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Failure in brittle materials led by the evolution of micro- to macro-cracks under repetitive or in-

creasing loads is often catastrophic with no significant plasticity to advert the onset of fracture.

Early failure detection with respective location are utterly important features in any practical ap-

plication, both of which can be effectively addressed using artificial intelligence. In this paper, we

develop a supervised machine learning (ML) framework to predict failure in an isothermal, linear

elastic and isotropic phase-field model for damage and fatigue of brittle materials. Time-series data of

the phase-field model is extracted from virtual sensing nodes at different locations of the geometry.

A pattern recognition scheme is introduced to represent time-series data/sensor node responses as a

pattern with a corresponding label, integrated with ML algorithms, used for damage classification

with identified patterns. We perform an uncertainty analysis by superposing random noise to the

time-series data to assess the robustness of the framework with noise-polluted data. Results indicate

that the proposed framework is capable of predicting failure with acceptable accuracy even in the

presence of high noise levels. The findings demonstrate satisfactory performance of the supervised

ML framework and the applicability of artificial intelligence and ML to a practical engineering prob-

lem, i.e., data-driven failure prediction in brittle materials.

KEY WORDS: finite element method, virtual sensing nodes, pattern recognition, artifi-
cial neural networks, k-nearest neighbor, confusion matrix, failure location/pattern

1. INTRODUCTION

Predictability is essential to any mathematical model for failure and fracture. From early lin-
ear elastic fracture mechanic models from Griffith (1921) tofailure analysis through damage
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mechanics by Lemaitre and Desmorat (2005), numerical models have improved in scope and
complexity to provide realistic simulations of material failure to meet industry goals of safety
and to reduce component weight and production costs. The accurate simulation of the failure pro-
cess, from crack initiation to propagation until final failure, in a consistent way, while respecting
the physics and developing robust numerical methods, is still a challenging task.

During the last decade, phase-field models have been successfully established as a powerful
tool in the study of damage and fatigue. By modeling sharp interfaces through smooth contin-
uous fields, the dynamics of moving boundaries using phase fields emerged in diverse physi-
cal applications, including fluid separation (Cahn and Hilliard, 1958), solidification (Allen and
Cahn, 1979), tumor growth (Lima et al., 2014), two-phase complex fluid flow (Yue et al., 2004),
and fluid-structure interaction (Sun et al., 2014). In failure analysis, crack sharpness is modeled
through a smooth phase field, indicating the state of the material among fractured, virgin, and
intermediate damaged zones, evolving through Allen–Cahn-type equations. Examples ranging
from brittle (Borden et al., 2014; Miehe et al., 2010a,b), ductile (Ambati et al., 2015, 2016),
and dynamic fracture (Borden et al., 2012; Hofacker and Miehe, 2013) successfully described
phenomenological effects such as crack initiation, branching, and coalescence. The inclusion of
fatigue effects was initially attempted with Ginsburg–Landau free-energy potentials (Amendola
et al., 2016) and fractional derivatives (Caputo and Fabrizio, 2015). A more general framework
for damage and fatigue was later developed in a nonisothermal and thermodynamically con-
sistent approach (Boldrini et al., 2016; Chiarelli et al., 2017; Haveroth et al., 2018), followed
by the emergence of further phase-field models for fatigue (Carrara et al., 2019; Seiler et al.,
2019). Within this myriad of different models, solution uncertainty and parametric sensitivity
are still influential, and the predictability of phase-fieldmodels for arbitrary conditions is yet a
withstanding effort (Barros de Moraes et al., 2020). One promising approach to address the pre-
dictability of numerical models is to use artificial intelligence (AI), which has been consistently
expanding its applicability over the years.

AI and machine learning (ML) have been widely used in different engineering applications
such as structural health monitoring (Al Azzawi et al., 2016; Liu et al., 2011; Saeidpour et al.,
2018; Salehi and Burgueno, 2018; Salehi et al., 2018a,b, 2019a,b; Santos et al., 2016; Silva et al.,
2016; Wootton et al., 2017) and fatigue crack detection (Limand Sohn, 2018; Lim et al., 2018;
Rovinelli et al., 2018). ML algorithms, in the context of failure analysis, have been used for
numerous applications, including phase-field models of polymer-based dielectrics (Shen et al.,
2019), phase-field models of solidification (Yabansu et al.,2017), and crystal plasticity (Pa-
panikolaou et al., 2019). Another interesting applicationof ML is to obtain a data-driven repre-
sentation of free-energy potentials in the atomic scale andupscale it to a phase-field model using
integrable deep neural networks (Teichert et al., 2019). Specifically for brittle failure, ML has
been recently used to build surrogate models based on explicit crack representation (Hunter et al.,
2019) and in failure prediction using a discrete crack representation model for high-fidelity sim-
ulations that feed an artificial neural networks (ANN) algorithm (Moore et al., 2018; Schwarzer
et al., 2019). Nonetheless, the noted studies have only shown the applicability of ML in failure
analysis. Therefore, ML methods have not yet been explored in the context of phase-field mod-
els for damage. It is noted that the use of ML leads to a new paradigm of phase-field modeling,
where we establish the basis for novel data-driven frameworks, allowing systematic infusion of
statistical information and corresponding uncertainty propagation from microscale models and
experiments into continuum macroscopic failure models.

In this work, we develop an ML algorithmic framework for failure detection and classifica-
tion merging a pattern recognition (PR) scheme and ML algorithms applied to a damage and
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fatigue phase-field model. We consider an isothermal linearelastic and isotropic material under
the hypothesis of small deformations and brittle fracture.We simulate the phase field model us-
ing the finite element method (FEM) and a semi-implicit time-integration scheme to generate
time-series data of damage phase-fieldϕ and degradation functiong(ϕ) = (1 − ϕ)2 from vir-
tual sensing nodes positioned at different locations across a test specimen. We introduce a PR
scheme as part of the ML framework, in which time-series datafrom the FEM node responses
are considered as a pattern with a corresponding label. We define multiple labels for “no fail-
ure,” “onset of failure,” and “failure” of the test specimenbased on tensile test load-displacement
curve and damage threshold concept. Once the patterns representing different states of the ma-
terial are identified, the proposed ML framework employsk-nearest neighbor (k-NN) and ANN
algorithms to detect the presence and location of failure using such patterns. The use of ML
algorithms makes the failure prediction framework practical even in cases of complex loading
conditions, beyond the canonical example of monotonic loads presented here.

In this study, we consider different failure types to further assess the performance of the
framework. In addition, by introducing noise to the time-series data, we ascertain the robustness
of the proposed framework with noise-polluted data, leading to the effective use in failure analy-
sis under high sensitive/uncertain parameters and operators. The idea of propagating uncertainty
through the solution, combined with the inherent nonlinearity of the damage phase-field model
make the choice of ANN particularly attractive in the construction of the framework. The find-
ings from this study will pave a way for the development of novel data-driven failure prediction
frameworks, which are able to efficiently establish a link among the classification results (i.e.,
accuracy) and different phase-field model parameters, thusenabling the computational frame-
work to identify those parameters affecting the model’s accuracy and updating them to achieve
the best performance.

The paper is organized as follows: in Section 2 we present thedamage and fatigue phase-
field model, which is used to generate time-series data for the ML framework. We introduce the
data generation procedure and corresponding label definitions in Section 3. We present the ML
framework in Section 4, where we describe the integration ofa pattern recognition scheme with
the applied classification algorithms,k-NN and ANN. We present and discuss the numerical
results in Section 5. We then conclude and summarize the paper in Section 6.

2. DAMAGE AND FATIGUE PHASE-FIELD MODEL

2.1 Governing Equations

We consider an isothermal phase-field framework for structural damage and fatigue, modeled by
a system of coupled differential equations for the evolution of displacementu, velocity v = u̇,
damageϕ, and fatigueF . The damage phase fieldϕ describes the volumetric fraction of de-
graded material and takesϕ = 0 for virgin material,ϕ = 1 for fractured material, varying
between those states, 0≤ ϕ ≤ 1, as a damaged material. The evolution equation for the damage
field is of the Allen–Cahn type, since the damage and aging effects are nonconservative and non-
decreasing, and is derived along with the equations of motion for u andv through the principle of
virtual power and entropy inequalities with thermodynamicconsistency (Boldrini et al., 2016).
The fatigue fieldF is associated to the presence of microcracks and is treated as an internal
variable whose evolution equation is obtained through constitutive relations that must satisfy the
entropy inequality for all admissible processes. The geometry is defined over a spatial domain
Ω ⊂ R

d, d = 1, 2, 3, at timet ∈ (0, T ].
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The final form of the governing equations will be defined by thechoice of free-energy po-
tentials related to elasticity, damage, and fatigue. We consider a linear elastic isotropic material,
where the phase field free energy takes the usual gradient form:

Ψ(E,ϕ,F) =
1
2
(1−ϕ)2ET CE + gc

γ

2
|∇ϕ|2 + K(ϕ,F), (1)

whereE = ∇Su is the strain tensor and∇Sq = sym(∇q) represents the symmetric part of the
gradient of a given vector fieldq. Also, C is the elasticity tensor written in terms of the Young
modulusE and Poisson coefficientν, gc is the Griffith energy,γ > 0 is the phase-field layer
width parameter, andK(ϕ,F) is a function that models the damage evolution due to fatigue
effects. The first term in Eq. (1) represents the degraded elastic response, modeled by the choice
of degradation functiong(ϕ) = (1 − ϕ)2. The final set of governing equations, defined over
Ω× (0, T ], becomes







































u̇ = v,

v̇ = div

(

(1−ϕ)2C

ρ
E
)

+
b

ρ
div (D)−

γgc
ρ

div (∇ϕ⊗∇ϕ) + f,

ϕ̇ =
γgc
λ

∆ϕ+
1
λ
(1−ϕ)ETCE −

1
λγ

[gcH
′(ϕ) + FH′

f (ϕ)],

Ḟ = −
F̂

γ
Hf (ϕ),

(2)

subjected to appropriate initial and boundary conditions,which depend on the physical problem.
Either displacement or stress are known at the boundaries, in addition to considering∇ϕ · n =
0 on ∂Ω. Moreover, the⊗ operator denotes the outer product, the infinitesimal strain rate tensor
is represented byD = ∇Sv, and parametersb andρ are the material’s viscous damping and
density, respectively. We constructλ such that the rate of change of damage increases with
damage (see, e.g., Lemaitre and Desmorat, 2005):

1
λ
=

c

(1+ δ−ϕ)ς
, (3)

wherec, ς > 0 are material dependent, andδ > 0 is a small constant to avoid numerical
singularity.

The potentialsH(ϕ) andHf (ϕ) model the damage transition from 0 to 1 as fatigue changes
from zero togc. We take their (ordinary) derivatives with respect toϕ to obtain potentialsH′(ϕ)
andH′

f (ϕ). Further details on fatigue potentials can be found in Boldrini et al. (2016). Choosing
the transition to be continuous and monotonically increasing, suitable choices for the potentials
are

H(ϕ) =















0.5ϕ2 for 0 ≤ ϕ ≤ 1,

0.5+ δ(ϕ− 1) for ϕ > 1,

−δϕ for ϕ < 0.

(4)

Hf (ϕ) =















−ϕ for 0 ≤ ϕ ≤ 1,

−1 for ϕ > 1,

0 for ϕ < 0.

(5)

Journal of Machine Learning for Modeling and Computing



A Phase Field–Based Machine Learning Framework 69

The evolution of fatigueF is controlled byF̂ , related to the formation and growth of mi-
crocracks that occur in cyclic loadings. We note that being ameasure of energy accumulated
in the microsctructure, fatigue variableF grows even under monotonic loading. The form ofF̂
depends on the absolute value of the power related to stress in the virgin material:

F̂ = a(1−ϕ) |(CE + bD) : D|, (6)

where the parametera in this case is chosen to give a linear dependence of the powerof stress.

2.2 Discretization

We discretize Eq. (2) in space using the linear finite elementmethod (FEM), where the semidis-
crete form is obtained through the Galerkin method. For detailed derivation of the spatial dis-
cretization in 2D, we refer to Barros de Moraes et al. (2020).We denotë̂u = ˙̂v and write the
semidiscrete form for an elementk as























Mk ¨̂uk = Kk
u ûk + Kk

v v̂k + wk
a + Mk f̂

k
,

Mk
ϕ

˙̂ϕk =
(

Pk
ϕ
+ Kk

c

)

ϕ̂
k + wk

b + wk
c ,

Mk
F

˙̂
F

k = wk
d,

(7)

whereM , Mϕ, andMF are mass matrices related to displacement, damage, and fatigue, respec-
tively. In the equation of motion,Ku is the damage-degraded elasticity stiffness matrix,Kv is
the viscous damping matrix, andwa is related to the gradient of damage. In the damage evolu-
tion equation,Pϕ includes the Laplacian and potentialH′(ϕ). The influence of displacement in
damage is represented byK c andwb. The potentialH′

f (ϕ) affects thewc operator, andwd is
the operator on the right-hand side of the fatigue evolutionequation. We obtain the global form
of operator matrices by the standard assembly operation, and we drop the superscriptk in the
global sense.

We further discretize the operators in time, adopting a staggered semi-implicit time inte-
gration scheme, where nonlinear terms are treated explicitly, thus avoiding the use of iterative
methods. Let the solution time interval[0, T ] be split in discrete time stepstn with time incre-
ments of size∆t = tn+1 − tn > 0, n = 0, 1, . . . . For the global approximation of any field
variableq, we denoteqn+1 = q̂(tn+1).

We first solve the damage evolution equation and obtainϕn+1 using the backward Euler
scheme, where we treatλ, displacement, and fatigue explicitly, using values from time steptn.
Evolution of damage is then obtained by solving the linear system

[Mϕ −∆t(Pϕ + K c)]ϕn+1 = Mϕϕn +∆t(wb + wc). (8)

After we update the damage field, we use the Newmark method to solve displacement and
velocity in the equation of motion. We denote acceleration and velocity at timetn+1 by

ün+1 = α1 (un+1 − un)− α2u̇n − α3ün, (9)

u̇n+1 = α4 (un+1 − un) + α5u̇n + α6ün, (10)

with αi, i = 1, 2, . . . , 6 written in terms of standard Newmark coefficientsγ̃ andβ̃:

α1 =
1

β̃∆t2 , (11)
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α2 =
1

β̃∆t
, (12)

α3 =
1− 2β̃

2β̃
, (13)

α4 =
γ̃

β̃∆t
, (14)

α5 = 1−
γ̃

β̃
, (15)

and

α6 =

(

1−
γ̃

2β̃

)

∆t. (16)

The discrete form of the equation of motion for computing displacements becomes

[α1M − Ku − α4Kv] un+1 = M [α3ün + α2u̇n + α1un]

+ Kv [α6ün + α5u̇n − α4un] + wa + Mf n+1.
(17)

Then, we update the acceleration and velocity fields using Eqs. (9) and (10), respectively.
When imposing prescribed displacementū(tn+1), we also prescribe corresponding velocity and
acceleration at the boundaries using

¯̈un+1 =
d2

dt2
ū(tn+1), (18)

and
¯̇un+1 =

d

dt
ū(tn+1), (19)

where the bar symbol represents the prescribed degrees of freedom.
Finally, we use the trapezoidal method to update the fatiguefield, obtaining

Fn+1 = Fn +
∆t

2
M−1

F
[wd (un+1, vn+1,ϕn+1) + wd (un, vn,ϕn)]. (20)

We consider the tensile test specimen without notch depicted in Fig. 1. We discretize it
with a finite element mesh consisting of 3912 nodes and 7236 linear triangle elements, with
smallest element size of 0.614 mm. We constrain one end and apply a prescribed displacement
of 4.5 × 10−4 m/s, with time increments of∆t = 5 × 10−4 s, at the other end. We study a
material with the Young modulusE = 160 GPa, Poisson coefficientν = 0.3, and density
ρ = 7800 kg/m3, under plane stress conditions with thickness ofh = 5 mm. The rate of change
of fatiguea is 5× 10−7 m2, and viscous dampingb is 1× 108 Ns/m2. The remaining parameters
γ (phase-field layer width),gc (Griffith energy), andc (rate of change of damage), are chosen in
order to construct a set of different representative cases.We focus on those parameters to build
the cases because they are the most sensitive and give more uncertainty in damage evolution
(Barros de Moraes et al., 2020).

3. DATA PROCESSING

In this section, we highlight how to obtain time-series datafrom phase-field simulations to train
and test the learning algorithms. Further, we explore different possibilities of label definitions in
the context of failure prediction based on the simulation results.
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FIG. 1: Description of geometry and boundary conditions for the tensile test specimen, along with finite
element mesh and sensor layout for time-series generation.We highlight two sensor nodes that show dif-
ferent time-series behaviors. (a) Geometry and boundary conditions and (b) mesh and virtual sensor nodes.

3.1 Time-Series Data Generation

To generate time-series data, virtual sensing nodes are considered at different locations of the
specimen, as shown in Fig. 1. The sensor layout in our tests issimply chosen to provide a coarse-
to-fine (variable) resolution for the ML framework to calibrate/train and classify time-series data.

Table 1 presents the parameters used to construct each representative failure case or type, for
which we plot the damage phase field at failure time in Fig. 2. We also observe three different
failure types (i.e., around the fillets, at the middle of the specimen, and in an intermediate region
between those), where the effect of changing parameters is clearly noticeable. We observe the
different damage evolution in the highlighted sensor nodesshown in Fig. 1 from their time-series
data. We plot time-series data from sensor nodes 91 (at the middle of the specimen) and 143 (at
one of the fillets), for cases 1, 2, and 3, where we observe the different evolution profiles based
on each failure type (see Fig. 3).

From the damage phase-field time-series dataϕ at sensing nodes, we then form a feature
vector of a pattern as the degradation functiong(ϕ) = (1 − ϕ)2. Thus, patterns are generated
usingg(ϕ), extracted at sensing nodes for a given time step. Accordingly, a label is assigned to
identified patterns at each time step.

Damageϕ is a proper measure of material failure. However, by definingthe feature vector
based on the degradation functiong(ϕ) instead, we directly measure the material softening, since

TABLE 1: Parameters used in the representative cases

Case γ (m) gc (N/m) c (m/Ns)
1 3.00× 10−4 2700 2.00× 10−6

2 2.00× 10−3 2700 2.00× 10−6

3 5.00× 10−4 5400 2.00× 10−6

4 5.00× 10−4 10800 2.00× 10−6

5 2.00× 10−3 5400 1.00× 10−6

6 2.50× 10−4 5400 1.00× 10−6
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2: Damage phase field for each representative failure case. By changing the parametersγ, gc, and
c, we observe different failure types (distinct crack positions and paths), as well as varying dynamics. (a)
Case 1,t = 0.48 s; (b) case 1,t = 0.48 s; (c) case 1,t = 0.62 s; (d) case 1,t = 0.78 s; (e) case 1,t = 0.62 s;
(f) case 1,t = 0.64 s.

g(ϕ) is the field variable that degrades the constitutive model, thus reducing the component’s
load-bearing capabilities.

3.2 Label Definitions

In the domain of ML, the label is defined as the output of the classification algorithm. We outline
different criteria used to generate the labels for the supervised ML algorithms. In the context of
failure analysis, labels should reflect the material’s capacity to withstand loads, so a first rational
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FIG. 3: Damage phase field time-series data for three cases showing the different evolution ofϕ depending
on the virtual sensor node position. (a) Case 1, (b) case 2, (c) case 3.

choice is to define labels based on the load-displacement curve. Besides, we generate labels
based on a damage threshold concept with degradation function g(ϕ). Based on noted criteria,
each pattern is given a label corresponding to one of multiple classes, namely, no failure (class 1),
onset of failure (class 2), and failure (class 3).

3.2.1 Label Definition According to Load-Displacement Curve

We start by defining the labels in a binary fashion in order to observe the damage phase field
corresponding to a specific label transition. At each time step, a pattern is assigned 0 if there is
no failure and 1 if the specimen has fractured, such that we have a label vector

L = {0 0 . . . 0 1 . . . 1 1}T .

We assign the labels based on load-displacement curve of thetensile test:

• Label Type 1:Labels are generated based on the maximum force at the load-displacement
curve, which may induce to a failure criterion too soon.
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• Label Type 2: Labels are generated according to the minimum derivativedf/du, which
could detect damage too late.

• Label Type 3: Labels are generated based on 85%, 90%, and 95% of maximum force
at the load-displacement curve, which yields an intermediate behavior compared to label
types 1 and 2.

Figure 4 illustrates the different points, where failure isdefined according to the label types,
with corresponding damage phase fields. Label types 1 and 2 are too extreme and lead to early

0 1 2 3 4
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(b)
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FIG. 4: (a) Load-displacement curve for case 1, where we identify the three points where the labels change
from 0 to 1 according to different criteria. (b)–(d) Respective damage phase fields corresponding to the
positions indicated in the curve. We note that label type 3, based on a threshold of 90% of maximum force,
lies between the first two criteria. In label type 1, the damage field is still too smooth, while in label type 2,
failure is far too advanced. (a) Load-displacement curve; (b) label 1,t = 0.39 s; (c) label 2,t = 0.51 s; (d)
label 3,t = 0.47 s.
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and late prediction of failure, respectively. To address this issue, we further improve binary label
type 3 by including an intermediate state, the onset of failure, based on percentages of maximum
load. Label type 3 then becomes a multiple-label definition,stated here as:

• Multiple Label Type 3: given the labels created based on 90% and 95% of maximum
force at the load-displacement curve (l90 andl95), a patternxi is assigned to class 1 (no
failure) if label of the pattern based onl90 andl95 is zero, class 2 (onset of failure) when
label of the pattern is zero based onl90 and one based onl95, and class 3 if label of the
pattern based onl90 andl95 is one.

3.2.2 Label Definition According to Damage Threshold Concept

We also propose a label definition based on a damage thresholdof degradation functiong(ϕ),
where three different thresholds (i.e.,R1 = 1,R2 = 0.92, andR3 = 0.85) are empirically selected
based on the simulations. Accordingly, we generate labels by trackingg(ϕ) on all sensing nodes
and following the rule:

• Multiple Label Type 4: a given sensor nodeSi is shown with indexa whenR1 ≥ g(ϕ) >
R2, indexb if R2 ≥ g(ϕ) > R3, and indexc if R3 ≥ g(ϕ). Once the noted indices for
all sensor nodes at a given time step (i.e., features of pattern xi) are determined, sum
of each indexa to c is computed. Patternxi is then classified as class 1 if summation
of indexa is larger than that of indicesb andc, class 2 when summation of indexb is
greater than summation of indicesa andc, etc. This label definition is motivated by the
neighboring effect concept (i.e., group of sensor nodes), allowing us to eliminate the effect
of uncertainty and faulty sensor.

4. ML ALGORITHMIC FRAMEWORK

We develop a supervised ML algorithmic framework for interpretation of time-series data gen-
erated from the phase-field model. The proposed ML frameworkpresented in Fig. 5 is based on
the integration of a PR scheme and ML algorithms. According to the PR scheme, sensor node
responses (i.e., time-series data of degradation functiong(ϕ) = (1− ϕ)2) at each time step are
represented as a pattern along with the corresponding label. The input to the learning framework
is thus a matrixM with dimensionm × n, wherem denotes the number of time steps, andn
represents the number of sensor nodes. Consequently, each row of the matrix denotes a pattern,
where the dimension of the PR problem isn (i.e., a pattern withn features).

After generating the noted matrixM , ML algorithmsk-NN and ANN are used for fail-
ure/damage classification withm identified patterns. By introducing ML algorithms for pattern
recognition, as opposed to relying exclusively on the load-displacement curve traditionally em-
ployed in failure mechanics, we allow the framework to be generalized, allowing failure detec-
tion in complex loading conditions not restricted to the canonical examples presented, and in
cases where load-displacement data is not even present. Forthe same reason, we underline the
importance of multiple label type 4, which exclusively depends on damage sensor data.

It should be noted thatk-NN and ANN are used in this research due to their effective and
reliable performance, and these algorithms are computationally efficient. ANN is especially ad-
vantageous in this application, where we have a phase-field damage model that is nonlinear,
and associated with salient sources of parametric and model-form uncertainties that could be
broadcast to the solution. Therefore, we use ANN over other comparable methods to permit a
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FIG. 5: Schematic illustration of the proposed ML framework. A pattern recognition scheme is introduced
to represent time-series data of damage degradation functiong(ϕ) = (1−ϕ)2 extracted at sensing nodes
as a pattern. Thek-NN and ANN algorithms are employed for failure classification using recognized pat-
terns. Ink-NN analysis the classification is performed by determiningthek-nearest vote vector. An ANN
provides a map between the inputs and outputs through determination of the weights using input and output
patterns.

systematic study of uncertainty propagation and sensitivity of failure detection under noisy data
in future works. The theoretical and mathematical details of k-NN and ANN can be found in
the published literature (Hassoun, 1995; Keller et al., 1985; Weinberger and Saul, 2009; Zhang
et al., 1998).
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The dataset for thek-NN and ANN analysis is divided into three subsets, namely, training,
validation, and test. The training set is used to fit the ML classifiers, while the validation set is
used to compute the optimal learning parameters. Performance of the ML classifiers with optimal
parameters is then assessed on the test set. The performanceof k-NN and ANN algorithms is
measured using the detection performance rate defined in thefollowing equation:

Classification accuracy=
Number of patterns correctly classified

Total number of identified patterns
. (21)

Different sizes of data subsets are considered herein to evaluate the effect of such a factor
on the performance of the ML algorithms. Accordingly, five different combinations listed below
are defined, where the accuracy ofk-NN and ANN is determined based on each combination.

• Comb 1: training & validation 65%, and test 35%.

• Comb 2: training & validation 70%, and test 30%.

• Comb 3: training & validation 75%, and test 25%.

• Comb 4: training & validation 80%, and test 20%.

• Comb 5: training & validation 85%, and test 15%.

5. RESULTS AND DISCUSSION

The performance of the developed ML framework in terms of predicting the presence and loca-
tion/pattern of failure is evaluated with time-series dataof degradation functiong(ϕ) = (1−ϕ)2

generated from the phase-field model. To this aim, the framework is initially trained and tested
using each one of six representative failure cases (see Section 3.1), where the presence of failure
is detected for each case along with corresponding accuracy. In the next analysis phase, to detect
the location of failure, ML algorithms (i.e.,k-NN and ANN) are trained using data from all six
failure cases, and the classification accuracy is determined on test data, leading to identification
of the pattern of failure. The following subsections present the classification results of the ML
framework, employing multiple labels generated accordingto multiple label types 3 and 4 (see
Section 3.2).

5.1 Results with k-NN

5.1.1 Detection of the Presence of Failure

As noted in Section 4, the proposed ML framework is trained and tested using different sizes
of data subsets. For thek-NN analysis,k-fold cross validation withk = 10 is used. Patterns
identified with the PR scheme, along with corresponding labels, are used as input to the algo-
rithmic framework in order to predict the presence of failure. To further explore the performance
of thek-NN algorithm, the optimal number ofk needs to be determined. In this context, cases
1–3 representing different failure types/locations (see Fig. 2) are considered, based on which the
performance of the algorithm is evaluated with varyingk. Thek-NN classification results based
on multiple label types 3 and 4 are shown in Fig. 6. As can be seen, by increasing the number
of neighbors (k), accuracy decreases. We choosek = 2 for subsequent analyses, and we will
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FIG. 6: k-NN classification accuracy with different number ofk: (a) accuracy based on multiple label type
3, (b) accuracy based on multiple label type 4

later check that this is the optimal number of neighbors for detection of failure location. Further-
more, the optimal distance is found to be “cosine,” which results in better accuracy compared to
other distance functions. Classification results with different sizes of data subsets are presented
in Fig. 7 for failure case 3, from which it can be observed thatthe highest accuracy is achieved
based on combinations 2, 3, and 6, so we choose Comb 2, i.e., training & validation 70%, and
test 30% for all further results.

The performance of the proposed ML framework employingk-NN with multiple labels is
assessed for all failure cases (i.e., cases 1 to 6), where theclassification accuracy on test data
is reported for each case (see Fig. 8). Clearly, the performance of the framework is acceptable
such that the highest accuracy based on multiple label types3 and 4 is 100% for failure cases 5
and 3, respectively. To better visualize the classificationresults, a confusion matrix containing
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FIG. 7: k-NN classification results for failure case 3 with differentsizes of data subsets and multiple label
types 3 and 4
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FIG. 8: k-NN classification results for different failure cases based on label types 3 and 4
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information about actual and predicted classification is determined. Each column of the confu-
sion matrix represents the patterns in a predicted class, whereas each row denotes the patterns in
an actual class. The confusion matrix containing detailed classification results for cases 5 and 1
are depicted in Fig. 9. As can be seen, thek-NN method performs well on all classes, including
class 2 denoting onset of failure, which is of primary interest for early detection of failure in
real-world applications.

5.1.2 Detection of the Location/Pattern of Failure

An attempt is made to detect the location of failure, enabling the framework to predict the pattern
of failure. In regard to this, three different failure cases, cases 1–3, representing different failure
types are considered for the analysis. Accordingly, nine classes/labels are defined, as shown in
Table 2, using multiple label type 4 (multiple labels based on damage threshold concept). We
also study the effect of different numbers of neighborsk in this context. We present the accuracy

FIG. 9: Confusion matrix on test data withk-NN: (a) case 5 and multiple label type 3, (b) case 1 and
multiple label type 4

TABLE 2: Illustration of label/class definition for detection of location/pattern of failure

Label/class Failure case Label based on label type 4 New label/class
1 0 1
1 0.5 2
1 1 3

Label of a pattern 2 0 4
at a given 2 0.5 5
time step 2 1 6

3 0 7
3 0.5 8
3 1 9
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results in Fig. 10, in which we observe thatk = 2 is indeed the optimal number of neighbors,
corroborating the choice made in the previous section.

The confusion matrix showing the classification results is presented in Fig. 11. As can be
observed, the total accuracy is reported as 98.3% using multiple labels/classes shown in Table 2
(k-NN detects the location of failure with 98.3% accuracy). Results indicate the overall efficient
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FIG. 10: k-NN classification accuracy with different numbers ofk based on multiple label types 3 and 4
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FIG. 11: Confusion matrix withk-NN classification results for detection of location/pattern of failure based
on multiple label type 4
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performance ofk-NN to detect the onset of failure (classes 2, 5, and 8) and failure (classes
3, 6, and 9). The incorrect classifications are more concentrated in classes denoting no failure
(classes 1, 4, and 7), where the method incorrectly identifies the location of failure in a few data
points, because in early stages of the simulation the damagefield is similar among the different
cases. This is not an issue since the critical part is the onset of failure. Moreover, the lowest
classification accuracy is 86.5% for class 7 (see Fig. 11), which is an acceptable performance for
a classification algorithm.

5.2 Results with ANN

5.2.1 Detection of the Presence of Failure

The performance of the proposed ML framework employing ANN algorithm is evaluated in
terms of detecting the presence of failure. On this basis, a two-layer (i.e., one hidden layer with
five neurons and output layer) feed-forward neural network with Sigmoid classifier/activation
function is used. Classification results based on multiple label types 3 and 4 are presented in
Fig. 12, from which it can be seen that ANN leads to comparableaccuracy compared tok-NN
(see Fig. 8). Detailed classification results with ANN are presented in a confusion matrix shown
in Fig. 13. Results indicate that ANN effectively detects the presence of failure with a total
accuracy of 99.90% and 100% using multiple label types 3 and 4, respectively.

5.2.2 Detection of the Location/Pattern of Failure

Once the presence of failure is detected, ANN algorithm is employed to identify the loca-
tion/pattern of failure. On this basis, multiple labels defined in Table 2 are used for supervised
classification with ANN algorithm. A two-layer (i.e., one hidden layer with five neurons and
output layer) feed-forward neural network with Sigmoid activation function is used as the ANN
architecture to detect the location of failure. The confusion matrix with detailed classification
results is presented in Fig. 14, from which it can be observedthat the location/pattern of failure
can be successfully detected using ANN with high accuracy. Similarly to k-NN, the majority of
misclassifications in ANN belong to classes representing nofailure (classes 1 and 4 in Fig. 14),
due to the similarity of the damage field prior to damage localization and crack initiation. In
the other classes, ANN still performs successfully, with a minimum accuracy of 79.3% when
detecting the onset of failure (class 5).
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FIG. 12: ANN classification results for different failure cases based on multiple label types 3 and 4
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FIG. 13: Confusion matrix on test data with ANN: (a) case 5 and multiple label type 3, (b) case 1 and
multiple label type 4

5.3 Discussion of Deterministic Results

From the observation of classification results employingk-NN and ANN to predict failure in
damage phase-field models, we see consistent results with high accuracy. This is especially the
case ofk-NN, which shows less uncertainty in classifying the patterns. Yet, we must highlight
that the nature of data used in this work plays a major role in such satisfactory results. Several nu-
ances and complications of classification algorithms, suchas variance-bias tradeoff, sensitivity,
and distribution/number of data points, are either justified, or less critical, due to characteristics
of phase field models.

In essence, phase-field models are smooth representations of sharp, discontinuous interfaces.
In the case of damage modeling, cracks are smoothened in the phase field as an intrinsic approx-
imation of the model. Therefore, as opposed to real data measurements, phase-field solutions
evaluated at virtual sensing nodes are naturally smooth, introduce low noise, and consequently
lead to less variance in the predictions.

In this regard, the choice of number and position of virtual sensing nodes was performed by
ana priori study of failure patterns from Fig. 2. Different configurations of training data led to
little change of classification results. The distribution of sensors considered expert opinions to
provide the framework with data points associated with different modes of failure. Such assess-
ment considers that the placement of sensors in regions around the bases of the specimen will
not contribute to accuracy since there is no damage accumulation in such areas. We remark that
for a specific failure case, with model parameters appropriately inferred from experiments, fewer
sensor nodes would be required, placed preferably in critical areas (e.g., around the corners and
in the central region).

With respect to the specific algorithms used in this work, thenature of phase-field data aids in
the tradeoff between bias and variance. Bothk-NN and ANN have been extensively studied in the
literature, and the bias-variance behavior is well understood. Fork-NN, it has been demonstrated
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FIG. 14: Confusion matrix with ANN classification results for detection of location/pattern of failure based
on multiple label Type 4

analytically that bias increases, and variance decreases with an increasing number of neighbors
(Friedman et al., 2001; Geman et al., 1992). Since the smoothness of phase-field solutions does
not introduce substantial variance, the choice ofk = 2 makes the tradeoff by reducing the bias.
In the case of ANN, we reduce bias by increasing the number of hidden units (Geman et al.,
1992), so the number of neurons used is also justified.

Another source of potential errors is related to the number of time steps and their distri-
bution among the classes. This issue shows specifically whenpredicting onset of failure, the
most critical part of the failure process. Classification errors in this case may be due to fewer
data points available, since the onset of failure occurs rapidly. A possible remedy would be to
refine the time-integration steps around the onset of failure. Additionally, we have shown that
the algorithm incorrectly classifies cases of no failure between different fracture patterns due
to enhanced smoothness early on the simulation. However, this issue is less catastrophic when
compared to erroneously detecting the onset of failure, regardless of the fracture pattern.

Overall, the framework worked effectively with deterministic data, due to the nature of
phase-field models, and reasonable choice ofk-NN and ANN parameters to compromise the
relationship between bias and variance. Since phase field models present smooth features with
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low variance, we further assess the robustness of the framework by adding noise to the damage
field solutions.

5.4 Uncertainty Quantification

The results presented in previous sections consisted of smooth, deterministic input data in a
single run of the ML algorithms. In this section we propagatethe uncertainty associated to data
sampling and randomness related to the algorithms, and we assess the robustness and accuracy
of both methods to the variability in data through the addition of Gaussian noise. This approach
aims to verify the effectiveness of the framework to handle real-world data.

5.4.1 Algorithmic Randomness

We first study the propagation of uncertainties related to the algorithms, still using deterministic
data. Such randomness appears in bothk-NN and ANN due to the random division of time-
series data into training, validation, and test sets. We need to choose random division to avoid
bias, specially in damage data that shows pronounced temporal evolution trends. Furthermore,
ANN also presents another source of uncertainty related to the random initialization of weights
and biases in each neuron.

We use the Monte Carlo (MC) method to run multiple classification problems for each al-
gorithm and to compute the expected total classification accuracy and standard deviation. We
use multiple label type 3 and run 1000 simulations for detection of failure presence in each case
(cases 1–6), and run an additional 1000 classifications for the detection of failure location, using
classes from Table 2. We show the results in Table 3. We observe thatk-NN performs better
than ANN in this setting since ANN incorporates another level of uncertainty from the random
guesses of neuron parameters. The randomness of data division does not affect the performance
of either method in the failure location problem. For failure location, ANN is less accurate but
still within acceptable range.

5.4.2 Noisy Data

To assess the performance of the proposed ML framework with noisy data, time-series data are
corrupted by adding Gaussian distributed noise with different standard deviations to damageϕ

data. We run 1000 MC simulations fork-NN and ANN algorithms using multiple label type 3

TABLE 3: Total classification accuracy mean and standard deviation from
algorithmic randomness (%)

k-NN ANN
Mean Std. Dev Mean Std. Dev

Failure presence—case 1 99.86 0.16 99.82 1.53
Failure presence—case 2 99.86 0.16 99.88 0.14
Failure presence—case 3 99.87 0.14 99.84 0.27
Failure presence—case 4 99.86 0.16 99.82 0.31
Failure presence—case 5 99.87 0.14 99.89 0.15
Failure presence—case 6 99.86 0.15 99.88 0.16

Failure location—cases 1/2/3 98.28 0.31 84.58 6.00
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and compute the total accuracy expectation and standard deviation. We propagate uncertainty
for failure presence detection in case 3, and for detection of failure location, and show the results
in Fig. 15.

We observe that increasing noise levels decreases the mean accuracy while enlarging the
uncertainty range for both methods. We see that even low-intensity noise drops the accuracy to
lower levels when compared to mean values based only on algorithmic randomness. In other
words, input data dominates over algorithms’ uncertainty.For failure presence detection in case
3, we see that ANN performs better thank-NN for low noise levels, whilek-NN is more robust
under higher noise magnitudes, resulting in higher mean accuracy and lower standard deviation.
For case 3, the lowest accuracy was still above 75%, showing robustness with three classes.
Similarly, when we look at detection of failure location, ANN is superior tok-NN for low noise
levels and shows higher mean accuracy even for high noise intensity, yet with more uncertainty.
However, we cannot claim good performance of the algorithmswith nine classes under high
noise levels under this specific choice of algorithmic setup. This motivates a more systematic
approach to uncertainty and sensitivity of ML algorithms under noisy phase-field data, and it
shall be the focus of future studies.

6. SUMMARY AND CONCLUSIONS

This paper presents a phase field–based machine learning (ML) framework developed to predict
failure of brittle materials. Time-series data are generated according to nodal damage results
from finite element simulations of a tensile test specimen. We assessed the performance of the
proposed ML framework employing PR scheme and ML algorithms(k-NN and ANN) for dif-
ferent failure types and with multiple labels generated based on load-displacement curve and
damage threshold concept. We draw the following conclusions from the study:

• Results indicate the acceptable performance of the proposed framework with multiple la-
bels, in which a PR scheme is effectively used to represent time-series data of degradation
functiong(ϕ) = (1 − ϕ)2 as a pattern. This choice of time-series data is effective since
it directly complies with the material softening behavior.
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FIG. 15: Mean total classification accuracy and standard deviation for (a) detection of failure presence,
case 3, and, (b) detection of failure location
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• Bothk-NN and ANN were efficient in predicting the presence and location of failure. The
majority of errors in detection of failure location were concentrated in classes representing
no failure due to smoothness and similarity of damage field early in the simulations.

• Uncertainty related to input data noise dominates over algorithmic randomness uncer-
tainty. The framework showed robustness to noise when detecting failure presence and
showed acceptable accuracy with low noise levels when predicting failure location. In
general, with noisy data ANN outperformsk-NN.

Results of this study demonstrate the satisfactory performance of the developed algorithmic
framework and the applicability of ML for failure prediction with damage phase-field time-series
data. This study aims to promote the state-of-the-art in data-driven failure prediction indicating
the practical application of ML for failure detection in brittle materials. Findings from this study
are expected to advance the development of data-driven frameworks capable of establishing a
direct relationship between the classification accuracy and damage phase-field parameters. In
other words, in such frameworks, the output of ML framework can be further used as input to
the damage phase-field model to identify the parameters leading to failure/damage. This will
significantly result in enhancing the data-driven failure prediction framework’s performance.

It is acknowledged that the results presented in this paper are based on time-series data
extracted at virtual sensing nodes across the test specimen. Yet, the proposed ML framework
can be effectively applied to a system of real (i.e., nonvirtual) sensing nodes. It is expected that
the developed algorithmic framework will perform satisfactorily with real sensor data.

It is worth pointing out that although the mathematical approach presented in this research
is deterministic, there is an uncertainty associated with the proposed ML framework because
of the random nature of such intelligent algorithms. In addition, the time-series data used in
this study are smooth. Nonetheless, this issue cannot always be valid since near failure/damage,
regions time-series data can become noisy due to stress/strain concentration in such regions.
Future works will focus on addressing the noted issues. Besides, the focus of future studies will
be on the evaluation of the developed framework with the inclusion of plasticity/visco-elasto-
plasticity (Suzuki and Muñoz-Rojas, 2014; Suzuki et al., 2016; Varghaei et al., 2019) in the
damage and fatigue phase-field model, combined with efficient and stable long time integration
schemes (Zhou et al., 2019).
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