as large as is affordable by the
model complexity and computational power. In toek: 2 > n 4+ 3 model evaluations are required foparameters.
An obvious generalization of the UNG method along thesesliseto allow for nonparallel and more relevant
estimatesi(+) of confidence boundaries’®). The lambda pointd(*) are then constructed wittifferent direc-
tions d*) of maximum variation fromy. to f1(¥): The ascending directiod*) indicates the direction of largest
increase of the modél and is used to assigri ™), while the descending directiafi—) of largest decrease givas~).
These directions can be found with linear approximationsaandifferent subsets of samplesat(®) = {u(*0) =
Ge, 1D w2 0 uR) g > ) whereq, is included as the reference point. Any sufficient number sémples
may be used to find good robust estimates(6¥. Linear regression is here the obvious generalizationeofitfierence

guotient approximation of a gradient [13], to determinedtl‘feetshés) and directionsl®) [Eq. (7)],

i = 0,1,2,...,k>n, s=+,
i o h(S) (s,i) _ (8,3) (ss1) (s,1) T
pe) = (1 e ) (M) e = (e )
a0 = (d d) - dY )
AO = g+ kDo, d) = ) )|d)]|, (8)
o = /[d]Tcov(q)d(). (9)

Finally, specific rules for selectings(V} and subset8/(*) are needed. To account for correlations and be as rele-
vant as possible, seleft(?)} along theprincipal directions of coyy) and as close as possible to potential confidence
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boundaries (without knowledge 6j. That is, diagonalize cdy) by finding a unitary matrixy : UTU = UUT = I
such that/cov(q)U™ is diagonal and let(() be given by column of {u}),

{1} = ge + (k) U\ UcoMqUTV, V= (T —I). (10)

The setsM () can be chosen by first sortifgt} into {u® : A(u™) < h(u®) < - < h(u®™)}. Then, extract
M) = {ge,u®, u@ oyt and M) = {g,, urH=m) yet2=m) G f = 0 is chosen,
minimal setsM (*) are used and Eq. (7) yields a perfect linear approximatiotiel regression matrix with row
given by( 1 [u(?]T ) happens to be rank deficient, the regression becomes ilitbmmed. To obtain a definite
directiond(®), either use the Moore-Penrose pseudoinverse [17] of thessign matrix, or letn. > 0. If m = n,
M) = M®), giving d-) = df) = d. The UNR method is then reduced to the UNG method with a secant
approximation of the gradien¥/,h ~ d. This completes the method binscented Nondegenerate sampling using
linear RegressioflUNR). It is applicable for any number of parameters, fotistas well as dynamic models, and is
illustrated in Sections 6.3 and 6.4.

4.3 Accuracy of UNG and UNR

The UNG and UNR approximations belong to a class of methosiechan Unscented Nondegenerate sampling (UN)
at confidence boundaries which has no generic error assddiatit. Common to all UN methods is that all errors
are due to incorrect determination of the lambda points.dibeussion of accuracy here will therefore be limited to
errorsdA(®) of A(*), The modek will be assumed to be at least twice differentiable.

4.3.1 Constant Gradient Direction

Both UNG and UNR methods approximate the gradightto have a constant directiehwhen calculating\. Their
accuracy can be estimated by first assuming a constant gtatifectionVh, but a limited directional errod =
d—Vh, |6J| < 1, in the expressions fov. The appropriate gradieRth to use below will be derived in Section 4.3.2.
To lowest order,

6}\(3) 1 (QC + kpo—cz(s)) do ~ ~
o R A &) (s)
o a] o —d) + 5d). (11)

Even though the only error is due to incorrect directib®, A(*) is defective in both magnitude (first term) and
direction (second term), relative {p. Since variations within the confidence boundaries do rfatence the model,
projectdA(*) on sV to find the relevant error (sign included) df*). Being a relative error it also valid faA(*)
calculated along®),

57\|<|S> 80

P\(S)—qc‘ N o)

I 5 7. d®)Tecov(q)d®) _ . 5
[th]Td(S)—i—[th]Téd(s)] d® =5 [~ ] ()~ [VATd®) —1|d®. (12)
[Vh]Tcov(q)Vh

To further analyze the error, make an eigenvalue deconmpositoVq) = UTX2U, X, = §;,0%, whereoy, is the
standard deviation in uncorrelated parametéysThen,

sA() ‘ZUJ(S) o i
T = ¢ VRTd® —1| d®. (13)
A — gl ‘EUVh‘

Since there is no preferred basis, the evaluation may squall be made in a canonical basjs= ~~'Uq for
which cog) = I. The canonical basis is not unique if ¢gy is degenerate, i.e., at least two of its eigenvalues
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are identical. Any such basis is appropriate here. The niaetagradient and direction (assuming it transforms as
the gradient), evaluated in a canonical basis, but expiessthe original basis, reaWh = XUVh/|XUVh| and
d®) = xUd® /|SUd®)|. Then,|SUVA| = |ZUd®)| = 1 due to normalization o¥ 2 andd'®),

SAL) S ~ o
W —s [(Vh)Td(s) —1|d® = R(|5d|*)d™, (14)
S) qc

whereR(x) is of orderz. The first-order contribution to the error is thus eliminhtb?\(S{iS evaluated in a canon-
ical basis. Evaluation in a canonical basis is consequenéigcribed if|SUd®)| — [SUVhR|| > R(]8d®)|?), i.e.,

’\/ (9] cov(q)d® — \/[Vh]Tcov(q)Vh
maxyg 6k-

The lambda points may be evaluated in a canonical basis wtitioomally changing the basis. The modified
lambda points\(*) should then be expressed in the gradi®itt and the directioni*®) in the original basis with
parameters,

> R(|6d'®)|?). This can only happen fo6d(*)| < 1 if miny 6 <

kp
[d9] cov(q)d®

cov(q)d™®. (15)

A® = g, + k,UTS (‘EUJ(S)

—1 -
EUd(S)) =qc+

The original directioni(®) is rotated and rescaled—the magnitude of the lambda-paifationA(*) — ¢. changes to

_ ~ -1 ~
}MS) - qc‘ ~k, ‘EUd(S) ‘zsz@

£k, ‘EUJ@

= .. (16)

If either (Ud*));, = 8,1, or ¥ I, the variations are equal. In both cases, the scaling Withoes not change the
directionUd®*). To simplify the presentation, calculation in a canonicasib is not considered (or required) in any
example in Section 6. For evaluation in a canonical basigplyiuse Eq. (15) instead of Egs. (5) and (8) for evaluating
A,

4.3.2 Variable Gradient Direction

When the gradierdirectionvaries ovef?, the lambda points will be defective for two reasons: (1) diliierent level
hypersurfaces of the model are not parallel. (2) Each hypfarse is bent or buckled. In short, the gradient directions
vary between(1) as well aswithin (2) the hypersurfaces. The directional variation betweéferént hypersurfaces
(1) makes it difficult to propagate the covariance exactythee traditional approach [1] prescribe. In the absence of
buckling (2), theconfidence boundarieray nevertheless be determined exactly. The reason isabhatenfidence
boundary is only dependent on a single-level hypersurfidgec 1) = h(A), while the covariance relates to all of
them. The proper direction for calculating® is consequently(®) = sVA(A(*)). In detail, this can be understood as
follows. With the transformation — ¢4 = [d®))7 (¢ — ¢.), the multi variate pdff (¢) is marginalized tof;(qq) over

all degrees of freedom orthogonaldt’ (temporarily omittings to simplify notation),

falga > 0) = /S ( )f(fh,fh, e qn) dd1dds . . ddn—1, {4 € S1(qq) 1 d" (G—qc) =qa}- @a7)
144

The univariate pdff4(gq) also has an associated coverage fakyﬁd). Considering both directiong*), the region
{g € Q) : [d®]Tq > 0, s = £} will be integrated twice while the domaify € Q) : [d®)]Tq < 0, s = +}

is omitted. However, iﬁc,,(cf(s)) = k,, there will be no error: By mirror imaging through, ¢ — ¢. — —(q — q.),
the integration oveR2(*) will be equivalent to an integration ove¥—). The covariance matrix is left invariant by this
transformation as it has a quadratic dependenceg-ou.. If also kp(d(5>) is independent of*), the integrations over
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the domain$2(®) are exchangeable so the errors cancel exactly. Thus forregitin defined by, > 0, integrate the
marginalized pdff, to the boundary, = [d*)]” (A — ¢.) = 1 to yield the probabilityP/2,

n
5= | fatan)aa (19

If ds) = Vh({q : qa =n®}) = VRA®), hi(g1 : g2 = 1) = h(gz : ¢z = 1), Va1, q2 € Q). Hence, the
boundaryg; = n® is a level hypersurface of the mode] i.e., the correct confidence boundary. In other words:
(1) The hypersurface fai(A(*)) must be planar. (2) The directiaft®) coincides withsVA(A(®)) at the estimated
confidence boundary. Clearly, UNR may be much more accunate NG, as it is possible to havé—) % d(+)

in UNR but not in UNG. The magnitude error due to incorrecediionsd(®) for calculatingA(*) can be determined
from Eq. (12) by evaluating the gradient at the lambda poWits= VA (A(*)). Note that with varying direction of the
gradient, an incorrect directiafi*) also will result in an incorrect estimate of the gradienhatt¢onfidence boundary,
VR(A®)) # Vh(n®). If the direction of the gradient has a moderate variatiogr6d, the error will be limited, as
illustrated in examples in Sections 6.2 and 6.3.

4.3.3 Buckled Confidence Boundaries

If A(*) is determined for the correct directidf?) = sVA(A(*)), all errors are due to buckling of the level hypersurfaces
given byh(q € Q) = h(n®)) ~ h(A(*)). Buckling of a level surface is here defined by the variatibime gradient
direction within the level surface. An upper bound of tha)eﬁr)\(g) of the lambda poinA(®) due to this buckling is
readily estimated. First, expand the model variatibraroundg = A(*) to second order,

1
8 = [VA(A)T8q + S[oa]" H(A)8q + R(18q|), 8g = ¢ = A", (19)
whereH (\(+)) is the Hessian matrix of, evaluated a&(*). Define the plang®’ to be tangent to the buckled surface
n® atg = A(). Now maximize the transverse variatiosn”| by varyings¢'” = ¢ — A € 1 over the
whole allowed range € nf) N Q. To estimate the buckling of the level surfag@\(*)), also find a compensating
longitudinal model variatiomh‘(f) = —5h with the variationéqﬁs) =qg-A® . [6qﬁs)]T6q(f) = 0. Switching

from the approximaténﬁf)) to the true boundaryn(®)) while maintaining the enclosed probability between the
corresponding surfaces fer= =+, A(*) has to be adjusted by an amous(®)| < |6qﬁs)|. By assuming a (locally)
uniform probability distribution, using a quadratic modébuckling as in Eq. (19), and equalizing the two integnasio
of probability for the planar and buckled surfaces, the lubcem be narrowed down toA(®) | < |6q”5)|/3. This will
yield an upper bound of the magnitude of the lambda-poimtrésA (*) | due to buckling. To also account for the sign
of 5A(), usesAlsy) = 6|qﬁs)|/3, 5|q(|8)| = Sigﬂ(éqﬁs))|6qﬁs)| as a conservative measure of the buckling errox(®f.
While this provides the principle 1Jor how the error can bamated, the relevant quantities will be evaluated below.
For the transverse variatioWh]Téq(f) = 0in Eqg. (19). A rough estimate of the relevant rangeé@f) in

directiondﬁf) € nﬁf) is given by the (marginalized) standard deviata'ﬂﬁ =4/ [df)]Tcov(q)de). To find the largest
relevant buckling, the corresponding model variation in @§) should be maximized foqu(f) = o(f)d(f),

1 (s 3(s) 1 3(s (s
== max |[d}]"cov(q)d\" [d]" Hd()

ma AP en na. (20)
1l=1

max }6h(f)

This constrained quarti¢t) form of ci(f) may be converted to a simpler quadratig form by changing to canon-
ical parameters satisfying cop) = 1, as in Section 4.3.2. The Hessian transforms accordingwothe gradient
transformsH = [V ® VIh — H = [(SUV) ® (XUV)T)]h, where® denotes outer product,

1 _
= — max ‘[J(f)]THJ(f)

2 1| =1 J J(f) € nf) naQ, H=XUHUTY. (21)
)=

max léhf)
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To satisfyci(f) € n(f), express the variation in an orthonormal (ON) basis coathinn(f). It can be obtained by
projecting the unit basis vectors cmf), or equivalently, by subtracting their projections on thadjent. This will
result inn vectors inn(f). These are neither mutually orhogonal nor normalized bannaﬁf) with n — 1 degrees of
freedom. One vector becomes redundant after the projedtoeliminate this redundancy and convert the remaining
vectors to an ON-basiB(®) with basis vectors in columns,, k = 1,...,n — 1, apply Gram-Schmidt orthogonaliza-
tion [14]. It will here be formulated in terms of an opera@ywhich includes elimination of redundancy. It is easily
identified, as redundant vectors will vanish in the orthagiation. In the canonical basis used here,

EG) — @ (] —Vh® & [vh(s)]T) =G (I — ’ZU@}L(S)

—2 - ~
SUVAE®) @ [Vh<5>]TUT2) : (22)

Expressed in this basig|” = Edf), Wheredf) is the column vector of coordinates in thebasis. If the transformed
Hessian is also diagonalized, Eq. (21) reads

1 . . . e
max [sh)| = 5 max 407 A, A = ETSUHUTSE = VTV,
2140 1=1
Tix = &y VIV=vVT=1I (23)

The constraintf(f) € nf) has here been eliminated by one additional transformafioAccording to the spectral
theorem [14], diagonalization of the symmetric matfixis always possible and the eigenvalgesare real-valued.
Since alsqci(f)| = 1, the largest variation is given by the eigenvalue with tligdat magnitude,

1
max‘éhﬁf) = gmax [yl k=1,2,...,n— 1. (24)

For the longitudinal variation[,Vh]TéqﬁS) # 0in Eg. (19). A linear model approximation is then presumably

sufficient. The variation is here along the gradient dimcnsqﬁs) = 6|qﬁs)|s@h(7\(s>), giving the model variation

Inferring éhf) = -5k and OAp = 6|qﬁs)|/3 as argued above, upper bounds for the lambda-point errersodu
buckling of the confidence boundaries are found,

67\(35) _ s maxy, [Vl (26)

A =gl 6 gni /[T R Tcovq) Vi

4.4 Coverage Factors

All studied approximate methods (LIN, UNG, UNR) requireimsttes of coverage factors. For all UN methods,
removing the degeneracy is equivalent to marginalizati®@h$f the multivariate distribution af — ¢, into a univariate
distribution over a directional parametgr = JT(q — ¢.) (in simplified notation). Instead of estimating coverage
factorsk, and propagating covariance as in Egs. (5)—(6) or (8)—(2) eample poind = ¢. + hqd may be directly
determined from the marginal distribution@f The step length,; may easily be found numerically with rudimentary
MC:

1. Diagonalize the covariance matrix, i.e., fidld UTU = UUT = I such that/cov(q)U” is diagonal.

2. Generate a random multivariate ensemblexagamples of: independent parameters and collect in malbix
of sizen x m, {W : WW7T /m = Ucov(q)UT} .

Volume 3, Number 5, 2013



432 Hessling & Svensson

3. Transform and marginalizg; — ¢.} = UTW along directiond to obtain the univariate ensemble (row vector)
D=d"UTW.

4. SortD and extract percentile,.

Since no evaluation of the complex model is heeded and thginadization only consists of a linear transformation,
random sampling is in this case numerically very inexpenshhe error of evaluating, may thus in practice be
reduced to a minimum for all UN methods, for static as wellyasainic models. That is important since the estimation
of k, may be a dominating source of calculation errors.

In stark contrast, the coverage factor of the LIN methodesléo the complex model. Thus, there is no equivalent
effective numerical method to finkl,. It must instead be estimated, or rather guessed, from geaspects of the
model parameters and their distribution [1]. In particufiara dynamic measurement it must be assignedtinatant
despite it is varying in time; see Fig. 7. This will directirder a lower bound of the error of evaluating as argued
in Section 6.4.2.

5. DYNAMIC MODELS

Evaluation of dynamic models [20] is synonymous to dynanmugations over an entire time epoch: The models are
ordinary differential equations in the time domain, whie@nde expressed in terms of transfer functioiis, s), or
G(q, z). These functions are the Laplace—aransforms of impulse responsgg, ¢). A dynamic modeh(y, ¢, t) is
evaluated by convolvingk), the impulse response of the syste, ¢), with its input signal(t), h(y, q,t) = g(q,t)*
y(t). The modeh(y, ¢, t) is thus an implicit function of time via thewholesignaly(t) and not only its instantaneous
amplitudey(t) (as for static models). The model systefy, ¢t) as well as the gradient systeéw, (g, t) can often be
realized with digital filters [18]. Due to imposed corretats of the dynamic systeg{q, t), most quantities become
generically time-dependent signals or objects,ithgimensional gradier¥ i (y, ¢, t) = [V49(q, T) * y(T)]=, the
confidence boundaries®)(¢), as well as the coverage factby(t). The lambda pointa(*)(¢) in Eq. (4) are thus
unique for each time instant The gradient column vectdr . is for dynamic models conveniently generalized to a
matrix of sensitivity signals arranged in rows, its elem@njh],; = [V,h(y, ¢, )]k is the sensitivity for parameter
qr attimet;.

Throwing away all evaluated samples for every pair of lambaoiats except at makes UN sampling potentially
inefficient but is an unavoidable consequence of the timesdegnce ofy(*) (¢). Fortunately, the response times
T(A(®)) of the impulse responsegA(®)(t), ) are for all practical purposes finite, also for infinite impairesponse
(IIR) systems. Therefore it is sufficient to apply the filtéxsm ¢ — T(A(*)). For asymmetric time-reversed correction
[18, 21], there are two response times,(A(*) ) for direct andr z (A(*) ) for time-reversed filtering. We are then allowed
to only apply the digital filterg/(A(®) (¢),t) to y(t) for t — Tp(A)) < ¢t < t + 1x(A)). This is usually a minute
fraction of the whole time interval

Applying the LIN method on dynamic measurements [18, 22 dénterh. and half-widthh,, of the confidence
interval at timet; are given by

hc(tl) [g(qCa t) * y(t)]t:tz ) (27)
ho(t]) = T/ ah(ser 1) COM) Vg hly s ). 28)

As stated in Section S.kﬁ,h) #+ kz(f‘). Consistency requires the same model approximation (iireg#on) for estimat-
ing k,, as for propagating cdy). That erroneously implie]sf)h) = kz(f‘) for LIN. The induced temporal correlations in

a dynamic measurement also Calkg@ (t) but notkﬁ,” to be time-dependent. Both nonlinearities-in-parameteds
dynamic effects are thus error sourcesgpin LIN but neither of them results in errors &f in the UN methods.

6. EXAMPLES

The examples are not selected to be representative for thplerity of typical applications, but rather to provide
simple and transparent illustrations of the performance&dfmethods. Throughout, the confidence level will be
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chosen equal to 95% with symmetric intervals (equal prdiigbelow and above the interval). For all static examples,
the distributions of all parameters are assumed normal digtgbution ofg; = d”q is then also norma¥ d. That
solves the problem of estimating coverage factors for atlisd methods;,, = 1.96. This also allows for simple and
straightforward comparisons to MC simulations, as a diafjpation of coyq) also results in independent parameters.
The samples may thus be correctly created by unitary tramsfitons of random samples of independent parameters.
In the dynamic example the parameters are bounded. Therefariform distribution is chosen. A bonus of this
choice is that it will illustrate the time dependence of aagge factors in dynamic measurements, and that they can
be estimated with the proposed UN methods. To further enighasnlinear effects and differences between various
methods, the covariance matrices are set very large.

6.1 Static Model 1

An illustrative example of a simple static model equation is

h = (¢ +7g2)3

dec = (050)

covlg) — 0.104 —0.019 (29)
v = —0.019 0.196

The LIN method is clearly a poor and also invalid approximativhich results in zero uncertainty since the gradient
Veh =3(q1+¢2)?( 1 1 )T vanishes ag.. For application of the UNG method, it is the normalized dgeatithat is

of interestﬁqh = 1/\/5( 11 )T , q1 + g2 # 0. It does not exist along the ling + ¢> = 0 but may be continued
to the same value it has in all other points. The direction akimum variation is then constant. The lambda points
will be

AE) = ikz(,i)\/ (Vyh)Teov(q)V hV  h = £0.501 ( 1 ) : (30)
According to Eq. (4)[he — hy, he + hp] = [R(A7), L(AT)] = [-1.007, 1.007]. In this case the UNG method is exact:

The direction of maximum variation is constant so there igpproximation to use a constant gradient to estimate the
shape of the confidence domain.

This result may immediately be generalized: For afy = a” (q — ¢.)], {a, ¢c. ¢} € RV, whereh(w) is
monotonic andy has a multivariate normal distribution, the UNG method ia&xThe transformation to the gradient
parametery = (V,h)T (¢ — ¢c) = ||a||~*a” (¢ — ¢.) results in a strictly one-dimensional mods||a||qv ). Disre-
garding the problem of determining the coverage factorltN& method is exact for all such one-dimensional (1D)
models (see Section 3.1 and Fig. 1). In stark contrast, tNenhéthod is a more or less crude approximation whenever
h is nonlinear-in-parameters.

6.2 Static Model 2

Another closely related example of a static model is

h = aqqgs, «=32x1073

QC - (20,25)T

covig) — 0.104 —0.019 (31)
v = ~0.019 0.196 )

The constantx is a fixed scaling factor. Opposite to the previous exampkegirection of maximal variation of the
model varies. A finite error of the UNG method will thus be abgal. To enable a numerical comparison to the LIN
method,q. is displaced from the origin. The accuracy of the UNG methad determined by MC simulations with
107 realizations, see Table 1. Its uncertainty was estimatau the typical variation for repeated simulations and
transferred to the result of the UNG and LIN methods.
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The correct sceni = 33% is given by the negative error of estimatihg with the LIN method. It is large, as
expected from the asymmetry of the strongly nonlinear mote¢ nonlinear shift of the half-width,, is similarly
obtained as the negative error for LIK\:, = 4%. Expanding the model to a higher order only to improve the
calculation ofh, would be inconsistent and hardly improve the result. Theugury of the UNG method is high:
There is essentially no error of eithkg nor the halfwidthh,, of the confidence interval. The confidence domain is
illustrated in Fig. 3. The estimated and true (shown) confi@edomains were indistinguishable.

Methods to test the validity of UNG without reference methagre derived in Section 4.3. The result of applying
them here is presented in Table 2. The directional epriz less than 1 degree so the estimates are accurate. As this
applies for both UNG direction = s?h(qc), the confidence boundaries are very close to be parallelmBumitude

TABLE 1: Estimates of the confidence interval for the static examg&e2tion 6.2). The errors
are relative to the half-width,, = 1.078 for the MC simulation. For repeated MC simulations,
the limits [h. — hyp, he + hy,] typically varied+0.2% of h,,

M ethod [he £ By [he — hp, he + hy] | Error (%) | Scent error 8¢ (%)
MC / RSM(3) | [1.358 + 1.078] [0.280,2.437] [0,0] 0
LIN [1.000 + 1.038] | [—0.038,2.038] | [—29, —37] -33
LIR/RSM(1) | [1.185 & 1.172] [0.014,2.357] [—12, —4] -8
RSM(2) [1.343 £ 1.054] [0.289,2.396] 1, —4] —1
UNG [1.360 + 1.080] [0.280, 2.440] [0.1,0.3] 0.2
+)
35,1 a™
+
+ ]
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FIG. 3: Lambda points\(F) of the UNG method for the static example 2 (Section 6.2), ranted from the gradient
Vh. The confidence boundarigs§®) and the inverse centroid ling®) indicating the scent are defined thyn*)) =
he & by, h(M©) = h.. The six pointsv (+) provides a minimal set of samples for application of R8Mé second
order RSM.

TABLE 2: Directional errors §) with resulting errors of the magnitudaX( )
of the lambda-point variatior’s — ¢., and errors due to bucklingX ) of the
confidence boundary for the static example 2 (Section 6.2)

Method

¢ = acogVh7d)(deg

A/ = gel (%)

OAB/IA = qe| (%)

UNG

0.8,0.8]

0.3,0.3]

[0.0,0.0]
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error 5\ appears to be consistent with Fig. 3, even though the peec{gi2%) of the MC simulation is too low
to resolve the discrepancy. The minute buckling e&dg clearly indicates why the planar approximation of the
confidence boundary works well. In Fig. 3 it is indeed difftda discern any curvature at all that would render a
buckling error.

6.3 Static Model 3

An example of a static model which motivates higher order Udthrads than the UNG is

h = olg; —¢3), a=4x10"2
_ T
covig) — 1.962 0.192
U= \ 0192 1.038 )

The covariance is very large to illustrate the breakdowrhef UNG method. The direction of the gradient of the
model changes considerably over the large confidence ddmadimesults in a substantial error of the UNG method,
see Table 3. Also in this case, the MC simulation was made gitrsamples. In Fig. 4, the confidence boundaries
n&) are shown and the lambda points of the UNG and UNR methodsanpared.

TABLE 3: Estimates of the confidence interval for the static exampge®tion 6.3)

Method [he £ By [he — by, he + hy] | Error (%) | Scent error 5¢ (%)

MC [0.479 +1.444] | [—0.965,1.922] [0,0] 0

LIN [0+ 0.380] [—0.380,0.380] | [41,—107] -33
RSM(1) | [—0.035+0.862] | [—0.896,0.827] 2, —38 —18
RSM(2) | [0.626+1.356] | [—0.730,1.982] [16,4] 10

UNG [0 4 0.699] [—0.699,0.699] | [18,—85] -33

UNR | [0.546 + 1.485] [—0.939,2.032] 2,8 5

2
A'R

1t

2 L L L L L L L L L
-3 -2 -1 0 1 2 3 4 5

FIG. 4: Lambda pointag) of the UNR method (Section 4.2) and the corresponding pﬁ@i)sof the UNG method
(Section 4.1). The confidence boundari¢$) and the linen(®) indicating the scent are defined byn*)) = h, +
hy, h(n(®) = h.. The four mu sampleg (o) are used for determining the directions from the centéo the two
Iambda-pointag). The six pointsv (+) provides a minimal set of samples for application of RSMéXecond-order
RSM.
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The UNG method mainly fails to estimate the upper confideinti¢dlue to the very large variation of the direction
of the gradient. The UNG method incorrectly claiths- 0. Using different directions to estimate the upper and lower
confidence limits as in the UNR method results in a substanijarovement. Considering the large covariance, the
estimated scent = 0.546 for UNR is quite close to the correct valide= 0.479. Even though the directiong®)
from ¢, to A" do not cross the proper confidence boundarfés andn(~) orthogonally, they nevertheless hit these
boundaries fairly well. Consequently, the error of thereated confidence interval of the model is acceptable for the
UNR method, and much less than for the UNG method. This itiiss how the UNG method might fail and that it is
possible to construct higher order methods with bettergperénce. Finally, note that the computational cost is atmos
identical for the UNG and UNR methods. Only seven evaluatmfithe models are made with the UNR method, and
six with the UNG method if the gradient is evaluated with aasg@pproximation [13].

Further comparison is provided here by application of RSMva#t as a variant of LIN based on regression,
denoted LIR. The RSMY{) calculation of order. here utilizes surrogate models with mixed polynomials afeor.
Details are given in Appendix A. Compared to the Gauss appration formula, LIR offers an additional constant
offset of h. from h(q.). This additional degree of freedom allows for an estimatthefscent. The linear model is
identical to RSM(1) while the confidence interval is evaubas in LIN, see Appendix B.

Methods to test the validity of UNG and UNR without referemeethods were derived in Section 4.3. The result
of applying them here is presented in Table 4. In contrask#omple 2 in Section 6.2, the directional errdrsare
substantial, so the accuracy of the error estimates may égtiqunable. Based on the large misalignments of the
UNG, it is fair to state that it fails in this example. For th&lB, ¢ may be regarded acceptable as the relevant scalar
productsd” VA will only be [-5%, —2%] off. Even though the UNR method may be accurate for this reasdoes
not imply that the error estimates are equally good. Theigra@s well as the Hessians can differ substantially since
the estimated and ide&{*) are well separated i@@. This is difficult to account for in any other way than itevaty re-
evaluating\*) with directionsd(*) better aligned withV A (A(*)). Indeed, in Fig. A() appears to be close to inflection
points with a large variation of the Hessian, especially). That could make the quadratic expansion inaccurate in
Eq. (19). Comparing with Fig. 4, we find the error estimatee @i fair but not accurate (in particuke ) estimate of
how far the pointa\(*) are from the true confidence boundafy). The error estimates are thus not good for correction
but detect failures qualitatively correct.

6.4 Dynamic Correction of Measurement

High-voltage voltage dividers are widely used in high-agkt measurements and testing in laboratories. Voltage di-
viders are required to reduce high voltages to measurabédsieThe lightning test to be analyzed here is rather
fierce for many components and important in the developniesdfe electrical high-voltage equipment. The typical
response times of common voltage dividers are comparalileetoise time of lightning. The measurement is thus
dynamic [20] and consequently needs to be analyzed as sBETfie task considered here is to correct the measured
signal with a digital correction filter [21] and associaténag-dependent uncertainty to the corrected signal [22].

6.4.1 The Measurement and Its Correction

Neglecting the (high) load impedance of the measuremeripetnt attached to the low-voltage connection, the
equivalent circuit of the voltage divider is shown in Fig.The parameters given in Table 5 were chosen to reflect

TABLE 4: Directional errors ¢) with resulting errors of the magnitudé(|)
of the lambda-point variations — ¢., and errors due to bucklingX g) of the
confidence boundary for the static example 3 (Section 6.3)

Method | ¢ = acogVh7d)(deg | SA1/IA = q.|(%) | 8As/IA — q.|(%)
UNG 42, 42) 4.9, —49.9] [—2.6,—1.4]
UNR 19,12] [6.5,2.1] [1.3,1.1]
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CLV
LLV MLV
RLV

FIG.5: Equivalent electrical circuit diagram of a high voltagetagle divider (Section 6.4), with resistivg inductive
L, and capacitiv€’ parts. The high-voltage connectiopy to the device under test s to the left, while the low-voltage
connection:ry to the high-impedance voltmeter is to the right.

TABLE 5: Nominal resonance parameters of voltage divider. The nom-
inal resistanceR,, inductancel., and capacitanc€'. are related as,
L.C.=1/412¢p? R.C, =&/

co 1/1000 Nominal ratio of voltage division
[brv,drv] | [2.3,0.8] | Resonance freq. (MHz) HV, LV circuits
[Erv,Ev] | [1.2,0.4] Relative damping HV, LV circuits

common voltage dividers [24], rather than identified [25, f26m calibration measurements, or calculated from first
principles.

The dynamic model, or transfer functidf(s) of the voltage divider, is directly found by means of the il
rule of voltage division with impedances expressed in thaplace transform,

b182+b25—|— 1 1
—’ c E S,
a1sZ+azs+1 0 1+ Crv/Crv

bi=LrvCry a1=(Lav + Lrv)(Cyy + Cpy) ™!
by=RpyCry = |a»

(Ruv + Rpv)(Chy + Cpy) ™

The correction is given by the regularized approximatiothefinverse transfer functiod] ! (s) ~ 1/F(s) = H(s).
Since the modeF is independent of the curreiy (see Fig. 5), the prototype/ F'(s) for the correction has five
uncertain parameters even though there are six electtealeats of the voltage divider. The sampling rate was set
to 50 MHz. Simplifications were made to focus on the propagatiommdertainty of the correction: The simple
exponential mapping of poles and zeros was utilized to sani@ continuous time correctidi(s) into the digi-
tal filter g(q, t). Explicit regularization with low-pass noise filtering [Pd/as excluded since that was not required
with the simplified model [23]. The filter coefficiengs= cgl, a1, a2,b1, by were linearized in electrical parameters
p=Ryv,Luv,Cuv,RLyv, LLy,Cry to focus on the nonlinear dynamic mapping frerto H(q, s) and to disre-
gard any additional nonlinear static mapping frpno q.

The measurable quantity of interest is a normalized stahligtrtning test pulse [27]@(¢) is the Heaviside step
function],

F(q:co_laalaaQablaanS):CO < 17

(33)

2(t) = O(t)[exp(—t/Tr) — exp(—t/Tr)] /zmax {% vl (34)

The lambda points (vectora)®) (t) depend on the coefficiem:gl, a1, az, by, be Of the correctiorf (s). These are
positive, as they are given by products/@fL, andC'. This constraint is controlled by choosing a uniform dizition.
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The covariance matrix c@p) shown in Table 6 must be positive semi definite. This was eetifeigcov(p)] > 0.
Note that even though the covariance @ovbetween different electrical parameters is small,(gpis large between
different parameters of the correction and must not be cegle

The measured signal and confidence interval for the cooativaluated with MC simulations 66 realizations,
are shown in Fig. 6.

Initially, the measured pulsg(t) = f(q.,t) * 2(t) is well outside the confidence interval of the correction.
The correction thus gives a distinctive improvement. Afieound 1us though,y(t) € [he — hp, he + hy] and
the improvement with dynamic correctigriq., t) * y(t) may be guestioned. Obviously, dynamic correction does
not always guarantee a better result. To decide if cornecttoould be applied or not, accurate estimation of the
dynamic uncertainty as addressed here is essential. Istthisgly idealized simulation the correction of the sinteth
measurement is exact as it recovers the original signalowtthny errorg(g.,t) * [f(gc,t) * z(t)] = z(t)—the
example thus demonstrates aspects of dynamic uncertaopggation in the most transparent way.

6.4.2 The LIN Method

The LIN method described in Section 5 relies upon the gradignals for the correction and assigment of a universal
approximation of the coverage factor signal, shown in Fig. 7

TABLE 6: The relative covariance matrix for electrical parameters, Rgv, Lyv, Cyv,

Rrv, Ly, Crv, linearly transformed to the relative covariance of thefficients of cor-
rectiong = ¢y *, a1, az, by, b

cov({px/(Pc)r}) cov({qr/(gc)k})

62 42 0 0

42 7 0 0

12 0

0 7% 52

0 5% 92

0 0 0 2

5.0 —-10 —-1.0 6.2 4.0
—1.0 49 17 1.1 0.2
1074 —-1.0 17 37 0.0 0.1
6.2 1.1 0.0 208 45
4.0 0.2 01 45 53

o O O

1074

O O O O O

0
0
0
0

[

R 05 1 15 2

Time (ps)
FIG. 6: Results of applying the reference MC method in the dynaméerge (Section 6.4): The measured impulse
y(t) = f(ge,t) * x(t) (solid) and the estimated confidence interval linilts(t) — h,(t), he(t) + hp(t)] (dotted) and
centerh.(t) (dashed) of the dynamic correctidity, ¢, t) = g(q,t) * y(t), whereg(q, t) is the impulse response of
the correction filter. Only the fast rising edge of the lighthimpulse [Eq. (34)] is shown, as the other parts of the
pulse contain minor dynamic effects.
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1.5 2

0 0.5

Time (}11.9)
FIG. 7: The componentg = 051, a1, az, by, be of the gradienV,h(y, g, t), for correction of the lightning impulse
measured with the voltage divider. Ttime-dependerdoverage factok, is evaluated with the same MC simulations
as used in Fig. 6. The limiting dashed lineslat45, 1.96 indicate coverage factors of uniform and normal distribu-
tions, respectively. In the static limit of constant sigrigl — 1.645, since then there is only one uniformly distributed
static parameter{ *).

The mere variation of the cover factdr,(t) € [1.640, 1.866] results in an errofAh,|/h, > 7% of any ap-
proximate constant,. As stated in Section 2.2, the LIN method will always resnlzéero scent{(¢t) = 0. Rather
than more or less arbitrarily assign or guess a constanéalé, for LIN, which will grossly affecth,,, no further
evaluation of LIN is made in this example. We conclude thatilk give at least7% relative error of the half-width
hp in at least one instant of time (without additional compéinggerrors), and completely neglect the scé(t) at all
times. This sets the scale for comparing the proposed UNadetfUNG and UNR) with MC simulations.

6.4.3 The UN Methods

The lambda pointa(*) () were calculated according to Section 4.4 wiflf random samples, using the covariance
matrix coV(¢) in Table 6. For the UNG method, the matrix of gradient signaj&(y, q., t) was obtained with digital
filtering as described in Section 5, and is shown in Fig. 7.tRerUNR method, correction filters of ail*) were
realized and linear regression applied according to Sedtid. The correction filterg(A(*) (¢), t) were then for both
methods synthesized to filter the simulated measured lightoulsey (¢t) = f(q.,t) * z(t), wherez(t) is given by
Eqg. (34), andf(q., t) is the digital filter forF(q., s) in Eq. (33). From the two resulting signals the corrections a
the associated time instahtvere extracted to give the confidence interval limits acoaydo Eq. (4). The resulting
estimated sceni(t) = h.(y,¢,t) — h(y, ¢., t) and error of half-widthAh,(¢) are displayed in Fig. 8. The accuracy
of the UN methods were determined with Monte Carlo simufetidA\cceptable accuracy requirgf realizations.
Similarly to the static examples, the scérgtrongly dominates nonlinear effects, as typical for noedir propaga-
tion of uncertainty (Section 2.2). The correct scgft) can be read off from the MC simulations (top, “MC”). Relative
to the half-widthh,, it peaks around0%. The UNG method (“UNG”) generally underestimates the seewt also
fails in reproducing the oscillations after Ous. The UNR method (“UNR”) is more accurate for the intervalthw
large scent. For 0.s < ¢ < 1.0 us there is a noticable difference. Even if the error is najdathan abou?% of
hy, itillustrates inaccuracies of UNR. This happens wheneli®a substantial influence on the correction from many
parameters, see the gradient signal in Fig. 7. The timerdkp# confidence domain is then most complex and is
extending in many of the possible directions of the five-disienal parameter space. The half-widthis accurately
evaluated with both UN methods; the relative maximum ercepoading to Fig. 8 (bottom) is abowt of ,,. Initially
though, the UNG method underestimatgsby about2%. After about 0.3us, the UNG method is more accurate

Volume 3, Number 5, 2013



440 Hessling & Svensson

x 10

w
T

h(@)-h(q,)
N

o1
0
qt
-2 L L L L
0 0.5 1 1.5 2
Time (us)
8 X 104‘
6r |

4r
' - - -UNGMC
1 — -
PYEEN UNR-MC | |
'-,'
8 I I I I
0 05 15 2

1
Time (us)
FIG. 8: Top: The estimated scentt) for the UNG, UNR, and MC (reference) methods. For LINs= 0. Bottom:

The difference of calculated half-widths, for the UNG andRIMethods, relative MC. For LINMh,, /b, > 7%, see
Section 6.4.2. The reduced half-widthgs/10 andh,, /100 are included for comparison.

than UNR, which has an oscillating error. The error signéhhe UNR method (top, bottom) are thus qualitatively
similar. Overall, the error of the UNR method is slightlysehan the UNG method. Their confidence intervals are
nevertheless almost identical since the absolute errersraall. As anticipated, the errors are the largest where the
correction is the strongest, see Fig. 6. Evaluating theopexdnce, remember that confidence, or coverage intervals,
almost without expectations are fairly approximate duénhitéd statistical knowledge.

7. DISCUSSION

The proposed UN approach has an apparent resemblance tovi@sdh,is described in Appendix A. In both cases,
the model is first sampled in collocation points to find a magjgbroximation. The subsequent steps are however
distinctively different. RSM explores all possible vaitats of the parameters with a full MC simulation. The UN
approachcombineghe potential variation of the approximate model with theuaktvariation of the parameters to
determine the smallest possible set of poiitg, at which the model should be sampled in a second stage. This
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maximum sparse sampling is made with the exact and not ajppatex model (as in RSM), to estimate the desired
interval directly and not from a complete propagated pdfita@SM). The differences are substantial and result in
different accuracy and computational efficiency for RSM &idl methods. The RSM errors relate to approximated
sampling of themode] while all UN errors are due to approximate samplingpafametersThe efficiency defined

by the minimal number of evaluations of the original modegiigen for some numbers of parameters and methods in
Table 7.

Clearly, the LIN and LIR methods are most efficient but alsotam the coarsest approximations. The LIR (but
not LIN) method roughly indicates the scefjtas can been seen in examples in Sections 6.2 and 6.3. Esgnaat
nonlinear contribution to the result as the scent with adinmodel may appear contradictory. It is possible since
the linear model represents the mean, rather than a locah (BEN) variation of the model, over a finite range
of the parameters. If the distributions are normal, RSM(#&)dg the same result as LIR, with the same efficiency.
Increasing the order to RSM(2), the accuracy of the confidémtervals may improve substantially, see the examples
in Sections 6.2 and 6.3. Unfortunately, the efficiency dases rapidly with the number of parameters. An average-
sized model witl20 parameters requires as many2d$ model evaluations to determine the surrogate model of RSM.
For many finite element models, computational fluid dynamaij dynamic models this may lead to unacceptable
computation times. To improve the accuracy further, theeordof the RSM{) may be increased. I[f00 model
evaluations is the acceptable limit, at mast= 6 uncertain parameters are allowed foe= 3, n = 4 for r = 4,
and not more than = 3 parameters for = 5. For moderate values efand largen, RSM should not be used at
all since determining the surrogate model may require ayymauels evaluations as a brute force MC simulation.
High-orders- should generally be avoided due to the poor behavior of hogler polynomials.

The efficiency of the proposed UN methods scales linearli tie number of parameters. UNG requires- 3
model evaluations if the gradieRth(q.) is estimated with a minimal number of points in the vicinifyg. To avoid
using any sample (excegt) more than once in UNR, at lea&t + 3 samples are required. UNR thus has about half
the efficiency of UNG, but is often considerably more acairas can be seen in the examples in in Sections 6.3
and 6.4. The main complications with the UN methods belongvtocategories, one is related to accuracy and one
to efficiency. Both the UNG and UNR method rely upon a (piesevconstant direction of the gradient over the
relevant part of the true confidence domain. Whenever thillated (as in example in the Section 6.3), the accuracy
is reduced. The other difficulty related to efficiency occfmshigher dimensional models € R™,m > 1, or
fieldsh € R™** m, k > 1. The confidence domains will generally be different for eliéint components,, and
A(®) should be estimated independently, as in the example iricBe8t4. This complication is shared with RSM,
which also need unique surrogate models forhgll To obtain any result at all in this case, the high efficienty o
UNG/UNR displayed in Table 7 may be crucial. There are alé@iovariants of deterministic sampling which are
more appropriate for vector and field models. Instead of$owion varying confidence domains, it is more efficient
to study quantities invariant over different componéhts such as the statistical moments of the parameters. The
two lambda points are then substituted with a larger set wipdas which instead is universallyk,,) valid. This
alternative was recently illustrated for a simple dynamxiareple [18] and will be further investigated in the future.

TABLE 7: Computational efficiency for RSM{ [Eq. (A.3)]
for selected orders, and UNG/UNR

Parameters 2 5 10 20 30
method
LIN/LIR/RSM(1) | 3 6 11 21 31
RSM(2) 6 21 66 231 496
RSM(3) 10| 56 | 286 | 1,771 5,456
RSM(4) 15| 126 | 1001 | 10,626| 46,376
RSM(5) 21 | 252 | 3003 | 53,130| 324,632
UNG 5 8 13 23 33
UNR 7 13 23 43 63
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By no means do the proposed UN methods exhaust all possiplexmations. Higher order methods should
account for the variation of the gradient direction. Thatudes rotation of the level hyperplanes of the model, as wel
as the buckling of each such hyperplane. By necessity, thplexity of the method will increase and the efficiency
will decrease. The primary goal here is to propose a novel Ppr@ach and illustrate that it can be efficient and
accurate, rather than exploring all possible approxinmatio

8. CONCLUSIONS

A novel “UN” class of methods for nonlinear propagation otartainty by sampling at confidence boundaries has
been introduced. The proposed UNG and UNR methods are twmépmate methods of this class. The main lim-
itation of these methods is their rudimentary topology & #stimated confidence domain. The main criterion for
their validity is a low variation of the direction of maximaariation of the model in the parameter space, over the
relevant range of parametric variation. That is analogausiifferent from the requirement of a low residual error
of truncation in any finite Taylor expansion. The magnituflenodel variation is irrelevant for the UNG and UNR
methods, which makes them accurate and robust. For seeasains, the approach focuses on the complexity of the
model equation, rather than the fidelity of statistical mfiation (as is conventional):

1. Models are often more complex than probability distiitos.
2. For confidence intervals, the dependence on statistitallslis usually weak.
3. Statistical information is seldom known accurately.

More comparisons between the traditional and various ambres based on sampling on confidence boundaries
are strongly desired, as well as refinements and more veigiioaf the proposed methods for evaluating their validity.
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APPENDIX A. RESPONSE SURFACE METHODOLOGY WITH POLYNOMIAL S URROGATE MODELS

A presumably complex model can be approximated with a matétf*) simple enough to perform a full MC
simulation [9, 28]. This simulation is then made as if theragpnate model would be the true model. Ath-order
model approximation can be chosen as a mixédorder polynomial,

r w(n,k)
R(RSM(r) _ jm j=1Cikm = K
" ICZO 1nzl e Hq] ' { €jkm Z 07 V{j,k,m} (Al)
The numberw(n, k) of termsay,, can be found recursively,
min(n,k) n . o
win, k) = { 2u=1 ( j > w(g k=7), k>0 (A.2)
1, k=0.
Unique determination of the surrogate model requires arfuik regression matrix. The true model must thus be
sampled in at leagt collocation pointsy = ( vi  va ... v, ),
p(r) =Y w(n,k). (A3)
k=0
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This number determines the efficiency of the RSM, providedrithmerical cost for evaluating the true model domi-
nates over the cost for the MC simulation of the surrogateghdthe coefficients can be found using linear regression,
similar to how the linear model paramet&fﬁ) ,d®) are determined from the collocation poiptsf the UNR method
[Section 4.2, Egs. (7)—(9)]. A difference is thdf*>M ()] is nonlinear for- > 1. It may indeed be possible to use the
same setg andv, but it may not be sufficient or optimal for RSM.

It is nontrivial to find optimalv points which are evenly distributed in the most relevanimegnd are as few as
possible for maximum computational efficiency. The matfix= &1 for {1} in Eq. (10) can be adapted to describe

the primary variations ofv},
(v} = g+ () UTy/Ucov(q)UTYV, (A.4)
Vv = (v v@ oyl (A.5)

The variations are described by the columnd/gfdivided into submatrice¥ (). Thev points contained iV (¥)

are here defined to have the same magniqthﬂé’;)ﬂ = p(k), Vq and are thus contained within one “shell.” The
samples should be uniformly distributed within each sk&fl’, with appropriate offset rotations between the shells.
Selectedv points are preferably checked to be sufficient by verifymgrank of the regression matrix. This spherical
geometry is appropriate since the scglé&’cov(q)U” has been extracted.¢f k) = 1, Vk, the regression matrix will
be rank deficient for > 1 andh[5M ()] pecomes ambiguous. Thepoints chosen in Section 4.2 will thus not yield
appropriatev points for RSM ifr > 1. In the examples in Sections 6.2 and @&) = max (1, k) /r with w(n, k) v
points in the shell described By*) for k& > 1, butw(n, 1) + 1 v points fork = 1.

APPENDIX B. LINEARIZATION WITH REGRESSION (LIR)

For RSM(1), MC simulations are not needed to propagate thar@nce of the parameters. However, for non-normal
probability distributions the evaluation of the coveragetér &, requires an MC simulation, as described in Sec-
tion 4.4. The only difference between linearization witgnession (LIR) and LIN [1] is one added degree of freedom
describing an offset. Instead of blind assignment of théraeépoint of the confidence interval of the modeling result
to h(q.), itis an additional free parameter. In contrast to LIN, the method gives a rough but not accurate indication
of the scent. The confidence interval is given by

[BETR) 1 p (TR — (1 T ) ( (201 ) + k{7 /lar]Teov(q)ar, ar. = (a1 aiz o am )T, (B.1)

whereh(FSMM)(g) = (11 ¢7) ( 201 > is the linear surrogate model of RSM(1), see Appendix A.
1:
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