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Scatterometry provides a fast indirect optical method for the determination of grating geometry parameters of pho-
tomasks and is used in mask metrology. To obtain a desired parameter, inverse methods like least squares or the maxi-
mum likelihood method are frequently used. A different method, the Bayesian approach, has many advantages against
the others, but it is often not used for scatterometry due to the large computational costs. In this paper, we introduce
different surrogate models to approximate computationally expensive calculations by fast function evaluations, which
enable the Bayesian approach to scatterometry. We introduce the nearest neighbor interpolation, the response surface
methodology and a method based on a polynomial chaos expansion. For every surrogate model, we discuss the approx-
imation error and the convergence. Moreover, we apply Markov Chain Monte Carlo sampling to determine desired
geometry parameters, and its uncertainties form simulated measurement values based on Bayesian inference. We show
that the surrogate model involving polynomial chaos is the most effective.

KEY WORDS: scatterometry, Bayesian inference, stochastic partial differential equations, collocation,
inverse problem

1. INTRODUCTION

Scatterometry is a frequently used metrology technique for the characterization of critical dimensions on wafers and
masks used in photolithography [1, 2]. It provides a non-destructive alternative to direct optical methods like electron
microscopy and atomic force microscopy. In a simple case, a line grating is illuminated by monochromatic, coherent
light and diffraction patterns are detected. By solving an inverse problem, desired geometry parameters are determined
from the diffraction signals [see Fig. 1(a) for an illustration]. Recently, geometry parameters of rough absorption lines
have been reconstructed from extreme ultraviolet light (EUV) measurements by employing a maximum likelihood
method for parameter estimations and a Fisher information matrix method for the determination of uncertainties [3–
6]. This method provides accurate geometry parameters, but associated uncertainties are calculated only locally. A
more reliable technique to derive uncertainties is based on sampling methods. In the Supplement 1 of the guide to
the evaluation of uncertainties in measurement (GUM-S1) the use of Monte Carlo methods in a Bayesian context is
recommended [7]. Monte Carlo methods provide a full probability distribution function (PDF) for desired quantities.
Uncertainties can be determined by certain credible intervals of the PDFs. A further advantage of the Bayesian ap-
proach is the possibility of the combination of different measurements and the possibility to include prior knowledge
of the parameters of interest. The prior knowledge is formalized by specific PDFs and the gain of information from
the measurement is expressed by the likelihood function. Both together result in the posterior distribution, which in-
cludes the joint information about the prior knowledge and the measurement information. In the Bayesian approach,
parameters and uncertainties are estimated by Markov chain Monte Carlo (MCMC) sampling methods from the pos-
terior distribution. However, the convergence of MCMC sampling methods is slow and many sampling steps are often
needed for acceptable results.
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FIG. 1: (a) Principal scheme of the measurement setup is shown. Diffraction orders are labeled by−1...1. (b) Cross
section (in thexy plane) of the EUV photomask is depicted.

In this paper, we replace time-demanding calculations, which are required for the solutions of the inverse problem
by many less-expensive numerical solutions by the use of surrogate models. In particular, for a certain parameter
range, we replace a differential operator by a superposition of nonlinear functions.

Related to this work, preliminary results have been published elsewhere [8]. While the previous work demonstrated
the feasibility of the polynomial chaos expansion as a surrogate model, this paper gives a detailed comparison of three
models and a comprehensive analysis of the approximation errors.

In this paper we proceed as follows. In the next paragraphs, we introduce the mathematical model of scatterometry,
the Bayesian approach, and three different surrogate models, i.e., nearest neighbor interpolation, the response surface
methodology, and a polynomial chaos-based method. Then we discuss the approximation error of each surrogate
model by a comparison with rigorous finite-element solutions (FEM) of the partial differential equation (PDE) behind.
We discuss applicability, precision, accuracy and convergence. Moreover, we employ each surrogate model to the
Bayesian approach, and we reconstruct desired geometry parameters and associated uncertainties with a MCMC
method. Finally, we discuss the effect of the approximation error on the uncertainties.

2. MASK GEOMETRY

The grating used consists of periodic absorber lines, two capping layers, and a multilayer stack. The stack functions
like a mirror for waves with a wavelength ofλ = 13.4 nm. The pitch is280 nm and geometry parameters of interest
are the bottom-CD (width at bottom of the absorber line), the height of the second absorber line, and the SWA of the
TaN layer (SWA). A cross section of the presented photomask is shown in Fig. 1(b).

In our study, we have chosen geometry parameters with the following minimal and maximal values: bottom-CD
140 nm± 11.2 nm, height =80 nm± 5.6 nm, and the sidewall angle= 87.5◦ ± 5◦.

3. MATHEMATICAL MODEL

The mathematical model is characterized by the propagation of electromagnetic waves through the material and is de-
scribed by Maxwell’s equations. The particular line structure introduced in the previous paragraph implies invariance
of optical properties in one spatial direction (z direction). In this specific case, the time-harmonic Maxwell equations
reduce to the two-dimensional Helmholtz equation in thex− y plane,

∆u (x, y) + k2 (x, y) u (x, y) = 0, (1)

whereu is the transversal field component that oscillates in thez direction, andk (x, y) is the wave number
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k (x, y) = ω (µ0ε (x, y))1/2
, (2)

that is assumed to be constant for areas filled with the same material. The symbol∆ is the Laplace operator in two
dimensions, i.e.,

∆ = ∂2
x + ∂2

y . (3)

The boundary conditions imposed on the PDE are periodic on the lateral boundaries due to the repeated structure and
usual outgoing wave conditions in the infinite regions [9]. For rigorous calculations, we used the finite element (FEM)
solver DIPOG.1 We fixed the wavelength of the incident lightλ = 13.4 nm, choose an incident angle ofα = 6◦ and
optical parameters from Henn et al. [3]. For every set of geometry parameters joined in the vectorp1...pN , there is
a set of efficienciesf1(p)...fM (p), labeled by the diffraction orders1...M [see Fig. 1(a)], which defines a nonlinear
map (defined as forward model)

I1 × I2 × I3 → R22
+ (4)

p 7→ fj(p).

Efficiencies obtained in experiments include additional noise.

3.1 Error Model

In our approach, measurement valuesyj are modeled by the forward modelfj(p) and a measurement errorεm
j , i.e.,

yj = fj (p) + εm
j . (5)

If there are no correlations between measurements and no further systematic errors, it can be assumed thatεj is distinct
for different measurements. For simplicity, we assume a Gaussian distributed error with zero mean. In principle, there
are many error sources, but from experiments, two main contributions are known [3]. The detection of diffraction
pattern in scatterometry takes a while and power fluctuations during the record process are a significant contribution
to the measurement error. This error depends on the diffraction order. The error of the detector noise is for every order
the same. To include the two main error contributions the following approach has been approved [3]:

(
σm

j

)2 = (amfj(p))2 + b2
m, (6)

where
(
σm

j

)2
is the variance of thejth diffraction order. The symbolsam andbm are the error parameters. In our

approach, we aim to approximate rigorous FEM calculations by a surrogate model. This approximation introduces an
additional error, i.e.,

fj(p)FEM = fj(p)surrogate+ ε
approx
j . (7)

We assume that the approximation error has the same properties as the measurement error. For the measurement values
we obtain

yj = fj(p)surrogate+ ε
approx
j + εm

j , (8)

with (
σ

approx
j

)2 =
(
aapproxf surrogate

j (p)
)2

+ (bapprox)2. (9)

We define the joined errorεj := εm
j + ε

approx
j and rewrite Eq. (8),

yj = f surrogate
j + εj , (10)

whereεj is Gaussian distributed with zero mean and variance(σj)
2 = (afj)

2 + b2. The noise parameters are then
given bya2 = a2

m + a2
approxandb2 = b2

m + b2
approx.

1Developed at WIAS; http://www.wias-berlin.de/software /DIPOG
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4. THE BAYESIAN APPROACH TO THE STATISTICAL INVERSE PROBLEM IN SCATTEROMETRY

The reconstruction of general geometries from the diffraction pattern is an ill-posed problem and therefore, prior
information or regularization techniques are necessary [10]. We have chosen prior information from experimental
knowledge and the mask design to restrict the solution to a certain geometry class and to fix the optical parameters
of the materials used. From simple least square methods to maximum likelihood, there are many methods to find
geometry parameters and related diffraction pattern with optimal fit to measured values. A powerful method to include
prior knowledge and to obtain reliable uncertainties is based on the Bayesian theorem. The Bayes theorem links the
prior distributionπ0 to the posterior distributionπ via the likelihood functionL(p, a, b;y), i.e.,

π(p, a, b|y) =
L(p, a, b; y)π0(p, a, b)∫ L(p, a, b; y)π0(p, a, b) dp da db

. (11)

The prior distribution expresses the prior knowledge about parameters; the likelihood functions the information gain
from experiments, and the posterior distributions are the related joined distributions. As introduced in the previous
paragraph, the measurement errors are assumed to be Gaussian distributed. In this case, the likelihood function is
given by

L(p, a, b; y) =
N∏

j=1

1√
2πσ2

j (p, a, b)
exp

[
− (yj − fj(p))2

2σ2
j (p, a, b)

]
, (12)

with σ2
j = (a · fj(p))2 + b2. (13)

Estimates of parameters are calculated by the help of the posterior distribution. If we defineθ := (p, a, b)T, the
expectation values of parameters are given byθ̄i = E[θi]π and the associated variances by var(θi) = E[θ2

i ]π −
E[θi]2π with E[θi]π =

∫
θidπ, wheredπ denotes the posterior measure. In this paper, we have chosen uniform prior

distributions for the geometry parameters: U[128.8, 151.2]/nm for the bottom CD, U[74.4, 85.6]/nm for the height
and U[82.5, 92.5]/◦ for the sidewall angle.

5. DIFFERENT SURROGATE MODELS FOR THE FORWARD MODEL

Surrogate models are applied in many fields like aerospace science [11, 12], geostatistics [13–15], engineering design
[16, 17], risk analysis [18–20], optimization [21] and machine learning techniques [22]. The application areas listed
are all computationally expensive and in many cases the software used is proprietary and hence can be treated as a
black box for the construction of the surrogate models. The huge application range of surrogate models implies many
approaches. Here, the focus is on the uncertainty analysis in metrology where the propagation of uncertainties is of
special interest. For convenience, we selected the most simple surrogate model, the nearest neighbor interpolation. The
second model we have chosen is the widely used response surface methodology [23–25] and the last model selected
is based on the polynomial chaos expansion. The latter was successfully employed in many applications to investigate
the propagation of uncertainties [26–31].

In our investigations, we assume that the parameter ranges of the surrogate models chosen are given by the support
of the prior distributions [32]. We have selected the intervals:I1 = [128.8, 151.2]nm for the bottom-CD,I2 =
[74.4, 85.6]nm for the height,I3 = [82.5, 92.5]◦ for the SWA,I4 = [0.01, 0.1] for a andI5 = [0.001, 0.1]% for b.
Moreover, the independences of random input variables are assumed.

5.1 Nearest-Neighbor Interpolation

Nearest-neighbor (NN) interpolation is one of the simplest interpolation techniques. For example, a nonlinear func-
tion f(p) is approximated by the rigorous calculation of function values at specific training pointspi. An arbitrary
function valuef̃k := f(pk) is given by the values at the training point close topi. In particular,f̃k = f(pk) if and
only if pk ∈ U(pi), whereU denotes the nearest neighbor ofpi. This approximation leads to a piecewise constant
discontinuous approximation of the forward map. The NN interpolation is simple to implement, but in many cases,
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the convergence speed is slow. It is particularly inaccurate for functions that change rapidly. In our study, we divided
the three-dimensional parameter space into 729 cubes and calculated a value of the forward map for each cube with
the FEM solver rigorously.

5.2 Response Surface Methodology

The next surrogate model is the response surface methodology (RSM). Here, model outputs of the forward model are
represented as a polynomial functiongk and a truncation errorεk,

fk(p) = gk(p, β) + εk. (14)

The polynomial function can have any order, but typically only terms up to the second order are used (quadratic
response surface). In this case, the model is expressed as

f̃k(p) = β0 +
N∑

i=1

βipi +
N∑

i=1

N∑

j≥i

βijpipj , (15)

where the coefficientsβ represent unknown hyperparameters of the surrogate model which are determined by rigorous
FEM calculations at some training points. Once hyperparameters are determined, the training set is no longer used and
only the hyperparameters of the model characterize the response at new points. For our study, we used 609 training
points and calculated all hyperparameters by projectingfk(p) onto the polynomial basis (of quadratic order).

5.3 Polynomial Chaos Expansion

The most sophisticated surrogate model presented here is based on polynomial chaos (PC). The idea of PC goes back
to Wiener and his 1938 paper [33]. In his theoretical investigation about ergodic systems, he used polynomial approxi-
mations for a Gaussian stochastic process. In 1947, Cameron and Martin [34] proved that it is possible to approximate
every stochastic process with a finite second moment by an infinite convergent sum of orthogonal polynomials. The
approach became popular for uncertainty quantification after Xiu and Karniadakis [35] introduced the Wiener-Askey
scheme. The Wiener-Askey scheme relates different stochastic processes to orthogonal polynomials such that the
approximation error is small (cf. Table 1).

In general, the PC expansion of the forward map for uncertain input parameterspi is given by

fj(p1...n) = fj(µ1...n) +
n∑

i=1

R∑

k=1

f i
jk(µ1...n)Ψk(ωi) (16)

+
∑

α 6=β

S∑

k=1

k∑

l=1

fαβ
jkl (µ1...n)Ψk(ωσ(α))Ψl(ωσ(β)) + ... (17)

∫ 1

−1

Ψk(ωα)Ψl(ωα)dωα =
∫ 1

−1

Ψ2
k(ωα)dωα δkl (18)

TABLE 1: The Wiener-Askey scheme scheme relates polynomial ba-
sis functions to distributions of random variables

Distribution of random variable Polynomial type Support
Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)

Beta Jacobi [a, b]
Uniform Legendre [a, b]
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whereµi is the mean value of the prior distribution andωi are random numbers such thatpi = µi + ωi is a
random number drawn from the prior distribution. Here,n is the number of geometry parameters andR (respectively,
S) the maximal order of the polynomial approximation.fjkl are the expansion coefficients, and the symbolσ(α)
stands for all permutations of the index setα = 1...n. According to the Wiener-Askey scheme we have chosen
Legendre polynomials as orthogonal basis functionsΨk. The expansion coefficients are determined by projections
onto functionsΨk, i.e.,

f i
jk(µ1...n) =

∫
fj(p1...n)Ψk(ωi)ρ(ωi)dωi∫

Ψ2
k(ωi)ρ(ωi)dωi

(19)

≈ 1∫
Ψ2

k(ωi)ρ(ωi)dωi

∑
m

λi
mfj(ωm

i )Ψk(ωm
i )ρ(ωm

i ) (20)

and

fαβ
jkl (µ1...n) =

∫
fj(p1...n)Ψk(ωα)Ψl(ωβ)ρ(ωα)ρ(ωβ)dωαdωβ∫

Ψ2
k(ωα)Ψ2

l (ωβ)ρ(ωα)ρ(ωβ)dωαdωβ
(21)

≈
∑

m λi
mnfj(ωm

i , ωn
i )Ψk(ωm

i )Ψl(ωn
i )ρ(ωm

i )ρ(ωn
i )∫

Ψ2
k(ωα)Ψ2

l (ωβ)ρ(ωα)ρ(ωβ)dωαdωβ
, (22)

whereρ is the specific probability distribution. In many cases, the denominator can be integrated analytically. The
integration of the numerator can be done by numerical integrations using quadrature or cubature rules. In the one-
dimensional case, training pointsωm

i are given by zeros of the expansion polynomials. Higher-dimensional functions
are treated by the tensor product of lower-dimensional functions, such that the number of training points increase with
the power of the parameter space dimension (curse of dimensionality). For high-dimensional problems, alternative
approaches such as the Smolyak quadrature [36] are useful to reduce the number of training points and therefore, the
computational time for the construction of the surrogate model. In our study, we solved the denominator analytically
and the numerator by a sparse Legendre grid with the indexm and weightsλi

m (respectively,λi
mn).

6. RESULTS

6.1 Comparison of Surrogate Models

In the presented study, all three surrogate models are constructed from rigorous calculations with 600 to 700 training
points and validated by FEM calculations. In Fig. 2, a comparison of efficiencies is shown. The approximation by the
NN interpolation method has large errors, in particular, at higher diffraction orders. The approximation for RSM and
PC is much better [see Figs. 2(b) and 2(c)].

To quantify the approximation error in detail, we have drawn 100 sample geometries from the prior distributions
and calculated rigorously 22 efficiencies. We compared the results with approximations obtained from each surrogate
model. For every geometry, we computed theL2 norm of the difference between rigorous calculations and the approx-

imation, i.e.,
√∑

j(f
FEM
j (p)− f surrogate

j (p))2. Figure 3 depicts boxplots of the errors for all surrogate models. Errors

of NN and RSM are of the same magnitude, but differ by a factor of four. The approximation error of the surrogate
model based on the PC expansion is more than one magnitude smaller (O(10−3)).

The approximation error is determined by the number of training points and, in the limit of infinitely many points,
the error should vanish. To study the convergence, we constructed our surrogate models from coarse to finer meshes,
calculated the difference between approximated and rigorous calculated efficiencies within theL2 norm, and we took
its maximum value for 100 randomly chosen geometries. Figure 4 depicts the convergence behavior of the different
surrogate models. As we expected, the convergence of NN interpolations is very slow, whereas the convergence of
the PC-based surrogate model is quite fast. The convergence of RSM is in between the two others, but saturates after
about 40 training points. This shows that hyperparameters are well approximated with less training points, but by
further increasing the number of training points yields not substantially better approximations.
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FIG. 2: Comparison of efficiencies calculated rigorously by FEM and by a surrogate approximation: (a) Nearest-
neighbor interpolations, (b) response surface methodology, and (c) polynomial chaos expansion.

To estimate the speedup of each model, we measured the time of function evaluations. Since the construction of
the surrogate model requires the rigorous calculation of function values of the 700 training points, there is a pre-
calculation time of about 20 h for each model. For applications like Bayesian inference or sensitivity analysis, large
sampling sizes often have to be used, and the computational cost of the forward model becomes significant. In Table 2
we compare the time duration of all models with rigorous FEM calculations. For the estimation of one parameter set
within the Bayesian approach using FEM calculations, a time of more than 6 months (one core) is needed. In contrast,
all surrogate models need less than an hour. Note, there is a strong speedup of PC for the sensitivity analysis due to
the special structure of the expansion [20].

The advantage of a surrogate model over rigorous FEM calculations is the speedup, but the disadvantage is the ap-
proximation error. In Fig. 5 we compared the approximation error of each surrogate model with a typical measurement
error. The green line shows the standard deviation (1.96σj) of the measurement error with parameter valuesa = 0.02
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FIG. 3: Boxplots of theL2 norm of the difference between rigorous FEM calculations and surrogate approximations
for 100 geometries chosen randomly from the prior distributions: (a) nearest-neighbor interpolation, (b) response
surface methodology, and (c) polynomial chaos expansion.
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FIG. 4: Convergence rate of each surrogate model. The error was determined as the maximum of 100 sample geome-
tries of theL2 norm between rigorous FEM calculations and surrogate approximations.

TABLE 2: Speedup for different methods. All surrogate methods need a pre-calculation time of about 20 h
to determine all hyperparameters

Method Function evaluations FEM PC RSM NN
Sensitivity analysis 3× 104 41 d 20 h + 0.1 s 20 h +9.0 min 20 h + 5 min
Bayesian MCMC ∼ 105 139 d 20 h + 47 min 20 h + 30 min 20 h + 17 min

Maximum likelihood 30 1 h 20 h + 0.84 s 20 h + 0.54 s 20 h + 0.3 s
Least squares 15 0.6 h 20 h + 0.42 s 20 h + 0.27 s 20 h + 0.15 s

andb = 0.002% of the model given by Eq. (12). The red curve shows the absolute value of the approximation error.
With the number of training points chosen, the approximation error of the RSM and the NN method is comparable
or sometimes even larger than the typical measurement error in EUV scatterometry. We obtained similar results for
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FIG. 5: Comparison of the approximation error with the measurement error. The approximation error is given by
error = |yFEM

j − ysurrogate
j | and the measurement error is given by error= 1.96σj [Eq. (12) with a = 0.02 and

b = 0.002%]. We used the geometry as described in the next section. (a) Nearest-neighbor interpolations, (b) response
surface methodology, and (c) polynomial chaos expansion.

different geometries (results are not shown here). The comparison shows that only the surrogate model based on PC
provides approximation errors smaller than typical measurement errors.

6.2 Parameter Estimation and the Determination of Uncertainties

In the previous section, we have studied the approximation error of our surrogate models. In this paragraph, we
apply the surrogate models to Bayesian inference. For fast computations, we approximate the forward model by a
surrogate model. For testing, we simulated a set of measurement data by choosing randomly a geometry from the
prior distribution, calculated the corresponding efficiencies rigorously, and superimposed noise accordingly to the
error model Eq. (12). We have chosenam = 0.02 andbm = 0.002% accordingly to experiments in EUV-scatterometry
[3]. We used MCMC to estimate geometry parameters and determine its uncertainties from the approximated posterior
distribution. MCMC methods are algorithms for sampling from a probability distribution by the construction of a
Markov chain which has the desired distribution as its equilibrium. There are different methods to construct a Markov
chain. We have chosen the Metropolis-Hastings algorithm [37, 38]. For diagnostics, we have inspected the rejection
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rates and autocorrelation functions. We observed a good mixing and no artifacts for all chains. Furthermore, we
applied the Gelman-Rubin criterion [39] to our MCMC simulations. Here, different Markov chains are constructed
and the variances in the chains are compared with the variance between chains. Whenȳj is the mean of a chainj and
ȳ the mean of all chains, we can determine the variance within the chain

Bn =
1

M − 1

M∑

j=1

(ȳj − ȳ)2 (23)

and between chains

W =
1

M(N − 1)

∑

ij

∑

ij

(yi
j − ȳj)2, (24)

whereN andM are the number of samplings and the number of chains, respectively. The symbolyi
j is the value of

theith sampling step and of thejth chain. The Gelman-Rubin coefficient R is then determined by

R =
[(N − 1)/N ]W + [(M + 1)/M ]Bn

W
. (25)

R is always larger than 1 by construction. For convergenceR < 1.03 is needed. Note that the Gelman-Rubin criterion
is not a sufficient criterion to decide if the equilibrium distribution is reached. In Table 3 we summarized the Gelman-
Rubin coefficients for Markov chains constructed for the approximated posterior distributions for each surrogate
model. We used four chains and25 × 103 sampling steps for each chain. All Gelman-Rubin coefficients are clearly
below1.03.

To estimate the geometry parameters and uncertainties from the posterior distribution we construct Markov chains
with 2× 105 steps. For the burn-in phase a sampling size of 25,000 was used according to our diagnostics result.

We estimated all parameters by calculating the means of the posterior distributions, and we determined the un-
certainties by the95% credible intervals of the distributions for 20 reconstructions. Figure 6 depicts results of the
estimates and the associated uncertainties for the bottom-CD, height and the SWA. The error bars indicate credible
intervals and can be asymmetric if the underlying distribution is asymmetric. For all data sets, the geometry was the
same (true geometry). Differences appear due to randomly distributed error according to Eq. (12). The true geometry
is marked by the red dashed lines. The green dashed lines give the mean value for the set of estimates.

In the case of the NN method, Markov chains are drifting to the boundary of the support of the prior. The true
bottom-CD was not estimated, and uncertainties are not consistent with the true values. Estimates using the RSM
method are consistent, but the results are not very precise and exhibit large standard uncertainties. In addition, there
is a large bias which is independent of the simulated measurement noise. In the case of the PC expansion results are
almost all consistent, standard uncertainties are small and there is no bias.

So far, we discussed estimates of the geometry parameters and credible intervals, but the Markov chain encodes
also information about the entire posterior distribution. In Fig. 7, projections of the posterior distribution onto different
parameter axes are depicted. The supports of the distributions are rescaled to[−1, 1] for convenience. The green dashed
lines show the true values of parameters. All distributions are non-Gaussian, which makes the application of the

TABLE 3: Application of the Gelman-Rubin
convergence criterion. For the calculation, we
used four chains with 25000 sampling steps.
For convergence a value ofR < 1.03 should
be reached

Surrogate R
Nearest-neighbor interpolation 1.0014
Response surface methodology1.0052

Polynomial chaos approximation1.0157
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FIG. 6: (color online) Estimations of geometry parameters by using Bayesian inference and surrogate models: (a)
nearest neighbor method, (b) response surface methodology, and (c) polynomial chaos expansion. For each surrogate
model,2× 105 MCMC samplings are used. The burn-in was set to 25,000 samplings. Estimates are obtained from a
data set of 20 simulated measurements. Red dashed line is the true geometry, and the green dashed line is the average
of 20 estimates.
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FIG. 7: (color online) Projections of the posterior distribution displayed by histograms for (a) nearest-neighbor
method, (b) response surface methodology, and (c) polynomial chaos expansion. The parameter intervals are scaled to
[−1, 1] for convenience by 11.2 nm for the bottom-CD, 5.6 nm for the height, and5◦ for the SWA. The true parameter
values are shown by dashed green lines.

standard deviation as a measure for uncertainty disputable. The distributions obtained by NN interpolations are close
to the boundary of the imposed approximation interval and show some maxima. This indicates that approximation
errors are too large, and a sufficient solution of the inverse problem is not possible. The resolution of reconstructed
parameters is determined by the cubes’ length. We have chosen 729 cubes for the three-dimensional parameter space
which defines intervals of about2.5 nm for the bottom-CD. This means that the error of the estimated geometries is
up to2.5 nm (0.22 when scaled to[−1, 1]).

Distributions obtained from the RSM display mean values which are close to the true values of geometrical param-
eters, but show still large variations. For the bottom-CD the distribution is asymmetric and shifted to larger values. The
asymmetry comes not from a distortion of the Gaussian distribution of the measurement error, but from the approxi-
mation error of the forward model. The approximation error of the RSM was larger than that of the PC expansion (see
Fig. 3) which yields larger uncertainties incorporated in wider distributions. The distributions for the PC expansion
have only a very small bias and smaller standard deviations then the RSM method. Surprisingly, the distribution of
the sidewall angle is bimodal, which comes from the approximation error (see next section). Even if this phenomenon
yields larger credible intervals and may lead to a bias of2.5◦, the related uncertainties cover a range that includes the
true value.

The projections of the posterior distribution on a surface spanned by two parameters are shown in Fig. 8. The
cross depicts the value of the true geometry. All the aspects discussed above are recovered. In addition, the anisotropy
of the distribution reflects different sensitivity to the parameters. It is known from previous studies that the sensitivity
of the light-diffracted intensities against variations of the sidewall angle is small. Therefore, the uncertainties of the
SWA are always large.
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7. APPROXIMATION ERROR

So far, we obtained grating geometry parameters from the posterior distribution and identified related uncertainties
by its 95% credible intervals. These uncertainties include the measurement noise as well as the approximation error.
Now, the effect of the approximation error on the uncertainties is briefly discussed. For this purpose, we setam =
bm = 0 and use MCMC sampling to obtain the posterior distribution in the same way as explained in the previous
section. Figure 9 shows estimates of the height together with its95% credible intervals. It is clearly seen that the
approximation errors of the RSM method yield large uncertainties of the estimated parameters. In addition the bias
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FIG. 9: Reconstructions of the height with uncertainty (95% credible interval) from simulation data without noise.
The uncertainties shown are a result of the approximation error. (a) Nearest-neighbor method, (b) response surface
methodology, and (c) polynomial chaos expansion.
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appears already when only approximation errors are present. This shows that approximation errors yield a contribution
of uncertainties and an additional bias. The approximation error of NN yield already to a strong bias which yields to
failed reconstructions. Uncertainties are inconsistent with the true values.

In Table 4 the results of the error parameters are shown. We calculated the error parameters from the posterior
distribution with measurement error (am = 0.02 andbm = 0.002%) and without measurement error (am = 0.0 and
bm = 0.0%), respectively. Using Eq. (10), we can estimate the error of the simulated measurements and can compare
it to the chosen values. The values ofaapproxandbapprox for the RSM and NN are large due to the approximation error.
However, estimates foram andbm are in a good agreement with the chosen values for all methods.

8. CONCLUSIONS

In this article, we introduced and constructed three different surrogate models (NN, RSM, PC) to approximate the
forward model in scatterometry. We validated the surrogate models by FEM calculations. We calculated the approx-
imation error for each surrogate model and studied its convergence. For the same number of training points the
approximation error was large for NN interpolations, moderate for the RSM, and small for the PC expansion. In the
second part of the article, we used the constructed surrogate models to accelerate Bayesian inference and to estimate
geometry and noise parameters from 20 simulated measurements by using a MCMC method (Metropolis-Hastings).
Uncertainties are determined by the calculation of95% credible intervals. We found a reasonable agreement and
consistency with the geometry used for simulated measurements for the RSM and the PC method. The NN method
fails completely. This shows that the amount of training points was not enough for a proper approximation. The RSM
method shows large uncertainties for all parameters and a bias for some of them. The uncertainties of the estimated
parameters obtained by the surrogate model based on the PC expansion are quite small and reconstructed parameters
are accurate and without any additional bias.

Furthermore, we investigated the posterior distribution by the consideration of its projections. The distributions
display the same features as discussed above. The distributions obtained by the NN method have several peaks and
MCMC chains are drifting to the boundaries of the prior. Hence, the posterior is dense close to the interval boundaries,
and the algorithm fails to reconstruct the geometry parameters properly. The PC surrogate model has shown the best
performance. The posterior distribution was close by the true parameter values. However, surprisingly, the distribution
of the side wall angle was bimodal with narrow peaks. The bimodality introduces an additional uncertainty of about
2.5◦. We observed also bimodal distributions for the RSM method not shown here. The discussion shows that the
approximation errors affect the shape of the posterior distribution in all cases.

In this article, we have shown that the Bayesian approach to computationally expensive systems like scatterometry
is feasible if surrogate models are used. Among the three models analyzed, the polynomial chaos expansion was the
most efficient approximation. More future work is needed to extend parameter intervals and to apply the algorithms
to experimental measurements.
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TABLE 4: Error parametersa, b andaapprox, bapprox are calculated from the posterior dis-
tribution.am andbm are calculated with Eq. (10). For simulations of the measurements we
used an error ofam = 0.02 andbm = 0.002%

Surrogate a aapprox am b bapprox bm

RSM 0.03666 0.03096 0.01932 0.002670% 0.00159% 0.002146%
PC 0.02467 0.01160 0.02177 0.002334% 0.00113% 0.0020434%
NN 0.02634 0.01210 0.02340 0.002613% 0.00114% 0.0023513%
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