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Failure in brittle materials led by the evolution of micro- to macro-cracks under repetitive or in-
creasing loads is often catastrophic with no significant plasticity to advert the onset of fracture.
Early failure detection with respective location are utterly important features in any practical ap-
plication, both of which can be effectively addressed using artificial intelligence. In this paper, we
develop a supervised machine learning (ML) framework to predict failure in an isothermal, linear
elastic and isotropic phase-field model for damage and fatigue of brittle materials. Time-series data of
the phase-field model is extracted from virtual sensing nodes at different locations of the geometry.
A pattern recognition scheme is introduced to represent time-series data/sensor node responses as a
pattern with a corresponding label, integrated with ML algorithms, used for damage classification
with identified patterns. We perform an uncertainty analysis by superposing random noise to the
time-series data to assess the robustness of the framework with noise-polluted data. Results indicate
that the proposed framework is capable of predicting failure with acceptable accuracy even in the
presence of high noise levels. The findings demonstrate satisfactory performance of the supervised
ML framework and the applicability of artificial intelligence and ML to a practical engineering prob-
lem, i.e., data-driven failure prediction in brittle materials.

KEY WORDS: finite element method, virtual sensing nodes, pattern recognition, artifi-
cial neural networks, k-nearest neighbor, confusion matrix, failure location/pattern

1. INTRODUCTION

Predictability is essential to any mathematical model &lufe and fracture. From early lin-
ear elastic fracture mechanic models from Griffith (1921jaiture analysis through damage
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mechanics by Lemaitre and Desmorat (2005), numerical nsdumle improved in scope and
complexity to provide realistic simulations of materiaildiae to meet industry goals of safety
and to reduce component weight and production costs. Theaecsimulation of the failure pro-

cess, from crack initiation to propagation until final fa#uin a consistent way, while respecting
the physics and developing robust numerical methods lisigthallenging task.

During the last decade, phase-field models have been stidbesstablished as a powerful
tool in the study of damage and fatigue. By modeling shamriates through smooth contin-
uous fields, the dynamics of moving boundaries using phakls feanerged in diverse physi-
cal applications, including fluid separation (Cahn andi&fidl, 1958), solidification (Allen and
Cahn, 1979), tumor growth (Lima et al., 2014), two-phase gemfluid flow (Yue et al., 2004),
and fluid-structure interaction (Sun et al., 2014). In falanalysis, crack sharpness is modeled
through a smooth phase field, indicating the state of the nlmatamong fractured, virgin, and
intermediate damaged zones, evolving through Allen—-Ggpa-equations. Examples ranging
from brittle (Borden et al., 2014; Miehe et al., 2010a,b)¢ctida (Ambati et al., 2015, 2016),
and dynamic fracture (Borden et al., 2012; Hofacker and Eli&®13) successfully described
phenomenological effects such as crack initiation, bramgfand coalescence. The inclusion of
fatigue effects was initially attempted with Ginsburg—Han free-energy potentials (Amendola
et al., 2016) and fractional derivatives (Caputo and Fair2015). A more general framework
for damage and fatigue was later developed in a nonisotheanththermodynamically con-
sistent approach (Boldrini et al., 2016; Chiarelli et aD,1Z; Haveroth et al., 2018), followed
by the emergence of further phase-field models for fatiguargta et al., 2019; Seiler et al.,
2019). Within this myriad of different models, solution @ntainty and parametric sensitivity
are still influential, and the predictability of phase-fietabdels for arbitrary conditions is yet a
withstanding effort (Barros de Moraes et al., 2020). Onerpsing approach to address the pre-
dictability of numerical models is to use atrtificial intgince (Al), which has been consistently
expanding its applicability over the years.

Al and machine learning (ML) have been widely used in différengineering applications
such as structural health monitoring (Al Azzawi et al., 201ié et al., 2011; Saeidpour et al.,
2018; Salehi and Burgueno, 2018; Salehi et al., 2018a,l@&081Santos et al., 2016; Silva et al.,
2016; Wootton et al., 2017) and fatigue crack detection (aimd Sohn, 2018; Lim et al., 2018;
Rovinelli et al., 2018). ML algorithms, in the context of lfaie analysis, have been used for
numerous applications, including phase-field models oyper-based dielectrics (Shen et al.,
2019), phase-field models of solidification (Yabansu et2017), and crystal plasticity (Pa-
panikolaou et al., 2019). Another interesting applicattéiVL is to obtain a data-driven repre-
sentation of free-energy potentials in the atomic scaleugusdale it to a phase-field model using
integrable deep neural networks (Teichert et al., 201%cHipally for brittle failure, ML has
been recently used to build surrogate models based on éxpéick representation (Hunter etal.,
2019) and in failure prediction using a discrete crack regméation model for high-fidelity sim-
ulations that feed an artificial neural networks (ANN) aifon (Moore et al., 2018; Schwarzer
et al., 2019). Nonetheless, the noted studies have onlyrstimavapplicability of ML in failure
analysis. Therefore, ML methods have not yet been exploréue context of phase-field mod-
els for damage. It is noted that the use of ML leads to a newdigraof phase-field modeling,
where we establish the basis for novel data-driven framlesy@lowing systematic infusion of
statistical information and corresponding uncertaintypagation from microscale models and
experiments into continuum macroscopic failure models.

In this work, we develop an ML algorithmic framework for faie detection and classifica-
tion merging a pattern recognition (PR) scheme and ML allgors applied to a damage and
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fatigue phase-field model. We consider an isothermal lieéeatic and isotropic material under
the hypothesis of small deformations and brittle fractWe.simulate the phase field model us-
ing the finite element method (FEM) and a semi-implicit timeegration scheme to generate
time-series data of damage phase-fipldnd degradation function@) = (1 — ¢)? from vir-
tual sensing nodes positioned at different locations acaotest specimen. We introduce a PR
scheme as part of the ML framework, in which time-series ffata the FEM node responses
are considered as a pattern with a corresponding label. irgedmultiple labels for “no fail-
ure,” “onset of failure,” and “failure” of the test specimbased on tensile test load-displacement
curve and damage threshold concept. Once the patternseapireg different states of the ma-
terial are identified, the proposed ML framework empléysearest neighbok¢(NN) and ANN
algorithms to detect the presence and location of failuiegusuch patterns. The use of ML
algorithms makes the failure prediction framework pradteven in cases of complex loading
conditions, beyond the canonical example of monotonicdqadsented here.

In this study, we consider different failure types to furtlassess the performance of the
framework. In addition, by introducing noise to the timeise data, we ascertain the robustness
of the proposed framework with noise-polluted data, legdirthe effective use in failure analy-
sis under high sensitive/uncertain parameters and operdtoe idea of propagating uncertainty
through the solution, combined with the inherent nonliitgaf the damage phase-field model
make the choice of ANN particularly attractive in the coastion of the framework. The find-
ings from this study will pave a way for the development of @ladata-driven failure prediction
frameworks, which are able to efficiently establish a linkosug the classification results (i.e.,
accuracy) and different phase-field model parameters,ghabling the computational frame-
work to identify those parameters affecting the model'suaacy and updating them to achieve
the best performance.

The paper is organized as follows: in Section 2 we presentiéineage and fatigue phase-
field model, which is used to generate time-series data éohh framework. We introduce the
data generation procedure and corresponding label defisith Section 3. We present the ML
framework in Section 4, where we describe the integratioa péttern recognition scheme with
the applied classification algorithm&;NN and ANN. We present and discuss the numerical
results in Section 5. We then conclude and summarize the pafection 6.

2. DAMAGE AND FATIGUE PHASE-FIELD MODEL
2.1 Governing Equations

We consider an isothermal phase-field framework for strattiamage and fatigue, modeled by
a system of coupled differential equations for the evolutié displacement, velocityv = U,
damagep, and fatigueF. The damage phase field describes the volumetric fraction of de-
graded material and takeg = 0 for virgin material, = 1 for fractured material, varying
between those states0¢ < 1, as a damaged material. The evolution equation for the gama
field is of the Allen—Cahn type, since the damage and agirg&ffare nonconservative and non-
decreasing, and is derived along with the equations of mdtiou andv through the principle of
virtual power and entropy inequalities with thermodynagvasistency (Boldrini et al., 2016).
The fatigue fieldF is associated to the presence of microcracks and is treated #ternal
variable whose evolution equation is obtained throughtitorise relations that must satisfy the
entropy inequality for all admissible processes. The gannig defined over a spatial domain
QCcRYd=1,2 3, attimet € (0,7).
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The final form of the governing equations will be defined by ¢heice of free-energy po-
tentials related to elasticity, damage, and fatigue. Wesiclem a linear elastic isotropic material,
where the phase field free energy takes the usual gradient for

1 2T Y 2

whereE = V7u is the strain tensor ard®q = sym(Vq) represents the symmetric part of the
gradient of a given vector field. Also, C is the elasticity tensor written in terms of the Young
modulusE and Poisson coefficient, g. is the Griffith energyy > 0 is the phase-field layer
width parameter, andl (¢, F) is a function that models the damage evolution due to fatigue
effects. The first term in Eq. (1) represents the degradetielzsponse, modeled by the choice
of degradation functiog(¢) = (1 — ¢)?. The final set of governing equations, defined over
Q x (0,T], becomes

u=\yv,
v = div ((1 @)Z%E) +§div(D) - ch div (Ve ® Vo) +1,
. Vgc } . T = / !/ (2)
¢ = }\AAcer}\(l ©)E'CE M[QCH (@) + FH (o)),
. F
F=——H(o),
” 7(@)

subjected to appropriate initial and boundary conditiriich depend on the physical problem.
Either displacement or stress are known at the boundaniesldition to considerin§/ ¢ - n =

0 on 992. Moreover, thex operator denotes the outer product, the infinitesimalrstite tensor

is represented b = Vv, and parameteris and p are the material’s viscous damping and
density, respectively. We construstsuch that the rate of change of damage increases with
damage (see, e.g., Lemaitre and Desmorat, 2005):

1 c

A (1+8— )] ®)
wherec, ¢ > 0 are material dependent, aad> 0 is a small constant to avoid numerical
singularity.

The potential${(¢) and? ; (@) model the damage transition from O to 1 as fatigue changes
from zero tog.. We take their (ordinary) derivatives with respectt@o obtain potentiald{’(¢)
and’H’f(cp). Further details on fatigue potentials can be found in Holdt al. (2016). Choosing
the transition to be continuous and monotonically incregssuitable choices for the potentials
are

0.5¢? for 0< o<1,
H(p)=405+8(9p—1) for ¢ >1, (4)
Y0 for ¢ <O.

—@ for 0<¢@ <1,
He(p)=< -1 for ¢ >1, (5)
0 for <O
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The evolution of fatigueF is controlled byF, related to the formation and growth of mi-
crocracks that occur in cyclic loadings. We note that beinmgemsure of energy accumulated
in the microsctructure, fatigue variahfé grows even under monotonic loading. The formiof
depends on the absolute value of the power related to stréiss virgin material:

F=a(1- ¢)|(CE+0bD): D], 6)

where the parameterin this case is chosen to give a linear dependence of the puivggess.

2.2 Discretization

We discretize Eq. (2) in space using the linear finite elemeathod (FEM), where the semidis-
crete form is obtained through the Galerkin method. Foriléetalerivation of the spatial dis-
cretization in 2D, we refer to Barros de Moraes et al. (20¥%).denotel = v and write the
semidiscrete form for an elemehts

. ~k
MEGF = KEGF 4+ KEOE Wk MR E
ME 6 = (P +KE) @F +wh + wh, )
ME FF = wh,

whereM, M ,,, andM r are mass matrices related to displacement, damage, agaefatespec-
tively. In the equation of motiorK ,, is the damage-degraded elasticity stiffness makix,is

the viscous damping matrix, amg, is related to the gradient of damage. In the damage evolu-
tion equationP,, includes the Laplacian and potentid! (). The influence of displacement in
damage is represented By. andw,. The potentiaI’H’f(@) affects thew, operator, andv, is

the operator on the right-hand side of the fatigue evolutigmation. We obtain the global form
of operator matrices by the standard assembly operatiahwandrop the superscrigtin the
global sense.

We further discretize the operators in time, adopting agdegd semi-implicit time inte-
gration scheme, where nonlinear terms are treated exyplititis avoiding the use of iterative
methods. Let the solution time intervi@d, 7] be split in discrete time stegg with time incre-
ments of sizeAt = t,.1 —t, > 0,n = 0,1,.... For the global approximation of any field
variableq, we denote,, , ; = q(t,+1)-

We first solve the damage evolution equation and obgain, using the backward Euler
scheme, where we treat displacement, and fatigue explicitly, using values frammet stept,,.
Evolution of damage is then obtained by solving the lineateyn

[M @ At(P(p + Kc)](Pn+l = M(p(pn + At(Wb + Wc). (8)

After we update the damage field, we use the Newmark methoolte displacement and
velocity in the equation of motion. We denote acceleratiodh elocity at timet,, 1 by

1.j-nqtl = X1 (un+l - un) - 0(2un - (XSﬁna (9)
l'ln—',-l = X4 (un+1 - un) + 0651'171 + O(Gﬁna (10)
with o, i = 1,2, ..., 6 written in terms of standard Newmark coefficiefitand 3
1
X = =——>, 11
1= AR (11)
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o= =, (12)
BA
o= 2P (13)
2B
Y
oy ==, 14
‘= ar (14)
Y
a5 =1— =, (15)
B
and R
o = (1 - l) At. (16)
2p
The discrete form of the equation of motion for computingptlisements becomes
[Cle - Ku - “4KU] Upt1 = M [063[]71 + (XZUn + o‘lun] (17)

+ K, [OCGUn + asl, — O(4Un] + W, + Mf, 11,

Then, we update the acceleration and velocity fields usirg E) and (10), respectively.
When imposing prescribed displacemart,, 1), we also prescribe corresponding velocity and
acceleration at the boundaries using

Upy1 = @U(tnﬂ)a (18)
and y

Upi1 = —0(t 19

L'In-‘rl dtU( n+1)7 ( )

where the bar symbol represents the prescribed degree=eoioim.
Finally, we use the trapezoidal method to update the fatfiigleh obtaining

At

Fopr=Fn+ 7M}1 Wa (Up+1, Vit 1, @nt1) + Wa (Un, Vi, @5,)]. (20)

We consider the tensile test specimen without notch depiicte=ig. 1. We discretize it
with a finite element mesh consisting of 3912 nodes and 72&&litriangle elements, with
smallest element size of@l4 mm. We constrain one end and apply a prescribed disptadem
of 4.5 x 10~* m/s, with time increments oAt = 5 x 10~ s, at the other end. We study a
material with the Young modulu§ = 160 GPa, Poisson coefficient = 0.3, and density
p = 7800 kg/n?, under plane stress conditions with thicknesé ef 5 mm. The rate of change
of fatiguea is 5x 10~" m?, and viscous dampinfgis 1 x 10° Ns/n?. The remaining parameters
v (phase-field layer width);.. (Griffith energy), and: (rate of change of damage), are chosen in
order to construct a set of different representative ca§esocus on those parameters to build
the cases because they are the most sensitive and give mumgdainty in damage evolution
(Barros de Moraes et al., 2020).

3. DATA PROCESSING

In this section, we highlight how to obtain time-series datan phase-field simulations to train
and test the learning algorithms. Further, we explore diffepossibilities of label definitions in
the context of failure prediction based on the simulaticults.
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FIG. 1: Description of geometry and boundary conditions for thesitertest specimen, along with finite
element mesh and sensor layout for time-series generdierhighlight two sensor nodes that show dif-
ferent time-series behaviors. (a) Geometry and boundanrgitons and (b) mesh and virtual sensor nodes.

3.1 Time-Series Data Generation

To generate time-series data, virtual sensing nodes asdeyed at different locations of the
specimen, as shown in Fig. 1. The sensor layout in our tesisjdy chosen to provide a coarse-
to-fine (variable) resolution for the ML framework to cabibe/train and classify time-series data.

Table 1 presents the parameters used to construct eackerfative failure case or type, for
which we plot the damage phase field at failure time in Fig. 2.alo observe three different
failure types (i.e., around the fillets, at the middle of the@men, and in an intermediate region
between those), where the effect of changing parametetsasicnoticeable. We observe the
different damage evolution in the highlighted sensor nathesvn in Fig. 1 from their time-series
data. We plot time-series data from sensor nodes 91 (at thélendf the specimen) and 143 (at
one of the fillets), for cases 1, 2, and 3, where we observeittegant evolution profiles based
on each failure type (see Fig. 3).

From the damage phase-field time-series datat sensing nodes, we then form a feature
vector of a pattern as the degradation functidp) = (1 — ¢)?. Thus, patterns are generated
usingg (@), extracted at sensing nodes for a given time step. Accodiadabel is assigned to
identified patterns at each time step.

Damagegp is a proper measure of material failure. However, by defitimgfeature vector
based on the degradation functigifp ) instead, we directly measure the material softening, since

TABLE 1: Parameters used in the representative cases

Case v (M) ge (N/m) ¢ (m/Ns)
1 3.00x 1074 2700 2.00x 107
2.00x 1073 2700 2.00x 107
5.00x 104 5400 2.00x 107
5.00 x 10~4 10800 2.00x 107
2.00x 1073 5400 1.00 x 107
250x 1074 5400 1.00 x 107

OO B~|WIN
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FIG. 2: Damage phase field for each representative failure caseh&yging the parametets g., and

¢, we observe different failure types (distinct crack pasit and paths), as well as varying dynamics. (a)
Case 11 = 0.48 s; (b) case %,=0.48 s; (c) case X,=0.62 s; (d) case %,=0.78s; (e) case 1,=0.62 s;

(f) case 14 =0.64 s.

g(o) is the field variable that degrades the constitutive motiels reducing the component’s
load-bearing capabilities.
3.2 Label Definitions

In the domain of ML, the label is defined as the output of thesifecation algorithm. We outline
different criteria used to generate the labels for the stiped ML algorithms. In the context of
failure analysis, labels should reflect the material’s cépao withstand loads, so a first rational
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FIG. 3: Damage phase field time-series data for three cases shdveinifferent evolution ofp depending
on the virtual sensor node position. (a) Case 1, (b) case 2age 3.

choice is to define labels based on the load-displacemene cBesides, we generate labels
based on a damage threshold concept with degradationduangtp). Based on noted criteria,
each pattern is given a label corresponding to one of maltialsses, namely, no failure (class 1),
onset of failure (class 2), and failure (class 3).

3.2.1 Label Definition According to Load-Displacement Curve

We start by defining the labels in a binary fashion in orderlieesve the damage phase field
corresponding to a specific label transition. At each tine@ s& pattern is assigned 0 if there is
no failure and 1 if the specimen has fractured, such that we hdabel vector

L={00...01...117%.

We assign the labels based on load-displacement curve tdrike test:

e Label Type 1: Labels are generated based on the maximum force at the Ispldicement
curve, which may induce to a failure criterion too soon.
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e Label Type 2: Labels are generated according to the minimum derivalfy@w, which
could detect damage too late.

e Label Type 3: Labels are generated based on 85%, 90%, and 95% of maximae for
at the load-displacement curve, which yields an interntediahavior compared to label
types 1 and 2.

Figure 4 illustrates the different points, where failureédined according to the label types,
with corresponding damage phase fields. Label types 1 and @arextreme and lead to early

12000 & Label 1
10000 T Label 3
8000 r
z
< 6000
g <— Label 2
~ 4000 |
2000 1
0 ‘ |
0 1 2 3 4 5
Displacement (m) %107
(@)
0.263
0.135
0.006
(b)
1.000
0.504
0.008
(c)
0.682
0.345
0.008
(d)

FIG. 4: (a) Load-displacement curve for case 1, where we identéthinee points where the labels change
from 0 to 1 according to different criteria. (b)—(d) Respestdamage phase fields corresponding to the
positions indicated in the curve. We note that label typea3el on a threshold of 90% of maximum force,
lies between the first two criteria. In label type 1, the daenfgid is still too smooth, while in label type 2,
failure is far too advanced. (a) Load-displacement curvglgbel 1,t = 0.39 s; (c) label 2t = 0.51 s; (d)
label 3,t = 0.47 s.
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and late prediction of failure, respectively. To addressidsue, we further improve binary label
type 3 by including an intermediate state, the onset ofifajlbased on percentages of maximum
load. Label type 3 then becomes a multiple-label definitidated here as:

e Multiple Label Type 3: given the labels created based on 90% and 95% of maximum
force at the load-displacement cunigy(@ndigs), a patternz; is assigned to class 1 (no
failure) if label of the pattern based ég andlgs is zero, class 2 (onset of failure) when
label of the pattern is zero based g and one based dgs, and class 3 if label of the
pattern based olyg andigs is one.

3.2.2 Label Definition According to Damage Threshold Concept

We also propose a label definition based on a damage threshd&fyradation functiog(¢),
where three different thresholds (i.&; = 1, R, = 0.92, andR3 = 0.85) are empirically selected
based on the simulations. Accordingly, we generate labefsabkingg(¢) on all sensing nodes
and following the rule:

e Multiple Label Type 4: a given sensor nodg; is shown with index. whenR; > g(¢) >
Ry, indexb if R, > g(¢@) > Rs, and indexc if Rz > g(¢). Once the noted indices for
all sensor nodes at a given time step (i.e., features ofrpattg are determined, sum
of each indexa to ¢ is computed. Pattern; is then classified as class 1 if summation
of indexa is larger than that of indicels and¢, class 2 when summation of indéxs
greater than summation of indicesandc, etc. This label definition is motivated by the
neighboring effect concept (i.e., group of sensor nodésyyang us to eliminate the effect
of uncertainty and faulty sensor.

4. ML ALGORITHMIC FRAMEWORK

We develop a supervised ML algorithmic framework for intetption of time-series data gen-
erated from the phase-field model. The proposed ML framewmekented in Fig. 5 is based on
the integration of a PR scheme and ML algorithms. Accordmthe PR scheme, sensor node
responses (i.e., time-series data of degradation fungtipn = (1 — ¢)?) at each time step are
represented as a pattern along with the corresponding [Bbelinput to the learning framework
is thus a matrix\/ with dimensionm x n, wherem denotes the number of time steps, and
represents the number of sensor nodes. Consequently,@acti the matrix denotes a pattern,
where the dimension of the PR problemnigi.e., a pattern wit features).

After generating the noted matrix/, ML algorithms £-NN and ANN are used for fail-
ure/damage classification with identified patterns. By introducing ML algorithms for patte
recognition, as opposed to relying exclusively on the Ideglacement curve traditionally em-
ployed in failure mechanics, we allow the framework to beagatized, allowing failure detec-
tion in complex loading conditions not restricted to the a@inal examples presented, and in
cases where load-displacement data is not even preserthd=same reason, we underline the
importance of multiple label type 4, which exclusively degs on damage sensor data.

It should be noted that-NN and ANN are used in this research due to their effective an
reliable performance, and these algorithms are computtioefficient. ANN is especially ad-
vantageous in this application, where we have a phase-faaltade model that is nonlinear,
and associated with salient sources of parametric and rfodeluncertainties that could be
broadcast to the solution. Therefore, we use ANN over otberparable methods to permit a
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Time-series data from
the phase-field model
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Time-series data representation using pattern recognition

Represent sensor
nodes responses as a pattern Feed Forward

Input Layer 1% Hidden Layer 2" Hidden Layer Output Layer

- [ Phase 1: A Pattern Recognition Scheme

Bnl’ Wnl

Input Patterns (x;, Xa,..., Xy)

Output Variables (v}, ¥2,..., Yn)

Machine Learning Algorithmic Framework for Prediction of Material Failure

- [ Phase 2: Machine Learning (ANN & £-NN) ]

]
]
X2
= -+ Test Data
Damage/failure
classification with identified patterns W Class 1
A Class2
>

>

X1
FIG. 5: Schematic illustration of the proposed ML framework. A pattrecognition scheme is introduced
to represent time-series data of damage degradation fimgtip) = (1 — ¢)? extracted at sensing nodes
as a pattern. The-NN and ANN algorithms are employed for failure classifioatusing recognized pat-
terns. Ink-NN analysis the classification is performed by determirihegk-nearest vote vector. An ANN
provides a map between the inputs and outputs through detsion of the weights using input and output
patterns.

systematic study of uncertainty propagation and senitdfifailure detection under noisy data
in future works. The theoretical and mathematical detdils-0IN and ANN can be found in
the published literature (Hassoun, 1995; Keller et al.,.5}1%8einberger and Saul, 2009; Zhang
etal., 1998).
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The dataset for the-NN and ANN analysis is divided into three subsets, namedyning,
validation, and test. The training set is used to fit the Mlissifeers, while the validation set is
used to compute the optimal learning parameters. Perfarenafithe ML classifiers with optimal
parameters is then assessed on the test set. The perforofain®N and ANN algorithms is
measured using the detection performance rate defined foltbeing equation:

Number of patterns correctly classified

Classification accura . — .
¥ Total number of identified patterns

(21)

Different sizes of data subsets are considered herein toaeahe effect of such a factor
on the performance of the ML algorithms. Accordingly, fivéf@lient combinations listed below
are defined, where the accuracykeNN and ANN is determined based on each combination.

e Comb 1: training & validation 65%, and test 35%.
e Comb 2: training & validation 70%, and test 30%.
e Comb 3: training & validation 75%, and test 25%.
e Comb 4: training & validation 80%, and test 20%.

e Comb 5: training & validation 85%, and test 15%.

5. RESULTS AND DISCUSSION

The performance of the developed ML framework in terms ofljmting the presence and loca-
tion/pattern of failure is evaluated with time-series d#tdegradation functiop(p) = (1—¢)?
generated from the phase-field model. To this aim, the fraomlevs initially trained and tested
using each one of six representative failure cases (se®B88ct), where the presence of failure
is detected for each case along with corresponding accureitye next analysis phase, to detect
the location of failure, ML algorithms (i.ek-NN and ANN) are trained using data from all six
failure cases, and the classification accuracy is detedhondest data, leading to identification
of the pattern of failure. The following subsections preagbe classification results of the ML
framework, employing multiple labels generated accordinmultiple label types 3 and 4 (see
Section 3.2).

5.1 Results with k-NN
5.1.1 Detection of the Presence of Failure

As noted in Section 4, the proposed ML framework is trained &sted using different sizes
of data subsets. For theNN analysis,k-fold cross validation withk = 10 is used. Patterns
identified with the PR scheme, along with correspondingliat@e used as input to the algo-
rithmic framework in order to predict the presence of faluro further explore the performance
of the k-NN algorithm, the optimal number &f needs to be determined. In this context, cases
1-3 representing different failure types/locations (sge® are considered, based on which the
performance of the algorithm is evaluated with varying hek-NN classification results based
on multiple label types 3 and 4 are shown in Fig. 6. As can ba,dgeincreasing the number
of neighbors §), accuracy decreases. We choése- 2 for subsequent analyses, and we will
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FIG. 6: k-NN classification accuracy with different numberkof(a) accuracy based on multiple label type
3, (b) accuracy based on multiple label type 4

later check that this is the optimal number of neighbors &iedtion of failure location. Further-
more, the optimal distance is found to be “cosine,” whichulissn better accuracy compared to
other distance functions. Classification results withed#ht sizes of data subsets are presented
in Fig. 7 for failure case 3, from which it can be observed thathighest accuracy is achieved
based on combinations 2, 3, and 6, so we choose Comb 2, aieinty & validation 70%, and
test 30% for all further results.

The performance of the proposed ML framework employindN with multiple labels is
assessed for all failure cases (i.e., cases 1 to 6), wherdabsification accuracy on test data
is reported for each case (see Fig. 8). Clearly, the perfocenaf the framework is acceptable
such that the highest accuracy based on multiple label types 4 is 100% for failure cases 5
and 3, respectively. To better visualize the classificatesults, a confusion matrix containing

T T
‘ - Label Type 3 |:| Label Type 4

100100 100100 100

111

Comb 1 Comb 2 Comb 3 Comb 4 Comb 5
Different Sizes of Data Subsets

Classification Accuracy (%)

FIG. 7: k-NN classification results for failure case 3 with differsites of data subsets and multiple label
types 3 and 4
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FIG. 8: k-NN classification results for different failure cases libse label types 3 and 4
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information about actual and predicted classification teigeined. Each column of the confu-
sion matrix represents the patterns in a predicted class;esls each row denotes the patterns in
an actual class. The confusion matrix containing detailasgisification results for cases 5 and 1
are depicted in Fig. 9. As can be seen, heN method performs well on all classes, including
class 2 denoting onset of failure, which is of primary ingrior early detection of failure in
real-world applications.

5.1.2 Detection of the Location/Pattern of Failure

An attempt is made to detect the location of failure, enajilive framework to predict the pattern
of failure. In regard to this, three different failure casemses 1-3, representing different failure
types are considered for the analysis. Accordingly, niassgs/labels are defined, as shown in
Table 2, using multiple label type 4 (multiple labels baseddamage threshold concept). We
also study the effect of different numbers of neighbois this context. We present the accuracy

249 [} 0 100% ; 129 0 0 100%

37.7% 0.0% 0.0% 0.0% 215% 0.0% 0.0% 0.0%

) 0 9 0 100% . 0 33 1 97.1%
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s 8
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= =
=] 3
o o
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°, 0 0 402 100% °, 0 0 437 100%

0.0% 0.0% 60.9% 0.0% 0.0% 0.0% 72.8% 0.0%

100% 100% 100% 100% 100% 100% 99.8% 99.8%
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N 9 S N q S
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(a) (b)

FIG. 9: Confusion matrix on test data wittxNN: (a) case 5 and multiple label type 3, (b) case 1 and
multiple label type 4

TABLE 2: lllustration of label/class definition for detection of &ign/pattern of failure

Label/class Failure case | Label based on label type 4| New label/class
0
0.5
1
0
0.5
1
0
0.5
1

[

Label of a pattern
at a given
time step

WWWNNDN PP
©CoO~NOULD WN P
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results in Fig. 10, in which we observe that= 2 is indeed the optimal number of neighbors,
corroborating the choice made in the previous section.

The confusion matrix showing the classification resultsrisspnted in Fig. 11. As can be
observed, the total accuracy is reported as 98.3% usindgpteutibels/classes shown in Table 2
(k-NN detects the location of failure with 98.3% accuracy)s&ts indicate the overall efficient

100 T
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FIG. 10: k-NN classification accuracy with different numbersidbased on multiple label types 3 and 4
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FIG. 11: Confusion matrix withk-NN classification results for detection of location/pattef failure based
on multiple label type 4
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performance ofc-NN to detect the onset of failure (classes 2, 5, and 8) ardréaiclasses
3, 6, and 9). The incorrect classifications are more conatrin classes denoting no failure
(classes 1, 4, and 7), where the method incorrectly idestifie location of failure in a few data
points, because in early stages of the simulation the dafieldes similar among the different
cases. This is not an issue since the critical part is thetarfd@ilure. Moreover, the lowest
classification accuracy is 86.5% for class 7 (see Fig. 11igwis an acceptable performance for
a classification algorithm.

5.2 Results with ANN
5.2.1 Detection of the Presence of Failure

The performance of the proposed ML framework employing ANg§b&thm is evaluated in
terms of detecting the presence of failure. On this basispdayer (i.e., one hidden layer with
five neurons and output layer) feed-forward neural netwaith @igmoid classifier/activation
function is used. Classification results based on multigkesl types 3 and 4 are presented in
Fig. 12, from which it can be seen that ANN leads to comparabteiracy compared to-NN
(see Fig. 8). Detailed classification results with ANN areganted in a confusion matrix shown
in Fig. 13. Results indicate that ANN effectively detecte fhresence of failure with a total
accuracy of 99.90% and 100% using multiple label types 3 anelspectively.

5.2.2 Detection of the Location/Pattern of Failure

Once the presence of failure is detected, ANN algorithm ipleyed to identify the loca-
tion/pattern of failure. On this basis, multiple labels defi in Table 2 are used for supervised
classification with ANN algorithm. A two-layer (i.e., onedden layer with five neurons and
output layer) feed-forward neural network with Sigmoidieation function is used as the ANN
architecture to detect the location of failure. The cordnsinatrix with detailed classification
results is presented in Fig. 14, from which it can be obsetiwatthe location/pattern of failure
can be successfully detected using ANN with high accuraayil&ly to £-NN, the majority of
misclassifications in ANN belong to classes representinfaiiare (classes 1 and 4 in Fig. 14),
due to the similarity of the damage field prior to damage laeéibn and crack initiation. In
the other classes, ANN still performs successfully, with imimum accuracy of 79.3% when
detecting the onset of failure (class 5).

[ N Labei Type 3 [ JLabel Type4

100 100
09.8 99.8 99.8
99.7 ﬁ

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Failure Cases

100

Classification Accuracy (%)

FIG. 12: ANN classification results for different failure cases lthea multiple label types 3 and 4
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FIG. 13: Confusion matrix on test data with ANN: (a) case 5 and mudtipbel type 3, (b) case 1 and
multiple label type 4

5.3 Discussion of Deterministic Results

From the observation of classification results employir§N and ANN to predict failure in
damage phase-field models, we see consistent results \ghhahturacy. This is especially the
case ofk-NN, which shows less uncertainty in classifying the patseivet, we must highlight
that the nature of data used in this work plays a major roledh satisfactory results. Several nu-
ances and complications of classification algorithms, sisctariance-bias tradeoff, sensitivity,
and distribution/number of data points, are either justjfe less critical, due to characteristics
of phase field models.

In essence, phase-field models are smooth representatisimrp, discontinuous interfaces.
In the case of damage modeling, cracks are smoothened il#se field as an intrinsic approx-
imation of the model. Therefore, as opposed to real data uneaents, phase-field solutions
evaluated at virtual sensing nodes are naturally smodttodace low noise, and consequently
lead to less variance in the predictions.

In this regard, the choice of number and position of virtwadsng nodes was performed by
ana priori study of failure patterns from Fig. 2. Different configuoats of training data led to
little change of classification results. The distributidrsensors considered expert opinions to
provide the framework with data points associated withedéht modes of failure. Such assess-
ment considers that the placement of sensors in regionsdithe bases of the specimen will
not contribute to accuracy since there is no damage acctionula such areas. We remark that
for a specific failure case, with model parameters appraglyinferred from experiments, fewer
sensor nodes would be required, placed preferably in atitieas (e.g., around the corners and
in the central region).

With respect to the specific algorithms used in this work ntiteire of phase-field data aids in
the tradeoff between bias and variance. BetiN and ANN have been extensively studied in the
literature, and the bias-variance behavior is well undetFork-NN, it has been demonstrated
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FIG. 14: Confusion matrix with ANN classification results for deieatof location/pattern of failure based
on multiple label Type 4

analytically that bias increases, and variance decreagie@mwincreasing number of neighbors
(Friedman et al., 2001; Geman et al., 1992). Since the smesthof phase-field solutions does
not introduce substantial variance, the choicé ef 2 makes the tradeoff by reducing the bias.
In the case of ANN, we reduce bias by increasing the numberdafeim units (Geman et al.,
1992), so the number of neurons used is also justified.

Another source of potential errors is related to the numlbgmme steps and their distri-
bution among the classes. This issue shows specifically ywhedlicting onset of failure, the
most critical part of the failure process. Classificatioroes in this case may be due to fewer
data points available, since the onset of failure occurghapA possible remedy would be to
refine the time-integration steps around the onset of filAdditionally, we have shown that
the algorithm incorrectly classifies cases of no failuredeen different fracture patterns due
to enhanced smoothness early on the simulation. Howevstisgue is less catastrophic when
compared to erroneously detecting the onset of failuregrdigss of the fracture pattern.

Overall, the framework worked effectively with determinisdata, due to the nature of
phase-field models, and reasonable choicé-dfN and ANN parameters to compromise the
relationship between bias and variance. Since phase fietibimpresent smooth features with
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low variance, we further assess the robustness of the frarkdwy adding noise to the damage
field solutions.

5.4 Uncertainty Quantification

The results presented in previous sections consisted obtsindeterministic input data in a
single run of the ML algorithms. In this section we propaghguncertainty associated to data
sampling and randomness related to the algorithms, and sessthe robustness and accuracy
of both methods to the variability in data through the additbf Gaussian noise. This approach
aims to verify the effectiveness of the framework to handk-world data.

5.4.1 Algorithmic Randomness

We first study the propagation of uncertainties related égaligorithms, still using deterministic
data. Such randomness appears in BetiN and ANN due to the random division of time-
series data into training, validation, and test sets. Wel n@eehoose random division to avoid
bias, specially in damage data that shows pronounced taingaoslution trends. Furthermore,
ANN also presents another source of uncertainty relatekdet@andom initialization of weights
and biases in each neuron.

We use the Monte Carlo (MC) method to run multiple classifteaproblems for each al-
gorithm and to compute the expected total classificatiomnraoy and standard deviation. We
use multiple label type 3 and run 1000 simulations for detaaif failure presence in each case
(cases 1-6), and run an additional 1000 classification$iéodétection of failure location, using
classes from Table 2. We show the results in Table 3. We obgbatk-NN performs better
than ANN in this setting since ANN incorporates another l@faincertainty from the random
guesses of neuron parameters. The randomness of datadlig®ts not affect the performance
of either method in the failure location problem. For fadldocation, ANN is less accurate but
still within acceptable range.

5.4.2 Noisy Data

To assess the performance of the proposed ML framework \eiyrdata, time-series data are
corrupted by adding Gaussian distributed noise with diffiéstandard deviations to damage
data. We run 1000 MC simulations férNN and ANN algorithms using multiple label type 3

TABLE 3: Total classification accuracy mean and standard deviatton f
algorithmic randomness (%)

k-NN ANN

Mean | Std. Dev | Mean | Std. Dev
Failure presence—case 1| 99.86 0.16 99.82 1.53
Failure presence—case 2| 99.86 0.16 99.88 0.14
Failure presence—case 3| 99.87 0.14 99.84 0.27
Failure presence—case 4| 99.86 0.16 99.82 0.31
Failure presence—case 5| 99.87 0.14 99.89 0.15
Failure presence—case 6| 99.86 0.15 99.88 0.16

Failure location—cases 1/2/3 98.28 0.31 84.58 6.00
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and compute the total accuracy expectation and standardtidev \We propagate uncertainty
for failure presence detection in case 3, and for detecfidailare location, and show the results
in Fig. 15.

We observe that increasing noise levels decreases the mearaey while enlarging the
uncertainty range for both methods. We see that even loswnilly noise drops the accuracy to
lower levels when compared to mean values based only onitllgoec randomness. In other
words, input data dominates over algorithms’ uncertaifty.failure presence detection in case
3, we see that ANN performs better therNN for low noise levels, whilé-NN is more robust
under higher noise magnitudes, resulting in higher meanracyg and lower standard deviation.
For case 3, the lowest accuracy was still above 75%, shovahgstness with three classes.
Similarly, when we look at detection of failure location, ANs superior tak-NN for low noise
levels and shows higher mean accuracy even for high noisesity, yet with more uncertainty.
However, we cannot claim good performance of the algorithitls nine classes under high
noise levels under this specific choice of algorithmic sefilps motivates a more systematic
approach to uncertainty and sensitivity of ML algorithmglennoisy phase-field data, and it
shall be the focus of future studies.

6. SUMMARY AND CONCLUSIONS

This paper presents a phase field—based machine learningf@mhework developed to predict
failure of brittle materials. Time-series data are geregtatccording to nodal damage results
from finite element simulations of a tensile test specimea.aAsessed the performance of the
proposed ML framework employing PR scheme and ML algoritiikasIN and ANN) for dif-
ferent failure types and with multiple labels generatededasn load-displacement curve and
damage threshold concept. We draw the following conclissioam the study:

¢ Results indicate the acceptable performance of the prodosamework with multiple la-
bels, in which a PR scheme is effectively used to represmettieries data of degradation
functiong(@) = (1 — ¢)? as a pattern. This choice of time-series data is effectiveesi
it directly complies with the material softening behavior.
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FIG. 15: Mean total classification accuracy and standard deviatiorie) detection of failure presence,
case 3, and, (b) detection of failure location
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e Bothk-NN and ANN were efficient in predicting the presence andtioceof failure. The
majority of errors in detection of failure location were centrated in classes representing
no failure due to smoothness and similarity of damage fielly @athe simulations.

e Uncertainty related to input data noise dominates overrdlgoic randomness uncer-
tainty. The framework showed robustness to noise when tilegefailure presence and
showed acceptable accuracy with low noise levels when girdifailure location. In
general, with noisy data ANN outperformsNN.

Results of this study demonstrate the satisfactory pedana of the developed algorithmic
framework and the applicability of ML for failure predictiavith damage phase-field time-series
data. This study aims to promote the state-of-the-art in-daitven failure prediction indicating
the practical application of ML for failure detection in ttié materials. Findings from this study
are expected to advance the development of data-driverefrarks capable of establishing a
direct relationship between the classification accuraay damage phase-field parameters. In
other words, in such frameworks, the output of ML framewaak ©e further used as input to
the damage phase-field model to identify the parametersnigdd failure/damage. This will
significantly result in enhancing the data-driven failuregiction framework’s performance.

It is acknowledged that the results presented in this papebased on time-series data
extracted at virtual sensing nodes across the test speciyegnthe proposed ML framework
can be effectively applied to a system of real (i.e., nomeilt sensing nodes. It is expected that
the developed algorithmic framework will perform satig€ady with real sensor data.

It is worth pointing out that although the mathematical agh presented in this research
is deterministic, there is an uncertainty associated withgroposed ML framework because
of the random nature of such intelligent algorithms. In #ddj the time-series data used in
this study are smooth. Nonetheless, this issue cannot albgyalid since near failure/damage,
regions time-series data can become noisy due to stress/styncentration in such regions.
Future works will focus on addressing the noted issues.d@ssihe focus of future studies will
be on the evaluation of the developed framework with theusion of plasticity/visco-elasto-
plasticity (Suzuki and Mufioz-Rojas, 2014; Suzuki et a1@, Varghaei et al., 2019) in the
damage and fatigue phase-field model, combined with effieied stable long time integration
schemes (Zhou et al., 2019).
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