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Computer simulation has become the standard tool in many engineering fields for designing and optimizing systems,
as well as for assessing their reliability. Optimization and uncertainty quantification problems typically require a large
number of runs of the computational model at hand, which may not be feasible with high-fidelity models directly. Thus
surrogate models (a.k.a meta-models) have been increasingly investigated in the last decade. Polynomial chaos expan-
sions (PCE) and Kriging are two popular nonintrusive meta-modeling techniques. PCE surrogates the computational
model with a series of orthonormal polynomials in the input variables where polynomials are chosen in coherency with
the probability distributions of those input variables. A least-square minimization technique may be used to determine
the coefficients of the PCE. Kriging assumes that the computer model behaves as a realization of a Gaussian random
process whose parameters are estimated from the available computer runs, i.e., input vectors and response values. These
two techniques have been developed more or less in parallel so far with little interaction between the researchers in the
two fields. In this paper, PC-Kriging is derived as a new nonintrusive meta-modeling approach combining PCE and
Kriging. A sparse set of orthonormal polynomials (PCE) approximates the global behavior of the computational model
whereas Kriging manages the local variability of the model output. An adaptive algorithm similar to the least angle
regression algorithm determines the optimal sparse set of polynomials. PC-Kriging is validated on various benchmark
analytical functions which are easy to sample for reference results. From the numerical investigations it is concluded
that PC-Kriging performs better than or at least as good as the two distinct meta-modeling techniques. A larger gain in
accuracy is obtained when the experimental design has a limited size, which is an asset when dealing with demanding
computational models.

KEY WORDS: emulator, Gaussian process modeling, Kriging, meta-modeling, polynomial chaos expan-
sions, PC-Kriging, benchmark functions

1. INTRODUCTION

Modern engineering makes a large use of computer simulation in order to design systems of ever-increasing com-
plexity and assess their performance. As an example, let us consider a structural engineer planning a new structure.
An essential part of his work is to predict the behavior of the not-yet-built structure based on some assumptions, and
available information about, e.g., acceptable dimensions, loads to be applied to the structure, and material properties.
These ingredients are basically the input parameters of computational models that predict the performance of the
system under various conditions. The models help the engineer analyze/understand the behavior of the structure and
eventually optimize the design in order to comply with safety and serviceability constraints.

Similar conditions can also be found in many other scientific and engineering disciplines. The common point is
the simulation of the behavior of a physical process or system by dedicated algorithms which provide a numerical
solution to the governing equations. These simulation algorithms aim at reproducing the physical process with the
highest possible fidelity. As an example, finite element models have become a standard tool in modern civil and
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mechanical engineering. Due to high fidelity, such models typically exploit the available computer power, meaning
that a single run of the model may take hours to days of computing, even when using a large number of CPUs.

An additional layer of complexity comes from the fact that most input parameters of such computational models
are not perfectly known in practice. Some parameters (e.g., material properties, applied loads, etc.) may exhibit natural
variability so that the exact value to be used for simulating the behavior of a particular system is not known in
advance (this is referred to asaleatory uncertainty). Some others may have a unique value which is however not
directly measurable and prone to lack of knowledge (epistemic uncertainty). In a probabilistic setup these parameters
are modeled by random variables with prescribed joint probability density function, or more generally, by random
fields. The goal ofuncertainty propagationis to assess the effect of the input uncertainty onto the model output, and
consequently onto the performance of the system under consideration [1, 2].

Propagating uncertainties usually requires a large number of repeated calls to the model for different values of
the input parameters, for instance through a Monte Carlo simulation procedure. Such an approach usually require
thousands to millions of runs which is not affordable even with modern high-performance computing architectures.
To circumvent this problem,surrogate modelsmay be used, which replace theoriginal computational model by an
easy-to-evaluate function [3–5]. These surrogate models, also known asresponse surfacesor meta-models, are capable
of quickly predicting responses to new input realizations. This allows for conducting analyses which require a large
number of model evaluations, such as structural reliability and optimization, in a reasonable time.

Among the various options for constructing meta-models, this paper focuses onnonintrusive approaches, meaning
that the computational model is considered as a “black-box model”: once an input vector (i.e., a realization of the
random input in the process of uncertainty propagation) is selected, the model is run and provides an output vector
of quantities of interest. No additional knowledge on the inner structure of the computer code is assumed. Popular
types of meta-models that may be built from a limited set of runs of the original model (called theexperimental design
of computations) include polynomial chaos expansions (PCE) [6], Gaussian process modeling (also called Kriging)
[7–10], and support vector machines [11–14], which have been extensively investigated in the last decade. Polynomial
chaos expansions and Kriging are specifically of interest in this paper.

Polynomial chaos expansions (PCE), also know as spectral expansions, approximate the computational model by a
series of multivariate polynomials which are orthogonal with respect to the distributions of the input random variables.
Traditionally, spectral expansions have been used to solve partial differential equations in anintrusivemanner [6]. In
this setup truncated expansions are inserted into the governing equations and the expansion coefficients are obtained
using a Galerkin scheme. This pioneering approach calledspectral stochastic finite element method(SSFEM), was
later developed by [15–19], among others. These intrusive methods require specific, problem-dependent algorithmic
developments though. Because it is not always possible and/or feasible to treat a computational model intrusively,
especially when legacy codes are at hand in an industrial context, nonintrusive polynomial chaos expansions were de-
veloped. So-calledprojections methodswere developed by [20–23], see a review in [24].Least-square minimization
techniques have been introduced by [25–27]. Further developments which combine spectral expansions and compres-
sive sensing ideas have lead to so-calledsparse polynomial chaos expansions[28–34]. This is the approach followed
in this paper. Further recent applications of PCE to structural reliability analysis and design optimization can be found
in [35–37].

The second meta-modeling technique of interest in this paper is Kriging, which originates from interpolating
geographical data in mining [38] and is today also known as Gaussian process modeling [8, 9]. The Kriging meta-
model is interpreted as the realization of a Gaussian process. Practical applications can be found in many fields, such
as structural reliability analysis [39–44] and design optimization [45–47]. The implementation of the Kriging meta-
modeling technique can be found in, e.g., the Matlab toolboxDACE [48] and the more recent R toolboxDiceKriging
[49, 50].

So far the two distinct meta-modeling approaches have been applied in various fields rather independently. To our
knowledge, there has not been any attempt to combine PCE and Kriging in a systematic way yet. To bridge the gap
between the two communities, this paper aims at combining the two distinct approaches into a new and more powerful
meta-modeling technique calledPolynomial-Chaos-Kriging(PC-Kriging). As seen in the sequel the combination of
the characteristics and the advantages of both approaches leads to a more accurate and flexible algorithm which will
be detailed in this paper.
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The paper is organized as follows. PCE and Kriging are first summarized in Section 2 and Section 3, respectively.
Section 4 introduces the new meta-modeling approach PC-Kriging as the combination of the two distinct approaches.
The accuracy of the new and traditional meta-modeling approaches is compared in Section 5 on a set of benchmark
analytical functions.

2. POLYNOMIAL CHAOS EXPANSIONS

2.1 Problem Definition

Consider the probability space(Ω,F ,P), whereΩ denotes the event space equipped withσ-algebraF and the prob-
ability measureP. Random variables are denoted by capital lettersX(ω) : Ω 7→ DX ⊂ R and their realizations
denoted by the corresponding lower case letters, e.g.,x. Random vectors (e.g.,X = {X1, . . . , XM}T) and their
realizations (e.g.,x = {x1, . . . , xM}T) are denoted by bold faced capital and lowercase letters, respectively.

In this context, consider a system whose behavior is represented by a computational modelMwhich maps theM -
dimensional input parameter space to the one-dimensional output space, i.e.,M : x ∈ DX ⊂ RM 7→ y ∈ R where
x = {x1, . . . , xM}T. As the input vectorx is assumed to be affected by uncertainty, a probabilistic framework is
introduced. Due to uncertainties in the input vector, it is represented by a random vectorX with given joint probability
density function (PDF)fX . For the sake of simplicity the components are assumed independent throughout the paper,
so that the joint PDF may be written as the product of the marginal PDFs denoted byfXi , i = 1, . . . , M . Note that
the case of dependent input variables can easily be addressed by using an isoprobabilistic transform first, such as the
Nataf or Rosenblatt transform [29]. The output of the model is a random variableY obtained by propagating the input
uncertainty inX through the computational modelM:

Y = M(X). (1)

In this paper we consider that the computational model is adeterministicmapping from the input to the output space,
i.e., repeated evaluations with the same input valuex0 ∈ DX lead to the same output valuey0 = M(x0).

Provided that the output random variableY is a second-order variable (i.e.,E
[
Y 2

]
< +∞), it can be cast as the

following polynomial chaos expansion (PCE) [6, 51]:

Y ≡M(X) =
∑

α∈NM

aα ψα(X), (2)

where{aα, α ∈ NM} are coefficients of the multivariate orthonormal polynomialsψα(X) in coherency with the
distribution of the input random vectorX, α = {α1, . . . , αM} is the multi-index andM is the number of input
variables (dimensions). Since the components ofX are independent, the joint probability density functionfX is the
product of the marginsfXi . Then afunctional inner productfor each marginal PDFfXi is defined by

〈φ1,φ2〉i =
∫

Di

φ1(x)φ2(x) fXi(x)dx, (3)

for any two functions{φi, φ2} such that the integral exists. For each variablei = 1, . . . , M an orthonormal polyno-
mial basis can be constructed which satisfies [15]:

〈P (i)
j , P

(i)
k 〉 =

∫

Di

P
(i)
j (x)P

(i)
k (x) fXi(x)dx = δjk, (4)

whereP
(i)
j , P

(i)
k are two candidate univariate polynomials in theith variable,Di is the support of the random variable

Xi andδjk is the Kronecker delta which is equal to 1 forj = k and equal to0 otherwise. [15] summarize various
orthonormal bases for some classical PDFs, some of which are summarized in Table 1.
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TABLE 1: Classical orthogonal/orthonormal polynomials (as presented in [52])
Distribution PDF Orthogonal poly-

nomials
Orthonormal basis

Uniform 1]−1,1[(x)/2 LegendrePk(x) Pk(x)/

√
1

2k + 1
Gaussian

1√
2π

e−x2/2 HermiteHek
(x) Hek

(x)/
√

k!

Gamma xae−x1R+(x) LaguerreLa
k(x) La

k(x)/

√
Γ(k + a + 1)

k!

Beta 1]−1,1[(x)
(1− x)a(1 + x)b

B(a)B(b)
JacobiJa,b

k (x) Ja,b
k (x)/Ja,b,k

J 2
a,b,k =

2a+b+1

2k + a + b + 1
Γ(k + a + 1)Γ(k + b + 1)
Γ(k + a + b + 1)Γ(k + 1)

The multivariate polynomials in Eq. (2) are then composed of univariate polynomials by tensor product, i.e., by
multiplying the various polynomials in each input variable:

ψα(X) =
M∏

i=1

ψ(i)
αi

(Xi), (5)

whereψ
(i)
αi is the polynomial of degreeαi in theith variable.

The main idea of PCE is then to surrogate the computational model by an infinite series of polynomials as shown
in Eq. (2). In practice, it is not feasible to handle infinite series, thus the need of a truncation scheme. Such a truncation
scheme corresponds to a set of multi-indexesα ∈ A ⊂ NM such that the system response is accurately approximated
with respect to some error measure [29, 32]:

Y ≈ Y (PCE) def= M(PCE)(X) =
∑

α∈A
aα ψα(X). (6)

There are several ways to selecta priori a truncation setA. A simple and commonly applied scheme consists of
upper-bounding the total degree of polynomials to a maximal valuep. The total degree of polynomials is defined by

|α| =
M∑

i=1

αi. (7)

In this case the set of multi-indices is denoted byAM,p = {α ∈ NM : |α| ≤ p} wherep is the maximal total
polynomial degree. The cardinality of the setA reads

∣∣AM,p
∣∣ =

(M + p)!
M ! p!

. (8)

This cardinality grows polynomially with bothM andp. Such a truncation scheme thus leads to nontractable problems
if the response is highly nonlinear in its input parameters (need for a largep) and/or if the size of the input vectorX
is large (say,M > 10). This problem is referred to as thecurse of dimensionality.

In [29, 53] a more restrictive truncation scheme calledhyperbolic truncation setwas proposed. The authors ob-
served that many systems tend to have only low-degree interaction polynomials and thus it is not necessary to compute
all interaction terms of higher polynomial degree. The hyperbolic index set is based on the followingq-norm:

AM,p
q ≡ {α ∈ NM : ‖α‖q ≤ p}, (9)
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where

‖α‖q ≡
(

M∑

i=1

α
q
i

)1/q

, (10)

0 < q ≤ 1 is a tuning parameter andp is the maximal total degree of the polynomials. A decreasingq leads to a smaller
number of interactive polynomials, i.e., a smaller set of polynomials. Whenq → 0, only univariate polynomials are left
in the set of polynomials which is called an additive model [52]. For the sake of illustration, the retained polynomial
indicesα ∈ AM,p

q of a two-dimensional input space (M = 2) and varyingp andq are illustrated in Fig. 1. The indices
denoted by• are part ofAM,p

q and the solid black line represents‖α‖q = p. Note that forq = 1, the hyperbolic index
sets are equivalent to the total degree index set [see Eq. (7)].

2.2 Computation of the Coefficients

After defining the set of candidate polynomials, the next step is to determine the expansion coefficientsaα of each
multivariate polynomialψα(x). In this paper we consider onlynonintrusivemethods which are based on repeatedly
evaluating the modelM over a set of input realizationsX = {χ(1), . . . , χ(N)}, the so-calledexperimental design.
Different nonintrusive methods have been proposed in the last decade to calibrate PC meta-models, namely projection
[20–22], stochastic collocation [23, 24], and least-square minimization methods [26, 29, 32, 54, 55]. In this paper we
adopt the least-square minimization method. The expansion coefficientsa = {aα, α ∈ A ⊂ NM} are calculated by
minimizing the expectation of the least-squares residual:

a = arg min
a∈R|A|

E




(
Y −

∑

α∈A
aα ψα(X)

)2

 . (11)
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FIG. 1: Representation of a hyperbolic index setα ∈ AM,p
q for variousp andq (M = 2).
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In practice the expectation in Eq. (11) is evaluated by an empirical sample-based estimator. Denoting by
Y = {M(χ(1)), . . . ,M(χ(N))} ≡ {Y(1), . . . ,Y(N)} the set of outputs of the exact modelM for each point in
the experimental designX , the discretized least-squares error minimization problem derived from Eq. (11) reads

â = arg min
a∈R|A|

1
N

N∑

i=1

(
Y(i) −

∑

α∈A
aα ψα(χ(i))

)2

. (12)

The optimal expansion coefficientŝa may be computed by solving the linear system

â = (FTF)−1FTY, (13)

whereF is the information matrix of sizeN × |A| whose generic term reads:

Fij = ψj(χ(i)), i = 1, . . . , N, j = 1, . . . , |A|. (14)

Typically for smooth functions, a small number of polynomials is able to represent accurately the output of the
computational model. Thus a further reduction of the set of predictors in high-dimensional space is possible. Various
types of generalized regression algorithms have been proposed in the literature, namely theleast absolute shrinkage
operator(LASSO) [56], theLeast Angle Regression(LAR) [57], low-rank approximations[33, 58], and compressive
sensing [59]. In the applications of this paper, the LAR algorithm is used in combination with hyperbolic index sets.

Given a PCE meta-model, i.e., a set of polynomialsψα, α ∈ A, and the corresponding parametersaα, the
response of a new samplex ∈ DX may be eventually predicted by Eq. (6):

y(PCE) = M(PCE)(x). (15)

2.3 Error Estimation

As seen in Eq. (6), PCEs are approximations of the exact computational model and thus the prediction at new input
samples leads to some residual error. That is why error measures are developed to quantify the deviation between the
exact outputY = {Y(i), i = 1, . . . , N} and the meta-model outputY (PCE) = M(PCE)(X ). Thegeneralization error
(also calledL2-error) is the expectation of the squared output residuals [60], i.e.,

Errgen = E
[(

Y − Y (PCE)
)2

]
, (16)

whereY (PCE) corresponds to the truncated series [see Eq. (6)] and the expectation is defined with respect to the
PDF of the input variablesX. If the computational modelM is inexpensive to evaluate, the generalization error can
be estimated accurately using an auxiliary validation setX = {x(1), . . . , x(n)}, which is sampled from the input
distributionfX . The estimate of the generalization error then reads

Êrrgen =
1
n

n∑

i=1

(
M(x(i))−M(PCE)(x(i))

)2

. (17)

However, this rarely happens in real applications since the very purpose of building a meta-model is to avoid evaluating
M on a large sample setX. Note that in Section 5 though, the various meta-modeling techniques are compared on
analytical benchmark functions, making it possible to use such an estimate of the generalization error.

When the use of a large validation set is not affordable, theempirical errorbased on the available experimental
designX may be defined:

Erremp ≡ 1
N

N∑

i=1

(
Y(i) −M(PCE)(χ(i))

)2

. (18)
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Normalizing the empirical error by the variance of the output values leads to therelative empirical errorwhich is
defined as

εemp ≡
∑N

i=1

(Y(i) −M(PCE)(χ(i))
)2

∑N
i=1

(Y(i) − µY
)2 , (19)

whereµY is the mean value of the output valuesY. The empirical error which is based on the experimental design
generally underestimates the generalization error. In particular, if the number of polynomials|A| is close to the number
of samplesN in the experimental design, the empirical error tends to zero whereas the true (generalization) error does
not. This phenomenon is calledoverfitting(in the extreme case whereN = |A| the predictors may interpolate the
experimental design points and thus the empirical error vanishes). Hence theleave-one-out(LOO) error has been
proposed as an estimate of the generalization error [61, 62]. The general formulation of the leave-one-out error is

Err(PCE)
LOO ≡ 1

N

N∑

i=1

(
Y(i) −M(PCE)

(−i) (χ(i))
)2

, (20)

whereM(PCE)
(−i) (·) is a PCE model built from the sample setX (−i) = X\χ(i) ≡ {χ(j), j = 1, . . . , i−1, i+1, . . . , N}

andY = {Y(i), i = 1, . . . , N} are the response values of the exact computational model. The LOO error is a special
case of theleave-k-out cross-validationerror [63], which discardsk samples from the initial experimental design to
build up a model and predict the error at thek discarded samples.

In theory the computational cost of the LOO error is proportional to the number of samplesN since it would re-
quire the determination ofN PCE meta-models corresponding to each experimental designX (−i). In the special case
of linearly parameterized regression, which is the case for PCE, it is possible to calculate the LOO error analytically
withoutbuildingN separate models. The LOO error reads (see, e.g., [53, 64] for the proof)

Err(PCE)
LOO =

1
N

N∑

i=1

(Y(i) −M(PCE)(χ(i))
1− hi

)2

, (21)

wherehi is theith diagonal term of the matrixF
(
FTF

)−1
FT and the information matrixF is defined in Eq. (14).

Note that the PCE used in Eq. (21) is built only once from the full experimental designX .

3. KRIGING

3.1 Problem Definition

The second meta-modeling technique in this paper is Kriging, also known asGaussian process modeling, which
assumes that the response of a computational model is a realization of a Gaussian random process [9], i.e.,

M(x) ≈M(K)(x) = βTf(x) + σ2 Z(x), (22)

whereβTf(x) =
∑P

j=1 βjfj(x) is the mean value of the Gaussian process, also called trend, with coefficientsβ,
σ2 is the Gaussian process variance andZ(x) is a zero-mean, unit-variance stationary Gaussian process. The zero-
mean Gaussian processZ(x) is fully determined by the auto-correlation function between two input sample points
R(x, x′) = R(|x− x′|; θ) due to stationarity, whereθ are hyper-parameters to be computed.

Various correlation functions can be found in the literature [8, 9], some of which are thelinear, exponential, Gaus-
sian(also calledsquared exponential), andMatérn autocorrelation function. In this paper the Matérn autocorrelation
function is mainly used as it is a generalization of the exponential and the Gaussian autocorrelation functions. The
general Mat́ern kernel of degreeν is defined as [65]

R(|x− x′|; l, ν) =
M∏

i=1

1
2ν−1Γ(ν)

(√
2ν
|xi − x′i|

li

)ν

κν

(√
2ν
|xi − x′i|

li

)
, (23)
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wherex andx′ are two sample points in the input spaceDX , l = {li > 0, i = 1, . . . , M} are the scale parameters
(also calledcorrelation lengths), ν ≥ 1/2 is the shape parameter,Γ(·) is the Euler Gamma function, andκν(·) is the
modified Bessel function of the second kind (also known as Bessel function of the third kind). In many publications
the shape parameter is set to eitherν = 3/2 or ν = 5/2 which simplifies Eq. (23) to [49]:

R(|x− x′|; l, ν = 3/2) =
M∏

i=1

(
1 +

√
3 |xi − x′i|

li

)
exp

(
−
√

3 |xi − x′i|
li

)
, (24)

R(|x− x′|; l,ν = 5/2) =
M∏

i=1

(
1 +

√
5 |xi − x′i|

li
+

5(xi − x′i)
2

3 l2i

)
exp

(
−
√

5 |xi − x′i|
li

)
. (25)

Apart from the correlation part in Eq. (22) there is also a trend partβTf(x). Three different flavors of Kriging
are defined in the literature [8–10], namely simple, ordinary, and universal Kriging according to the choice of the
trend.Simple Krigingassumes that the trend has a known constant value, i.e.,βTf(x) = β0. In ordinary Kriging the
trend has a constant but unknown value, i.e.,P = 1, f1(x) = 1, andβ1 is unknown. The most general and flexible
formulation isuniversal Kriging, which assumes that the trend is composed of a sum ofP pre-selected functions
fk(x), i.e.,

βTf(x) =
P∑

k=1

βkfk(x), (26)

whereβk is the trend coefficient of each function. Note that simple and ordinary Kriging are special cases of universal
Kriging. As discussed later in this paper, one approach to set up a trend is to use a sparse set of polynomials, which
defines a new variant of universal Kriging.

3.2 Calibration of the Kriging Model

Given a value for the auto-correlation hyper-parametersθ̂, the calibration of the Kriging model parameters
{β(θ̂), σ2

y(θ̂)}may be computed using anempirical best linear unbiased estimator(BLUE). The optimization yields

an analytical expression as a function ofθ̂:

β(θ̂) =
(
FTR−1F

)−1

FR−1Y, (27)

σ2
y(θ̂) =

1
N

(Y − Fβ)T R−1 (Y − Fβ) , (28)

whereY = {Y(i), i = 1, . . . , N} are model responses of the exact computational model on the experimental design
X = {χ(i), i = 1, . . . , N}, Rij = R(|χ(i)−χ(j)|; θ̂) is the correlation matrix andFij = fj(χ(i)) is the information
matrix.

In recent developments, the optimal correlation parametersθ̂ may be determined by either a maximum-likelihood-
estimate (denoted byML) [47, 66] or by leave-one-out cross-validation (CV) [67]. The optimal parameters are deter-
mined through a minimization which reads

θ̂ML = arg min
θ

[
1
N

(Y − Fβ)T R−1 (Y − Fβ) (detR)1/N

]
, (29)

θ̂CV = arg min
θ

[
YTR(θ)−1diag

(
R(θ)−1

)−2
R(θ)−1 Y

]
. (30)

The comparison of both approaches shows that ML is preferable to CV in well-specified cases, i.e., when the meta-
model autocorrelation function family is identical to the autocorrelation function of the computational model. For
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practical problems, i.e., assuming a black-box model, the autocorrelation function family is not known with certainty.
In this case CV shall lead to more robust results than ML, as discussed in [67].

Determining the optimal correlation parameters in Eqs. (29) and (30) is a complex multi-dimensional minimization
problem. Optimization algorithms can be cast into two distinct categories: local and global optimization algorithms.
Local methods are usually gradient-based algorithms such as the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [68–70] and its modifications [71]. Global methods are algorithms such as genetic algorithms [72]
and differential evolution algorithms [73, 74]. The best optimization algorithm is problem dependent and in many
cases not knowna priori.

The optimal correlation parameters are then used for predicting the model response at new samples of the input
space. By assumption, the prediction of a Kriging model of a new pointx is a Gaussian random variable with mean
µŷ(x) and varianceσ2

ŷ(x):
µŷ(x) = f(x)Tβ + r(x)TR−1 (Y − Fβ) , (31)

σ2
ŷ(x) = σ2

y

(
1− 〈f(x)Tr(x)T〉

[
0 FT

F R

]−1 [
f(x)
r(x)

])
, (32)

whereri(x) = R(|x−χ(i)|; θ) is the correlation between the new samplex and the sampleχ(i) of the experimental
design. The prediction mean is used as the surrogate to the original modelM, whereas the variance gives alocal error
indicator about the precision. Note that the Kriging model interpolates the data, i.e.,

µŷ(χ(i)) = M(χ(i)), σ2
ŷ(χ(i)) = 0, ∀χ(i) ∈ X .

Apart from this procedure to calibrate the meta-model and predict model responses, the Kriging meta-modeling
technique has been developed further in recent years. The latest developments in Kriging are contributed in the aspects
of optimal estimation of the hyper-parameters [67, 75, 76], the use of adaptive kernels [77, 78], and the use of additive
auto-correlation kernels [79–81].

3.3 Error Estimation

A local error measure for any samplex is given by the prediction varianceσ2
ŷ(x) in Eq. (32). This information is

useful to detect regions where the prediction accuracy is low. Adding new samples to the experimental designX in
the regions with high prediction variance may lead to an overall increase in the accuracy of the meta-model in that
region. This characteristics is exploited when devising adaptive experimental designs in structural reliability analysis,
see [42, 46, 82, 83].

A simple global error measure of the accuracy of the meta-model [such as Eq. (19) for PC expansions] is not
available for Kriging due to its interpolating properties, which make the empirical error vanish (considering no nugget
effect in its auto-correlation function). Thus one approach to a global error measure is theleave-one-out(LOO) error

Err(K)
LOO =

1
N

N∑

i=1

(
Y(i) − µŷ,(−i)(χ(i))

)2

, (33)

whereµŷ,(−i)(χ(i)) is the prediction meanµŷ of sampleχ(i) by a Kriging meta-model based on the experimental

designX (−i) = X\χ(i) andY = {Y(i), i = 1, . . . , N} is the exact model response. [84] derived an analytical
solution for the LOO error for universal Kriging without computing theN meta-models explicitly in the same spirit
as Eq. (21) for PC expansions. The prediction mean and variance are given by

µŷ,(−i) = −
N∑

j=1,j 6=i

Bij

Bii
Y(j) = −

N∑

j=1

Bij

Bii
Y(j) + Y(i), (34)

σ2
ŷ,(−i) =

1
Bii

, (35)
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whereB is a square matrix of size(N +P ) with N andP denoting the number of samples in the experimental design
and the number of polynomials in the trend part, respectively:

B =
[

σ2R F
FT 0

]−1

, (36)

whereσ2 is the Kriging variance for the full experimental designX estimated by Eq. (28). A generalized version of
this algorithm calledv-fold cross-correlation errorcan be found in [84].

3.4 PCE as a Particular Case of Universal Kriging

PC expansions can be interpreted as Kriging models where the samples of the experimental design are uncorrelated,
i.e., where the auto-correlation function consists of the Dirac function:

R(|x− x′|) = δ(x− x′). (37)

The correlation matrix is then the identity matrix of sizeN , i.e.,R = IN . This reduces Eq. (27) to Eq. (13) and
Eq. (31) to Eq. (2).

Further, it can be shown that the LOO error in Eqs. (33)-(35) reduces to Eq. (21) by the following derivations.
Consider the symmetric partitioned matrixC and the corresponding inverseD, i.e., D = C−1 which are defined as

C =
[

C11 C12

CT
12 C22

]
, D =

[
D11 D12

DT
12 D22

]
,

whereC11, D11 (respectively,C22, D22) are square matrices with dimensionN (respectively,P ). Using block matrix
inversion one can derive:

D11 = C−1
11 + C−1

11 C12

(
C22 −CT

12C
−1
11 C12

)−1

CT
12C

−1
11 . (38)

In the context of the LOO error, takingC ≡ B in Eq. (36),C11 = σ2IN , C12 = F, C22 = 0P :

D11 =
1
σ2

IN +
1
σ2

INF
(
0P − FT 1

σ2
INF

)−1

FT 1
σ2

IN

=
1
σ2

I +
1
σ2

F
(
−FTF

)−1

FT =
1
σ2

(
I− F

(
FTF

)−1

FT
)

.

(39)

Then, the LOO error in Eq. (33) combined with Eq. (34) and the above inverse formulation of theB matrix reads:

ErrK
LOO =

1
N

N∑

i=1


Y(i) +

N∑

j=1

Bij

Bii
Y(j) − Y(i)




2

=
1
N

N∑

i=1


 1

Bii

N∑

j=1

BijY(j)




2

=
1
N

N∑

i=1


 1

Biiσ2

N∑

j=1

(
I− F

(
FTF

)−1

FT
)

ij

Y(j)




2

=
1
N

N∑

i=1


 1

1−
(

diag
[
F (FTF)−1 FT

])
i

·

Y(i) −

N∑

j=1

[
F

(
FTF

)−1

FT
]

ij

Y(j)







2

=
1
N

N∑

i=1



Y(i) −

[(
FTF

)−1
FTY

]T
f(χ(i))

1−
(

diag
[
F (FTF)−1 FT

])
i




2

,

(40)

which is equivalent to the formulation of the LOO error in Eq. (21) for the case of PCE andf(χ(i)) ≡ ψ(χ(i)). Thus,
the LOO error in PCE can be seen as a special case of the LOO error in the Kriging framework.

International Journal for Uncertainty Quantification



PC-Kriging 181

4. PC-KRIGING

4.1 Principle

The characteristic of Kriging is to interpolate local variations of the output of the computational model as a function
of the neighboring experimental design points. In contrast, polynomial chaos expansions (PCE) are used for approx-
imating theglobal behavior ofM using a set of orthogonal polynomials. By combining the two techniques we aim
at capturing the global behavior of the computational model with the set of orthogonal polynomials in the trend of
a universal Kriging model and the local variability with the Gaussian process. The new approach calledpolynomial-
chaos-Kriging(PC-Kriging) combines these two distinct meta-modeling techniques and their characteristics.

Using now the standard notation for truncated polynomial chaos expansions [see Eq. (6)], we cast the PC-Kriging
meta-model as follows [85]:

M(x) ≈M(PCK)(x) =
∑

α∈A
aαψα(x) + σ2Z(x), (41)

where
∑

α∈A aαψα(x) is a weighted sum of orthonormal polynomials describing the mean value of the Gaussian
process andA is the index set of the polynomials.Z(x) is a zero-mean, unit-variance stationary Gaussian process
defined by an autocorrelation functionR(|x− x′|; θ) and is parametrized by a set of hyper-parametersθ.

Building a PC-Kriging meta-model consists of two parts: the determination of the optimal set of polynomials
contained in the regression part (i.e., the truncation setA) and the calibration of the correlation hyper-parametersθ

as well as the Kriging parameters{σ2,aα}. The set of polynomials is determined using the least-angle-regression
(LAR) algorithm as in [32] together with hyperbolic index sets to obtain sparse sets of polynomials. After the set
of polynomials is fixed, the trend and correlation parameters are evaluated using the universal Kriging equations
[Eqs. (27)–(30)].

4.2 Algorithm

The two distinct frameworks for PCE and Kriging can be combined in various ways. In this paper two approaches
will be explained in detail, i.e., the sequential PC-Kriging (SPC-Kriging) and the optimal PC-Kriging (OPC-Kriging).
Both approaches are based on the same input information, namely the experimental designX , the corresponding
response valuesY obtained from the computational modelM(X ), the description of the stochastic input variables
(joint PDFfX ), and the parametric expression of an auto-correlation functionR(|x − x′|; θ). The two approaches
are defined as follows:

• Sequential PC-Kriging(SPC-Kriging): in this approach, the set of polynomials and the Kriging meta-model are
determinedsequentially. The assumption behind this procedure is that the optimal set of polynomials found by
the LAR algorithm in the context of pure PCE can be used directly as an optimal trend for the universal Kriging.
In a first step the optimal set of polynomials is determined using the PCE framework:A is found by applying
the LAR procedure as in [32]. The set of multivariate orthonormal polynomialsA is then embedded into a
universal Kriging model as the trend. The universal Kriging meta-model is calibrated using Eqs. (27)–(30).

At the end of the algorithm the accuracy of the meta-model can be measured by the LOO error given in Eq. (33)
or, when using a validation set, by the sample-based generalization error in Eq. (17). The SPC-Kriging algorithm
is illustrated in Fig. 2, in which the white boxes represent the required input information and the blue boxes
represent the computational tasks. Given a calibrated SPC-Kriging model, the response of new input realizations
(i.e., the prediction) is computed by Eq. (31) and Eq. (32).

• Optimal PC-Kriging(OPC-Kriging): in this approach, the PC-Kriging meta-model is obtained iteratively. The
set of orthonormal multivariate polynomials is determined by LAR algorithm in the same way as in SPC-
Kriging. Yet the LAR algorithm results in a list of ranked polynomials which are chosen depending on their
correlation to the current residual at each iteration in decreasing order. OPC-Kriging consists of an iterative
algorithm where each polynomial is added one-by-one to the trend part. In each iteration, the coefficients of the
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182 Scḧobi, Sudret & Wiart

Input Distributions

fX

Experimental design

{X , Y}

LAR

Autocorrelation function

R(|x − x
′|;θ)

Sequential-PC-Kriging

M(SPCK)(x) =
∑

α∈A
aαψα(x) + σ2Z(x)

Prediction

{µŷ(x), σ
2

ŷ
(x)}

FIG. 2: Flowchart for sequential-PC-Kriging (SPC-Kriging).

trend and the parameters of the auto-correlation function are calibrated. In the end, a number|A| of different
PC-Kriging models are available. The|A|meta-models are then compared in terms of the LOO error [Eq. (33)].
The optimal PC-Kriging meta-model is then chosen as the one with minimal LOO error.

Figure 3 illustrates the OPC-Kriging algorithm in a flowchart. The notationM(K)(Q)(x) means a universal
Kriging meta-model where the trend is modeled by theQ first polynomials selected inA according to the rank-
ing obtained by LAR. Note that the red box represents the universal Kriging model which eventually minimizes
the LOO error (Q = P ∗) and which is thus finally chosen. The final box marks the prediction of new model
responses which is computed by Eq. (31) and Eq. (32).

Input Distributions

fX

Experimental design

{X , Y}
Autocorrelation function

R(|x − x
′|;θ)

Optimal PC-Kriging

LAR (iteration 1)

y = M(K)(Q=1)(x)

LOO1

LAR (iteration 2)

y = M(K)(Q=2)(x)

LOO2

· · ·

LAR (iteration P )

y = M(K)(Q=P )(x)

LOOP

PC-Kriging model

M(OPCK) = argminM(K)(Q=P ) LOOP

Prediction

{µŷ(x), σ
2
ŷ(x)}

FIG. 3: Flowchart for optimal PC-Kriging (OPC-Kriging).
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As a summary, PC-Kriging can be viewed as a universal Kriging meta-model with a nonstandard trend part. Thus
the error estimates from Kriging in Section 3.3 are valid here with no modification. In particular, the LOO error
in Eq. (33) is computed to compare different PC-Kriging models and to compute the optimal meta-model in OPC-
Kriging. The performance of both approaches and the comparison to the traditional PCE and Kriging approaches is
now illustrated for a variety of benchmark analytical functions.

5. ANALYTICAL BENCHMARK FUNCTIONS

5.1 Setup

Easy-to-evaluate functions are tested to verify and validate the new PC-Kriging approach by comparing the meta-
model to the exact model response. In this paper, six analytical functions of different dimensionality are illustrated,
namely four with uniformly distributed input variables (i.e., Ishigami, Sobol’, Rosenbrock, and Morris functions)
and two with Gaussian input variables (i.e., Rastrigin and O’Hagan function). References to the original use of the
benchmark functions in the literature are given below.

The first four analytical functions use uniformly distributed random variables in the input space. TheIshigami
function is a smooth function with three independent input parameters commonly used for benchmarking methods in
global sensitivity analysis.

f1(x) = sin x1 + 7 sin2 x2 + 0.1 x4
3 sin x1, (42)

whereXi ∼ U(−π, π), i = 1, 2, 3. TheSobol’ function is also well-known sensitivity analysis because the Sobol’
indices are easy to derive analytically [86]:

f2(x) =
8∏

i=i

|4 xi − 2|+ ci

1 + ci
, (43)

whereXi ∼ U(0, 1), i = 1, . . . , 8, andc = (1, 2, 5, 10, 20, 50, 100, 500)T as in [27]. Due to the absolute value
operator in the enumerator the function behaves nonsmoothly at the pointxi = 0.5. TheRosenbrockfunction is a
polynomial function with a 2-dimensional input space [87]:

f3(x) = 100
(
x2 − x2

1

)2
+ (1− x1)

2
, (44)

whereXi ∼ U(−2, 2), i = 1, 2. The last function considered is theMorris function, which is defined by [88]

f4(x) =
20∑

i=1

βi wi +
20∑

i<j

βij wiwj +
20∑

i<j<l

βijl wiwjwl + 5 w1w2w3w4, (45)

whereXi ∼ U(0, 1), i = 1, . . . , 20, andwi = 2 (xi − 1/2) for all i except fori = 3, 5, 7 wherewi = 2 (1.1 xi/
(xi + 0.1) − 1/2). The coefficients are defined as:βi = 20, i = 1, . . . , 10; βij = −15, i, j = 1, . . . , 6; βijl =
−10, i, j, l = 1, . . . , 5. The remaining coefficients are set equal toβi = (−1)i andβij = (−1)i+j as in [53].

Two other benchmark functions of independent Gaussian variables are also studied. TheRastriginfunction has a
two-dimensional input space and is defined by [89]

f5(x) = 10−
2∑

i=1

(x2
i − 5 cos(2π xi)), (46)

whereXi ∼ N (0, 1), i = 1, 2. The last function is theO’Haganfunction, which is defined by [90]

f6(x) = aT
1x + aT

2 sin(x) + aT
3 cos(x) + xTQx, (47)

whereXi ∼ N (0, 1), i = 1, . . . , 15. The vectors{a1, a2, a3} and matrixQ are defined in [90].
Note that the functionsf1 − f4 have uniform input random variables. Accordingly the PC trend in PC-Kriging is

built up from multivariate Legendre polynomials. In contrastf5, f6 have Gaussian input random variables. Thus the
PC trend is modeled by multivariate Hermite polynomials (see Table 1).
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5.2 Analysis

At the beginning of each algorithm the experimental design is generated with the Latin-hypercube sampling tech-
nique [91]. Then the meta-modeling is processed applying the four previously discussed meta-modeling techniques,
i.e., ordinary Kriging, PCE, SPC-Kriging and OPC-Kriging. Note that for the Kriging meta-models, the maximum
likelihood formulation [Eq. (29)] in combination with the gradient-based BFGS optimization algorithm is used in
order to compute the optimal correlation parameters.

Their performance is compared by means of therelative generalization error, which is defined as the ratio between
the generalization error [Eq. (16)] and the output variance:

εgen =
E

[(
Y − Y (PCE)

)2
]

Var [Y ]
. (48)

The error is estimated here using a large validation setX = {x(1), . . . , x(n)} of sizen = 105, which results in

ε̂gen ≈
∑n

i=1

(
M(x(i))− M̂(x(i))

)2

∑n
i=1

(M(x(i))− µy

)2 , (49)

whereµy is the mean value of the set of exact model responses over the validation setY = {y(1), . . . , y(n)} ≡
{M(x(1)), . . . ,M(x(n))}. For all Kriging-based approaches, the meta-modelM̂(x) is the prediction meanµŷ(x).
Note that the samples inX follow the distribution of the input variablesX in order to obtain a reliable error estimate.

For each experimental setup, the analysis is replicated to account for the statistical uncertainties in the experimental
design. Fifty independent runs of the full analysis are carried out and the results are represented using boxplots. In
a box plot the central mark represents the median value of the 50 runs, the edges are the 25th and 75th percentile
denoted byq25 andq75. The whiskers describe the boundary to the outliers. Outliers are defined as the values smaller
thanq25 − 1.5 (q75 − q25) or larger thanq75 + 1.5 (q75 − q25).

5.3 Results

5.3.1 Visualization of PC-Kriging’s behavior

The different types of meta-models are illustrated in Fig. 4, which shows a two-dimensional contour plot of the output
of the Rastrigin function (N = 128 samples) [Fig. 4(a)] and its approximations by PCE, ordinary Kriging, and PC-
Kriging [Fig. 4(b)–4(d)]. The Rastrigin function has a highly oscillatory behavior on the entire input space as seen in
Fig. 4(a). This behavior is difficult to meta-model with a small number of samples because many local minima/maxima
are missed out.

The analytical formulation of the Rastrigin function is a combination of a quadratic component and a high-
frequency trigonometric component. The PCE model in Fig. 4(c) captures the global characteristic of the function,
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FIG. 4: Rastrigin function—Visual composition of PC-Kriging.
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i.e., the quadratic component, whereas the ordinary Kriging model in Fig. 4(b) approximates the local characteris-
tics, i.e., the high-frequency trigonometric component. Finally, the combination of PCE and Kriging leads to a better
meta-model as shown in Fig. 4(d).

Note that the meta-models in Fig. 4 have a high accuracy around the origin of the coordinate system due to the
definition of the input vector PDF as standard normal distributions (Xi ∼ N (0, 1)).

5.3.2 Small Experimental Design

The four meta-modeling techniques are compared for the six analytical functions using experimental designs of in-
creasing size. The number of samples is chosen so that it yields a large range of relative generalization errors on the
second axis. The results are illustrated in Fig. 5–10. In each figure (a) shows the ordinary Kriging model and (b) shows
the PCE model. The new approaches SPC-Kriging and OPC-Kriging are shown in (c) and (d), respectively.

Figure 5 shows the relative generalization error for the various meta-modeling techniques for the Ishigami func-
tion. For a small sample size ofN = 20 samples, ordinary Kriging performs best with respect to the median value
of the box plots. SPC-Kriging and OPC-Kriging perform worse due to the effect of overfitting (see also Section 2.3).
The number of parameters to be estimated in the case of PC-Kriging is larger than in the case of ordinary Kriging due
to the number of polynomials in the trend of the Kriging model. Thus, OPC-Kriging (and also SPC-Kriging) are more
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FIG. 5: Ishigami function—Relative generalization error [Eq. (49)] for the various meta-modeling approaches.
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FIG. 6: Rosenbrock function—Relative generalization error [Eq. (49)] for the various meta-modeling approaches.
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FIG. 7: Sobol’ function—Relative generalization error [Eq. (49)] for the various meta-modeling approaches.
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FIG. 8: Morris function—Relative generalization error [Eq. (49)] for the various meta-modeling approaches.
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FIG. 9: Rastrigin function—Relative generalization error [Eq. (49)] for the various meta-modeling approaches.

 64 100 150 200
0

0.2

0.4

0.6

0.8

1

DOE

e
g

e
n

(a) Ordinary Kriging

 64 100 150 200
0

0.2

0.4

0.6

0.8

1

DOE

e
g

e
n

(b) PCE

 64 100 150 200
0

0.2

0.4

0.6

0.8

1

DOE

e
g

e
n

(c) SPC-Kriging

 64 100 150 200
0

0.2

0.4

0.6

0.8

1

DOE

e
g

e
n

(d) OPC-Kriging

FIG. 10: O’Hagan function—Relative generalization error [Eq. (49)] for the various meta-modeling approaches.

prone to overfitting than ordinary Kriging for small experimental designs. When the number of samples is increased,
however, the two PC-Kriging approaches perform better than the traditional approaches because their median value
and their variation of the error are lower. For the large sample sizes (N ≥ 50), PC-Kriging performs similarly to PCE,
though slightly better. OPC-Kriging is slightly more accurate than SPC-Kriging over the whole range of sample sizes.

Figure 6 presents the results of the Rosenbrock function, which is a purely polynomial function and can be mod-
eled accordingly with a small number of polynomials based on a small number of points in the experimental design
(e.g., in the case of PCE). This is the reason why the number of points lies withinN = 8, . . . , 20. Highly accurate
surrogate models are obtained with only 20 samples. For small sample sizes OPC-Kriging performs best among the
four techniques in terms of the relative generalization error.

The Sobol’ function is more complex than the two previous functions because of the dimensionality (M = 8) and
the nonsmooth behavior atxi = 0.5. Thus more samples are needed to obtain a similar range of relative generalization
errors compared to the previous functions, as seen in Fig. 7. Behaviors for the larger sample sizes (N = 64, 128) are
very similar among the meta-modeling approaches, although PC-Kriging performs slightly better than the traditional
PCE and ordinary Kriging approaches. For very small sample sizes (N = 16, 32), OPC-Kriging performs significantly
better than the others.

Figure 8 shows the results for the Morris function. A large experimental design is required to properly surrogate
the computational model because of the high dimensionality of the input vectorX and the amount of interactive terms
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of different input variablesXi in the analytical formulation [see Eq. (45)]. The relative generalization error of the two
PC-Kriging approaches resembles more the one of ordinary Kriging than the one of PCE in this case. PCE is not
capable of modeling this analytical function with a small number of samples.

The results associated with the Rastrigin function are shown in Fig. 9. Despite the low dimensionality of the
input (M = 2), many samples are needed to obtain small error estimates. This is because the function output is
highly oscillatory over the entire input space as previously illustrated in Fig. 4. In comparison to Section 5.3.1, which
describes the qualitative performance of PC-Kriging on the Rastrigin function, the quantitative benefit of combining
PCE and Kriging becomes visible in Fig. 9: PC-Kriging performs better than the traditional approaches. Ordinary
Kriging performs the worst followed by PCE. OPC-Kriging has statistically the lowest relative generalization errors
over the whole range of experimental design sizes.

Figure 10 displays the results associated with the O’Hagan function. Similarly to the Morris function, the perfor-
mance of PC-Kriging in the case of the O’Hagan function resembles that of ordinary Kriging whereas PCE performs
worse than the other three approaches. Over the entire displayed range of experimental designs in Fig. 10, the per-
formance of OPC-Kriging is slightly better than the performance of SPC-Kriging and ordinary Kriging. Note that
meta-modeling the O’Hagan function requires less samples in the experimental design to obtain the same accuracy as
in the case of the Rastrigin function despite the fact that the O’Hagan function has a 15-dimensional input space and
that both functions are very smooth.

Summarizing the results of all six analytical functions in Figs. 5–10, the proposed PC-Kriging approaches perform
better than or at least as good as the traditional PCE and Kriging approaches. Note that for functions like O’Hagan
(Fig. 10) and Morris (Fig. 8) the performance of PC-Kriging is more similar to Kriging than PCE, whereas for the
other functions the performance of PC-Kriging resembles more that of PCE. As one could expect, there is no general
rule so as to decide whether PCE or Kriging provide the most accurate meta-models for a given experimental design.
The advantage of PC-Kriging is to perform as least as well as the best of the two.

The combination of PCE and Kriging and its increased accuracy comes with a higher computational cost. The
traditional ordinary Kriging and PCE approaches have the lowest computational cost, SPC-Kriging has an intermediate
and OPC-Kriging has the highest cost. The high cost of OPC-Kriging originates from the iterative character of the
algorithm and the accompanying repetitive calibration of Kriging models. OPC-Kriging computes LAR and calibrates
P Kriging models with increasing complex trend, whereas ordinary Kriging consists of a single calibration of a
Kriging model with constant trend. For a single calibration of a surrogate of the Ishigami function (experimental
design of sizeN = 128 samples) the ratio of computational times when comparing PCE to ordinary Kriging, SPC-
Kriging and OPC-Kriging is approximately1 : 5, 1 : 20, and1 : 200, respectively.

Note that it is intended to apply these techniques to realistic problems where the evaluation of the exact computa-
tional model response lasts much longer than the computation of a meta-model. The apparent computational overload
of OPC-Kriging will not be anymore an issue in many practical applications.

5.3.3 Large Experimental Designs

When the resources for experiments are limited, the focus lies on doing as few computational model runs as possible
as discussed in the previous section. In order to describe the entire behavior of the meta-modeling approaches, the
Ishigami function is also studied now for larger experimental designs in order to assess the convergence of the various
schemes. Results are shown in Fig. 11. This figure illustrates the evolution of the relative generalization error from
small to large sample sizes on thelogarithmic (base 10) scale. The error measure decreases fast when enlarging the
sample set because the Ishigami function is composed of sine and cosine functions which can be approximated well
with series of polynomials, e.g., as in a Taylor expansion. Thus PCE is the dominating effect for PC-Kriging.

For large sample sizes, ordinary Kriging is outperformed by the other three approaches. Kriging in general works
well with small sample sizes. If too many samples are used, the interpolation algorithm becomes unstable due to
singularities and bad conditioning in the auto-correlation matrix. If a large sample size is available, regional Kriging
models on a subset of samples, e.g., the neighboring samples, are more suitable [84].

The performance of PC-Kriging and also PCE for a large number of samples (here 128 and 256 samples in
Fig. 11) is on the order of magnitude of the machine computation precision. Errors aroundεgen ≈ 10−12 originate

Volume 5, Number 2, 2015
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FIG. 11: The Ishigami function—Relative generalization error [Eq. (49)] associated with large experimental designs
for the various meta-modeling approaches.

from numerical round-off errors which are not reducible by adding more samples. It is questionable though, whether
in reality such a high accuracy in the meta-model prediction is needed.

5.3.4 Evolution of the error measures

The OPC-Kriging algorithm includes the tracking of the LOO error to optimally choose the sparse set of orthonormal
polynomials. The evolution of the LOO error for the Ishigami function and a sample size ofN = 128 samples
is presented in Fig. 12. The experimental-design-based LOO error (dashed, red line) is compared to the relative
generalization error which is shown as the solid black line.

The first point to notice is that the LOO error slightly underpredicts the true value of the relative generalization
error for all sizes of polynomial sets. This is because the LOO error is based solely on the information contained in
the experimental design samples whereas the relative generalization error is based on a large validation set (n = 105).
Although there is an inherent underprediction, the overall behavior of the two error measures is similar. Thus the
choice of the optimal set of polynomials for the OPC-Kriging can be based on the LOO error, which is obtained as
a by-product of the procedure used to fit the parameters of the PC-Kriging model. In the example case of Fig. 12,
choosing only half of the polynomials, i.e.,P = 27 leads to a meta-model which is almost as accurate as using
all 56 polynomials. The optimal set of polynomials can be chosen at the point where the decrease in LOO error
becomes insignificant. This reduces the number of polynomials needed and thus also reduces the complexity of the
OPC-Kriging meta-model.
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FIG. 12: Evolution of the leave-one-out error (LOO) and relative generalization error inside the OPC-Kriging algo-
rithm as a function of the number of polynomials in the regression part.
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6. CONCLUSION

In the context of increasing computational power, computational models in engineering sciences have become more
and more complex. Many analyses such as reliability assessment or design optimization require repeated runs of such
computational models which may be infeasible due to resource limitations. To overcome these limitations computa-
tional models are approximated by easy-to-evaluate functions called meta-models.

This paper summarized the principles of two popular nonintrusive meta-modeling techniques, namely polyno-
mial chaos expansions (PCE) and Kriging (also called Gaussian process modeling). Then the combination of the
two approaches to a new meta-modeling approach called polynomial-chaos-Kriging (PC-Kriging) is proposed. Two
formulations of PC-Kriging are introduced in this paper, namely optimal-PC-Kriging (OPC-Kriging) and sequential-
PC-Kriging (SPC-Kriging). SPC-Kriging employs first a least-angle-regression (LAR) algorithm to determine the
optimal sparse set of orthonormal polynomials in the input space. Then, the set of polynomials is used as the trend of
a universal Kriging meta-model. OPC-Kriging employs the same least-angle-regression algorithm as SPC-Kriging, yet
iteratively adds polynomials to the trend part of the universal Kriging model one-by-one, and fit the hyper-parameters
of the auto-correlation function in each iteration. In this case polynomials are added to the trend in the order they
are selected by the LAR algorithm. Based on the LOO error the best meta-model is found to be the OPC-Kriging
meta-model.

The performance of the four approaches (ordinary Kriging, PCE, SPC-Kriging, OPC-Kriging) is compared in
terms of the relative generalization error on benchmark analytical functions. The results show that PC-Kriging is
better than, or at least as good as the distinct approaches for small experimental designs. Specifically, OPC-Kriging
is preferable to SPC-Kriging as it reduces the number of polynomials in the regression part and thus reduces the
complexity of the meta-model, at a computational calibration cost which is however higher than that of SPC-Kriging.

The analysis of the performance of PC-Kriging is limited to some benchmark analytical functions in this paper.
The ongoing research applies PC-Kriging to realistic engineering problems such as reliability analysis or design
optimization. The idea of adaptive experimental designs (also called design enrichment) is introduced in order to
increase the accuracy of the surrogate in some specific regions of the input space (e.g., close to the zero-level of the
limit state function in reliability analysis) instead of everywhere. The initialization of the iterative algorithm is a small
initial experimental design to which points are added in regions of interest. These added points will then increase
the quality of the meta-model specifically in those regions. Preliminary ideas developed in [85, 92, 93] are currently
investigated in detail.
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approach,Comptes Rendus Ḿecanique, 336:518–523, 2008.

29. Blatman, G. and Sudret, B., An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element
analysis,Prob. Eng. Mech., 25(2):183–197, 2010.

30. Blatman, G. and Sudret, B., Efficient computation of global sensitivity indices using sparse polynomial chaos expansions,
Reliab. Eng. Sys. Safety, 95:1216–1229, 2010.

31. Doostan, A. and Owhadi, H., A non-adapted sparse approximation of pdes with stochastic inputs,J. Comput. Phys.,
230(8):3015–3034, 2011.

32. Blatman, G. and Sudret, B., Adaptive sparse polynomial chaos expansion based on least angle regression,J. Comput. Phys,
230:2345–2367, 2011.

33. Doostan, A., Validi, A., and Iaccarino, G., Non-intrusive low-rank separated approximation of high-dimensional stochastic

International Journal for Uncertainty Quantification



PC-Kriging 191

models,Comput. Methods Appl. Mech. Eng., 263:42–55, 2013.

34. Jakeman, J. D., Eldred, M. S., and Sargsyan, K., Enhancing`1-minimization estimates of polynomial chaos expansions using
basis selection, arXiv:1407.8093, 2014.

35. Eldred, M. S., Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis
and design, In50th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., Palm Springs, California, 2009.

36. Eldred, M. S., Webster, C. G., and Constantine, P. G., Design under uncertainty employing stochastic expansion methods, In
Proc. 12th AIAA/ISSMO Multidiscip. Anal. Optim. Conf.Victoria, British Columbia, Canada, 2008.

37. Sarangi, S., Bodla, K. K., Garimella, S. V., and Murthy, J. Y., Manifold microchannel heat sink design using optimization
under uncertainty,Int. J. Heat Mass Tran., 69:92–105, 2014.

38. Krige, D. G., A statistical approach to some basic mine valuation problems on the Witwatersrand,J. Chem. Metall. Mining
Soc. South Africa, 52(6):119–139, 1951.

39. Kaymaz, I., Application of Kriging method to structural reliability problems,Struct. Saf., 27(2):133–151, 2005.

40. Bect, J., Ginsbourger, D., Li, L., Picheny, V., and Vazquez, E., Sequential design of computer experiments for the estimation
of a probability of failure,Stat. Comput., 22:773–793, 2012.

41. Echard, B., Gayton, N., and Lemaire, M., AK-MCS: An active learning reliability method combining Kriging and Monte
Carlo simulation,Struct. Saf., 33(2):145–154, 2011.

42. Bichon, B. J., Eldred, M. S., Swiler, L., Mahadevan, S., and McFarland, J., Efficient global reliability analysis for nonlinear
implicit performance functions,AIAA J., 46(10):2459–2468, 2008.

43. Dubourg, V., Sudret, B., and Deheeger, F., Metamodel-based importance sampling for structural reliability analysis,Prob.
Eng. Mech., 33:47–57, 2013.

44. Dubourg, V. and Sudret, B., Meta-model-based importance sampling for reliability sensitivity analysis,Struct. Saf., 49:27–36,
2014.

45. Jones, D. R., Schonlau, M., and Welch, W. J., Efficient global optimization of expensive black-box functions,J. Glob. Optim.,
13(4):455–492, 1998.

46. Dubourg, V., Sudret, B., and Bourinet, J. M., Reliability-based design optimization using Kriging and subset simulation,
Struct. Multidisc. Optim., 44(5):673–690, 2011.

47. Dubourg, V., Adaptive surrogate models for reliability analysis and reliability-based design optimization, PhD thesis, Univer-
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Étienne, France, 2013.

51. Soize, C. and Ghanem, R., Physical systems with random uncertainties: Chaos representations with arbitrary probability
measure,SIAM J. Sci. Comput., 26(2):395–410, 2004.

52. Sudret, B., Polynomials chaos expansions and stochastic finite element methods, In: Phoon, K.-K. and Ching, J. (Ed.),Risk
Reliab. Geotech. Eng., chapter 5. Taylor and Francis, London, 2014.

53. Blatman, G., Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, PhD thesis,
Universit́e Blaise Pascal, Clermont-Ferrand, 2009.

54. Chkifa, A., Cohen, A., Migliorati, G., Nobile, F., and Tempone, R., Discrete least squares polynomial approximation with ran-
dom evaluations—Appliations to parametric and stochastic elliptic PDEs, Tech. Rep., MATHICSE, EPFL, Lausanne, Switzer-
land, 2013.

55. Migliorati, G., Nobile, F., Schwerin, E., and Tempone, R., Analysis of discrete L2 projection on polynomial spaces with
random evaluations,Found. Comput. Math., 14(3):419–456, 2014.

56. Tibshirani, R., Regression shrinkage and selection via LASSO,J. Roy. Stat. Soc. B, 58:267–288, 1996.

57. Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R., Least angle regression,Ann. Stat., 32:407–499, 2004.

58. Peng, J., Hampton, J., and Doostan, A., A weighted`1-minimization approach for sparse polynomial chaos expansions,J.

Volume 5, Number 2, 2015
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85. Scḧobi, R. and Sudret, B., PC-Kriging: A new metamodelling method combining polynomial chaos expansions and Kriging,

International Journal for Uncertainty Quantification



PC-Kriging 193

In Proc. 2nd Int. Symposium on Uncertainty Quantification and Stochastic Modeling, Rouen, France, 2014.

86. Sobol’, I. M., Sensitivity estimates for nonlinear mathematical models,Math. Model. Comp. Exp., 1:407–414, 1993.

87. Rosenbrock, H., An automatic method for finding the greatest or least value of a function,Comput. J., 3:175–184, 1960.

88. Morris, M. D., Factorial sampling plans for preliminary computational experiments,Technometrics, 33(2):161–174, 1991.

89. Rastrigin, L.,Systems of Extremal Control, Zinatne, Riga, 1974.

90. Oakley, J. and O’Hagan, A., Probabilistic sensitivity analysis of complex models: a Bayesian approach,J. R. Stat. Soc., Ser.
B, 66:751–769, 2004.

91. McKay, M. D., Beckman, R. J., and Conover, W. J., A comparison of three methods for selecting values of input variables in
the analysis of output from a computer code,Technometrics, 2:239–245, 1979.
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