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A heat transfer enhancement system including CuO/water nanofluid in a corrugated tube equipped

with twisted tape was modeled by two well-known artificial neural network techniques. The mul-

tilayer perceptron and group method of data handling neural networks were employed to predict

thermal-hydraulic characteristics as functions of main operating conditions. In addition, the genetic

algorithm (GA) approach was used to develop applied empirical correlations. The purpose of the mod-

els is to estimate Nusselt number (Nu) and friction factor (f ) in the investigated heat exchanger.

The main effective parameters investigated in this study are volume fraction of nanoparticle, twist

ratios of twisted tape, and Reynolds number. According to the conflicting relationship between heat

transfer and pressure drop, the more accurate model was selected as the objective functions for multi-

objective optimization by GA. The optimum operating conditions of the investigated heat exchangers

that lead to a trade-off between Nu and f were proposed.

KEY WORDS: optimization, genetic algorithms, neural network, heat transfer enhance-
ment, nanofluid, tube insert

1. INTRODUCTION

Heat transfer enhancement (HTE) approaches are highly regarded due to the importance of op-
timizing energy consumption. In general, HTE is divided into two methods: active and passive.
Some significant cases of passive methods include employingnanofluids or tube inserts, and
roughening channel surfaces. These methods are usually accompanied by undesirable effects
like increasing pressure drop along with enhancing heat transfer. Therefore, developing accurate
and reliable models for predicting heat transfer and pressure drop in HTE systems are very suit-
able to optimize heat exchangers. The literature review shows the great capability of artificial
neural networks (ANNs) to model and predict target variables in heat transfer systems (Ali et al.,
2015; Mohanraj et al., 2015). Tube inserts cause a significant augmentation in heat transfer rate
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NOMENCLATURE

A coefficient or weight vectors
Ai inner heat transfer surface area (m2)

b bias
cp specific heat capacity of fluid

(J/kg K)
d diameter of the corrugated tube (m)
f friction factor
F transfer function
h heat transfer coefficient (W/m2 K)
k thermal conductivity (W/m K)
L length of the test section (m)
ṁ mass flow rate (kg/s)
N number of data
Nu Nusselt number
p predicted data
∆P pressure drop (Pa)
Re Reynolds number
r real data
T temperature (K)
U overall heat transfer coefficient
V velocity (m/s)

W weight
w twisted tape width (m)
Y ultimate output
y neuron output/Twist length (m)

Greek Symbols
ϕ volume fraction of nanoparticle
µ dynamic viscosity (Pa s)
ρ density (kg/m3)

µ fluid dynamic viscosity
(kg/s m)

Subscripts
f base fluid
i input layer/inner
in inlet
j hidden layer
k output layer
n nanofluid
out outlet
p nanoparticle

through the formation of swirling flows and increase the turbulence intensity near the tube wall.
The effects of different tube inserts on heat transfer coefficient and turbulence intensity have
been investigated in several studies during the past two decades (Ali et al., 2015; Boulahia et al.,
2017; Piriyarungrod et al., 2018; Shabanian et al., 2011). Jafari Nasr et al. (2010) examined the
capability of the ANN to model the thermal and flow data related to helical wire coil inserts.
The empirically obtained data of the four wire coil inserts were employed for developing the
prediction model. Moreover, the precision of the developedANNs was compared with power-
law correlations. The results indicate the higher prediction accuracy of the ANN in comparison
with empirical correlations. Zheng et al. (2017) performeda numerical analysis to study the heat
transfer and hydraulic characteristics in tubes equipped with vortex rod inserts. The optimum
parameters have been obtained using the ANN and genetic algorithm (GA) multiobjective opti-
mization method. Beigzadeh et al. (2014) applied the ANN andGA to model the heat transfer
performance in a channel with twisted tape vortex generators.

Using the nanofluid as an HTE procedure in the heat transfer equipment has recently been
frequently considered in experimental and numerical literature (Abdollahi-Moghaddam et al.,
2018; Baghban et al., 2019; Ghahdarijani et al., 2017). The nanofluids are the fluids with nano-
meter-sized particles that can have more heat transfer coefficients compared to the base fluid.
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Nanofluids are employed in various applications such as automotive radiators to obtain improved
thermal performance (Molana, 2017), electronics cooling (Bahiraei and Heshmatian, 2018), and
mixed convection in enclosures (Izadi et al., 2018). Al-Rashed et al. (2019) investigated the
geometry effects of nanofluids in a wavy-walled microchannel heat sink. Nagaraj (2019) pro-
vided a literature review about numerical and empirical research on the thermal performance in
microchannels for different nanofluids.

Recently, Guo (2020) provided a comprehensive review on HTEwith use of nanofluids, in
which the progress of ANN in nanofluid research was emphasized. Heat transfer improvement of
Al2O3-water nanofluid in microchannels was numerically investigated by Nandakrishnan et al.
(2018). Pal and Bhattacharyya (2018) used a single-phase model to study the nanofluid flow and
thermal characteristics in a channel with a blunt ribs wall.They show that multiple numbers of
ribs led to an enhanced thermal performance but reduced heattransfer compared to a single rib.
Fard et al. (2019) investigated the effects of carbon nanotubes and water as working fluid on flow
and heat transfer characteristics in coiled tubes.

The neural networks can be applied for estimating thermal characteristics in these systems
as functions of main operating conditions such as the concentration of nanofluid. Abdollahi-
Moghaddam et al. (2018) investigated the effects of CuO/water nanofluid concentrations on heat
transfer and pressure drop inside a horizontal tube. The experimental data were used for devel-
oping an ANN to predict Nusselt number (Nu) in the heat exchanger. The suggested network
involves one hidden layer and eight hidden neurons. The numerical modeling of a helically
coiled heat exchanger was performed by Baghban et al. (2019). The water carbon nanofluid was
used as the working fluid. They examined the ANN, adaptive neurofuzzy inference system, and
least squares support vector machine (LSSVM) for modeling.The research demonstrates that the
LSSVM has the best prediction precision for the studied system. Mohammadi Ghahdarijani et al.
(2017) applied the ANN to estimate the performance of a reactor cooling jacket with aqueous
Al2O3 and CuO nanofluids.

The roughening of the tube’s inside surfaces leads to increasing heat transfer area. Moreover,
this method makes secondary flows, which lead to an increase of turbulence intensity as well
as heat transfer coefficient. The combination of corrugatedtubes and tube inserts as two HTE
methods were investigated in the literature (Nasr and Khalaj, 2010; Zimparov, 2001). Zimparov
(2001) investigated the thermal and flow characteristics inspirally corrugated tubes equipped
with twisted tape inserts. Spirally ribbed channels and twisted tape inserts with various geome-
tries were investigated experimentally. Nasr and Khalaj (2010) proposed ANNs for modeling a
heat exchanger including corrugated tubes equipped with twisted tape inserts. The related exper-
imental data (Zimparov, 2004a,b) was used for modeling procedures. The model input variables
were geometrical parameters and Reynolds number (Re) and the targets are friction factor (f )
and Nu.

Very high heat transfer coefficients can be obtained using a combination of the three men-
tioned HTE methods including tube insert, nanofluid, and corrugated tube. However, it was noted
that all the HTE methods can lead to a further pressure loss inthe heat exchanger and also higher
required pumping power. In this investigation, the ANN and GA approaches were used for mod-
eling heat transfer and pressure drop characteristics in the heat exchanger in which all three HTE
methods have been used. The ability of well-known ANNs, including the multilayer perceptron
(MLP) and group method of data handling (GMDH) was challenged. The input parameters were
volume fraction of nanoparticle, twist ratios of twisted tape, and Re, and the output variables
were Nu andf . The nonlinear dependence between the input-output variables indicated that the
ANNs can be suitable models to solve the problem. The applieddata points for determining the
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precise model were obtained from experimental work. The reliable developed model was intro-
duced as the objective functions of the GA multiobjective optimization procedure. Finally, the
optimum parameters were proposed for designing the efficient thermal system.

2. METHODOLOGY

2.1 Experimental Procedure and Data Collection

An experimental setup was applied to investigate the benefits of the tube inserts, corrugated
tube, and nanofluid on heat transfer improvement. The related flow diagram and experimental
apparatus are schematically illustrated in Fig. 1. The mainsetup apparatus include a heat ex-
changer with concentric tubes; cold and hot water tank; centrifugal pumps; variac transformer;
and temperature, pressure, and flow measuring devices including thermocouple, manometer, and
rotameter, respectively. The hot and cold fluid flowing was passed through the tube and shell,
respectively, and the heat transfer coefficients and pressure drops were measured in different
operating conditions. The details related to the experimental procedure have been explained in
previous work (Wongcharee and Eiamsa-ard, 2012).

The experiments have been carried out on three tube inserts inside a corrugated tube. The
aluminum twisted tapes with a thickness of 0.8 mm and length of 900 mm were employed in the
experiments. A twisted tape width (w) of 9 mm and three twist lengths (y) of 24 mm, 32 mm, and
48 mm were investigated. The twist lengths (y) are related to twist ratios (y/w) of 2.7, 3.6, and
5.3, respectively. The geometrical parameters ofw andy were illustrated in Fig. 1. The studied
tube inserts were placed in a stainless steel corrugated tube with 1 mm wall thickness and an
inner diameter of 10 mm.

The heat transferred by cold or hot fluids can be obtained as follows:

Q = ṁcp(Tin − Tout) (1)

FIG. 1: Flow diagram of the experimental setup
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in which ṁ is mass flow rate andcp is specific heat capacity of fluid. The average heat transfer
rate of heat and cold fluid was considered in the calculations. The overall heat transfer coefficient
(U ) can be calculated from

Q = UAi∆TLMTD (2)

The inner heat transfer coefficient (hi) was obtained from the overall heat transfer coefficient
as follows:

1
U

=
1
hi

+
Ai ln(do − di)

2πkL
+

Ai

Aoho

+Rf (3)

When the last three terms on the right side of Eq. (3) were considered constant the equation
becomes

1
U

=
1
hi

+ B (4)

The relation between Re and heat transfer coefficient is

hi = CRem (5)

so,
1
U

=
1

CRem
+B = ARe−m + b (6)

This equation indicates that the plot between 1/U and Re−m leads to a straight line with
the slope ofA and intercept atB in 1/U axis. From Eqs. (5) and (6), the following equation is
obtained:

hi =
1

1/U − B
(7)

The Nu of the flow in the tube is calculated as follows:

Nu =
hidi
k

(8)

in whichdi is the diameter of the corrugated tube andk is thermal conductivity of fluid.
In addition, Re andf were calculated using the following equations:

Re=
ρV di
µ

(9)

f =
2∆Pdi
ρV 2L

(10)

in which ρ is fluid density,µ is dynamic viscosity,∆P is pressure drop,L is length of the test
section, andV is mean axial flow velocity.

CuO-water nanofluids with volume fractions (ϕ) of 0.3%, 0.5%, and 0.7% were prepared
to examine the effects of nanofluid concentration on heat transfer improvement. The mixture
properties for CuO-water nanofluid were calculated using the following relations:

ρn = ϕρp + (1− ϕ)ρf (11)

• Density:

in which the subscripts ofn, p, andf refer to the nanofluid, nanoparticle, and base fluid
(water), respectively.
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• Specific heat capacity (Pak and Cho, 1998):

(ρCp)n = ϕ(ρCp)p + (1−ϕ)(ρCp)f (12)

• Thermal conductivity (Vajjha et al., 2010):

kn
kf

=
kp + 2kf + 2ϕ(kp − kf )

kp + 2kf − ϕ(kp − kf )
(13)

• Dynamic viscosity (Einstein, 1911):

µn = µf (1+ 2.5φ) (14)

2.2 Developing Prediction Models

The basis of the neural networks is the imitation of the interconnected structure of brain cells
in order to model complex systems. This research attempted to compare two well-known ANNs
including MLP and GMDH to model a heat exchanger with three HTE options. The main effec-
tive parameters of the heat exchanger are volume fraction ofnanoparticles (ϕ), twist ratios of
the twisted tapes (y/w), and Re. These variables were used as the input data for developing the
models. The important features in the heat exchangers are the heat transfer and pressure drop
characteristics. The improvement in heat transfer coefficients is usually associated with a growth
in pressure drop and more energy is required for the fluid pumping. Therefore, two thermal and
hydraulic characteristics in the investigated heat transfer system including Nu andf were se-
lected as output data of the models. Separate models were considered for estimating Nu andf to
achieve more accurate models. The model validity should be proved using data points that were
not employed for training. Hence, a third of the used data wasemployed to validate the ANNs
and the rest was applied to develop the models. A total of 132 empirical data points were pre-
pared for training and validating the MLP and GMDH neural networks. The range of the input
and output variables was tabulated in Table 1. The followingdeviation equations were used for
evaluation of the precision of the provided models:

MRE(%) =
100
N

N
∑

i=1

(

|ri − pi|

ri

)

(15)

MSE=
1
N

N
∑

i=1

(ri − pi)
2 (16)

TABLE 1: The range of the used variables

Variable Minimum Maximum
Nu 61.37 287.69
f 0.12048 0.30246
Re 6259.4 24264.4

ϕ (%) 0 0.7
y/w 2.7 5.3
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in which MRE and MSE represent the mean relative error and mean squared error, respectively.
N is the number of all data,p is the predicted data by the model, andr is the real (target) data.

In addition, due to the ease of use of empirical correlations, two power-law equations were
created using GA to compare with the neural network models.

2.2.1 MLP Neural Network

The ability of the MLP neural networks to recognize the nonlinear and complex problems en-
couraged many researchers to apply it for modeling (Ali et al., 2015). The structural design of the
MLP neural network consists of three main layers including input, hidden, and output layer. The
layers arranged with simple processing elements are named as node or neuron. The MLP-ANN
parameters are obtained using the back propagation algorithm. The information related to the
input layer is fed forward recursively toward the hidden layer and then is delivered toward the
output layer. The MSE between the network response and target values is calculated at the net-
work output and is returned backward to correct the ANN parameters. More hidden layers and
hidden neurons lead to complexity of the ANN and it can cause overfitting of the model. There-
fore, in the work, the MLP-ANN with three layers that containa hidden layer was developed.
The number of neurons in the hidden layer was optimized by trial and error. In the mentioned
procedure, the effectiveness of the ANN is assessed for the different number of hidden neurons
and the most proper number is selected.

In the structure of the MLP network, all neurons are interconnected and the information is
transferred between the layers. The output of each neuron and the final output of the model is
calculated as follows:

yj = Ft

(

m
∑

i=1

Wj iXi + bj

)

(17)

Y = Fp







n
∑

j=1

Wk j

[

Ft

(

m
∑

i=1

Wj iXi + bj

)]

+ bk







(18)

Ft(x) =
ex − e−x

ex + e−x
(19)

Fp(x) = x (20)

in whichyj is the output from jth neuron,Y is the ultimate output of the MLP-ANN,X is ANN
input, andW andb are the model parameters (weights and biases). Then andm are the number
of neurons and the number of input variables, respectively.The subscriptsi, j, andk refer to the
input, hidden, and output layer, respectively.Ft andFp are the hyperbolic tangent sigmoid and
linear transfer functions, respectively, that are appliedto obtain a normalized output from each
neuron. All employed data is normalized between zero and oneto improve the computational
process.

2.2.2 GMDH Neural Network

The GMDH is a polynomial artificial neural network, which used the inductive self-organizing
approach to model the typically complex systems. The GMDH with simpler interconnections
between layers and a programmed algorithm to structure design was originally presented by
Ivakhnenko (1971). The structure of the GMDH consists of several interconnected layers and
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neurons. The output is calculated based on the Volterra–Kolmogorov–Gabor polynomial equa-
tion:

Y(x1, ..., xn) = a0 +
n
∑

i=1

aixi +
n
∑

i=1

n
∑

j=1

aij xixj +
n
∑

i=1

n
∑

j=1

n
∑

k=1

aijk xixjxk + ... (21)

where X(x1, x2, ..., xn) are the input variable vectors, A(a1, a2, ..., aR) are the coefficient or weight
vectors, and a0 is the neuron bias. Generally, in the model structure, each neuron has five weights
and one bias. In the case of the GMDH in which the neurons have two inputs, a polynomial of
maximum order two was used:

y(xi ,xj) = a0 + a1xi + a2xj + a3xixj + a4x2
i + a5x2

j (22)

where y is neuron output. Actually, the considered neuron output of the MLP and GMDH neu-
ral networks [Eqs. (17) and (22)] expressed the ultimate relationship between the output-input
variables. The constants of the equation or weights are obtained using least square regression
approaches (Ahmadi et al., 2015):

E =

M
∑

i

(yi − ri)/N → min (23)

in whichyi andri are real and predicted values, respectively.N is the number of data.
In the GMDH structure, the input variables are considered the first layer of the network.

Since each neuron of the next layers has two inputs, the [m × (m− 1)/2] neurons are generated
in the second layer in which m is the number of variables. After determining the output of the
neurons [Eq. (22)] using regression methods, the neurons with higher precision are selected
and the weaker neurons are removed. This procedure is similar to the principle of evolution.
The output of the neurons is inserted as the input of neurons in the next layer, which makes a
multilayer arrangement. The MSEs of the neurons in each layer are compared with the previous
layer. If the deviation values in the new layer are more than the earlier layer, the addition of
layers is stopped. Finally, the neuron with higher accuracyis determined as the ultimate output
of the GMDH-ANN (Fujimoto and Nakabayashi, 2003).

2.2.3 GA-Based Correlations

The search method is based on the GA inspired by Darwinian survival law and widely used
in engineering optimization problems (Mohanraj et al., 2015). The optimization process starts
with an initial random population (answers) and the generation continued by processes including
parent selection, elitism, crossover, mutation, and replacement. The iterative evolution procedure
continues until the desired response is obtained.

The following functional relationships are considered to develop two correlations between
the Nu andf as functions of Re, twist ratios of twisted tape (y/w), and volume fraction of
nanoparticle (ϕ):

Nu = C1ReC2

( y

w

)C3

(1+ φ)
C4 (24)

f = C ′

1ReC
′

2

( y

w

)C′

3
(1+ φ)

C′

4 (25)
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The MSE is employed as the objective function of the GA optimization to obtain optimum
correlation constants (Ci and C′i) as follows:

MSENu(C1, C2, C3, C4) =
1
N

N
∑

i=1

(

NuExp
i − NuPred

i

)2
(26)

MSEf (C
′

1, C
′

2, C
′

3, C
′

4) =
1
N

N
∑

i=1

(

fExp
i − fPred

i

)2
(27)

The GA procedure attempts to minimize the above objective functions. The important de-
tails related to the used GA such as initial population, crossover fraction, elite children, and
generations are reported in Table 2.

2.3 GA Multiobjective Optimization

In single-objective optimization, a system with one targetvariable was considered for optimum
designing. However, in real engineering equipment, there are many design factors that need
trade-offs among them. The target factors are usually conflicted with each other, and the mul-
tiobjective optimization is employed with respect to all objectives. Pareto solutions are a set of
answers for a multiobjective problem. Several practical engineering problems involve detecting
the minimum or maximum of multiple objectives simultaneously. There is no single solution to
optimize multiple goals at once, therefore in multiobjective optimization, the target is to obtain
a set of nondominated answers known as Pareto optimal solutions. The GA is a global optimiza-
tion procedure, which is appropriate to search the different Pareto optimum solutions for solving
multiobjective optimization problems. Multiobjective GAoptimization has more abilities than
the classical techniques in terms of the optimizing problems in which the objective functions
are nonlinear, nondifferential, or discontinuous (Konak et al., 2006; Sanaye and Dehghandokht,
2011).

In the study, the GA was used to determine the Pareto set related to the heat transfer and pres-
sure drop in a heat exchanger including tube insert and nanofluid. The multiobjective optimiza-
tion based on GA was applied to find optimum parameters (Re,y/w, andϕ) in the investigated
thermal system, which led to the minimizing pressure drop (pump power) and the maximizing
heat transfer rate. Regarding objective functions that areminimized in the GA multiobjective
optimization, the following forms of the equations were considered objectives:

OF1

(

Re,
y

w
,φ
)

=
1

1+ Nu
(28)

OF2

(

Re,
y

w
,φ
)

= f (29)

TABLE 2: Details of the genetic algorithm optimization method

Number of initial population chromosomes 100
Crossover fraction 0.8

Number of elite children 2
Number of generations 300
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The procedure was carried out by 400 generations and the initial population number was 100
chromosomes. The optimization process terminates once thenumber of generation reaches the
ultimate value.

3. RESULTS AND DISCUSSION

The main characteristics of a heat exchanger that benefits from HTE options including tube
insert, corrugated tube, and nanofluid were modeled using two powerful models. The ability of
two subcategories of ANNs, MLP and GMDH, were investigated to predict Nu andf in the heat
exchanger. A data set that includes 132 experimental data was gathered and divided into two
parts for training and validating the models. To assess the model validation, all 132 data points
were randomly divided into two groups. The first data section(two-thirds of data points) was
used to train the models and the second data section (remaining data) was applied to validate the
developed models. This procedure leads to minimizing the chances to have a biased data set and
increases the chances to have a representative data set for the training data.

The volume fraction of nanoparticles ofϕ = 0.7%, 0.5%, and 0.3%; twist ratios of the
twisted tapes ofy/w = 5.3, 3.6, and 2.7; and Re range of Re= 6259–24,264 were employed
as input data for modeling. Changing the mentioned operating conditions led to simultaneous
variations in heat transfer rate and friction characteristics in the investigated system. The detailed
experimental analysis related to the effects of the investigated variables on the heat exchanger in
which it was expressed (Wongcharee and Eiamsa-ard, 2012). The accurate model provides the
possibility to choose optimal conditions. In the present study, two MLP and also two GMDH
neural networks were developed to evaluate Nu andf in the studied heat exchanger. Finally,
the more accurate model for predicting Nu andf was used for appropriate objective functions
in a multiobjective GA optimization. The detailed results related to the models are explained in
subsequent sections.

3.1 MLP-ANN Results

Figure 2 shows the arrangement of the MLP-ANN architecture that includes the input, hidden,
and output layers. The various structures of the MLP-ANN were examined to acquire the best
model via the trial-and-error approach. The resulted MSE for the various numbers of neurons
of the hidden layer was presented in Fig. 3. According to the figure, the ANNs with eight and
nine neurons were selected as optimum networks for predicting the Nu andf , respectively. The
MRE and MSE of 0.196% and 0.111, respectively, were calculated for the Nu model, and the
values of 0.063% and 3.97 × 10−8 were obtained for thef model, respectively. In addition,
the deviations of the test data set were calculated and the MRE values of 0.169% and 0.04%
were obtained for prediction of Nu andf , respectively. The ability of the developed model to
estimate the test data and also the reasonable difference between deviations of the predicted
train and test data set proved the validity of the model. The performance of other algorithms for
training the MLP-ANN was evaluated and the error values werereported in Table 3. The similar
modeling procedure was carried out to specify the model structure such as the optimum number
of hidden neurons. The results indicate the superiority of the Levenberg–Marquardt algorithm in
comparison to other learning algorithms. The obtained parameters of the MLP neural networks
were tabulated in Tables 4 and 5. The reported weights and biases (W, b) should be inserted in
Eq. (18) to obtain the predicted output of the models. The data points were normalized before
the modeling process; the real output can be found using the following relation:
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FIG. 2: Structure of the MLP-ANN

(a) (b)

FIG. 3: Deviations of the MLP-ANNs versus the number of neurons in the hidden layer for prediction of
(a) Nu and (b)f

Real value= [Normalized data(Maximum value− Minimum value)] + Minimum value (30)

in which the maximum and minimum values were reported in Table 1.

3.2 GMDH-ANN Results

In the present work, two GMDH-Type-ANN were developed to estimate target variables (Nu and
f ) based on empirical data. Figure 4 shows the two structures related to the developed GMDH
neural networks for predicting Nu andf . These arrangements were optimized to predict the
target data with high precision. As can be seen in Fig. 4, bothstructures contain two hidden
layers. The related genome representations of the developed models for estimating Nu andf are
x1x3x1x1x2x3x1x1 and x1x2x3x3x2x3x1x1, respectively, where x1, x2, and x3 placed for Reynolds
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TABLE 3: Evaluation of the different training algorithms for modeling the Nu andf

Training algorithm

Nu

MRE (%)

f

MRE (%)
Number of
optimum
hidden
neurons

Number of
optimum
hidden
neurons

Levenberg–Marquardt 8 0.196 9 0.063

Conjugate gradient back propagation
with Powell–Beale restarts

6 2.71 9 3.41

Bayesian regularization
back-propagation

6 14.41 8 18.39

Batch training with weight and bias
learning rules

7 1.24 8 1.17

Gradient descent with adaptive
learning rate back propagation

7 10.51 9 7.92

Gradient descent with momentum
back propagation

5 17.39 8 17.71

TABLE 4: The MLP-ANN parameters for prediction of Nusselt number

Neuron Wji — — bj bk = 0.7108
— Re ϕ (%) y/w — Wkj

1 –1.0191 4.7141 –4.6180 0.9495 –0.0176

2 –0.2997 4.1446 4.5960 –4.7741 –0.0327

3 0.8172 0.4517 –0.2901 –1.1104 0.5949

4 2.4987 1.6162 –2.5877 –3.9685 0.0728

5 0.2668 –0.5915 –4.1661 –0.3853 0.1397

6 1.2074 0.1915 0.0390 –0.1383 0.2769

7 –3.6278 –1.2430 5.3412 0.2888 0.0035

8 3.0564 –0.5738 2.0421 0.1483 0.0322

number (Re), volume fraction of nanoparticle (ϕ), and twist ratios of twisted tape (y/w), re-
spectively. The polynomial expression of the GMDH-ANNs is shown in Tables 6 and 7. These
polynomial relations can be used for estimating the Nu andf as a function of input variables.
The MRE values of all predicted data points were obtained as 0.718% and 1.309% for Nu and
f models, respectively. In addition, the MREs of 0.780% and 1.39% were calculated for the test
data set. Therefore, the modeling procedure and presented models are validated to predict the
output variables.

3.3 GA-Based Correlations

Two classical power-law correlations [Eqs. (24) and (25)] were considered to estimate target
variables (Nu andf ) due to the availability and high usage speed. The GA search technique was
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TABLE 5: The MLP-ANN parameters for prediction of friction factor

Neuron Wji — — bj bk = 0.7301
— Re ϕ (%) y/w — Wkj

1 2.3705 –3.1972 –0.7069 –2.1029 0.0511
2 –0.1367 11.2831 –2.2876 –7.9671 0.0687
3 –3.2383 1.8736 0.3915 1.4413 –0.0190
4 –3.8067 –0.4611 –2.4525 2.7763 0.0137
5 1.4123 0.2904 1.5281 –2.0835 –0.1573
6 0.1303 3.8622 –0.2928 –1.6097 0.1999
7 1.7123 0.4714 –2.8256 0.7500 –0.0751
8 3.6935 –0.7022 0.0833 0.7412 –0.1437
9 –1.4085 –0.2964 –3.0117 0.2228 0.2312

(a) (b)

FIG. 4: Structure of the developed GMDH-type neural networks for (a) Nu and (b)f model

TABLE 6: Polynomial equations related to the GMDH-ANN for Nu prediction

y1 = 156.178+ 0.01064x1 − 61.226x3 − 0.00092x1x3 + 3.04× 10−8x2
1 + 7.1619x23

y2 = 324.90+ 52.036x2 − 80.2288x3 − 8.6371x2x3 + 56.933x22 + 7.6199x23
z1 = 5.1520+ 0.73710y1 + 0.00196x1 − 3.24× 10−5y1x1 + 0.00241y21 − 1.00× 10−7x2

1

z2 = 3.8159− 0.19583y2 + 0.00127x1 + 4.26× 10−5y2x1 + 0.00014y22 − 2.11× 10−9x2
1

F = Nu = 0.71297− 0.09395z1 + 1.0847z2 + 0.01683z1z2 − 0.00820z21 − 0.00855z22

used to obtain the best correlation constants. After using the experimental data, the following
equation achieves for Nu prediction:

Nu = 0.133Re0.78
( y

w

)

−0.46
(1+ φ)

0.424 (31)

The calculated MRE and MSE of the above correlation are 2.24%and 14.67, respectively. In
addition, a correlation related to thef was proposed as follows:

f = 1.902Re−0.223
( y

w

)

−0.312
(1+ φ)0.811 (32)

The MRE and MSE of 2.75% and 3.8 × 10−5 were calculated for thef correlation.
The ranges of the parameters used in Eqs. (31) and (32) were reported in Table 1.
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TABLE 7: Polynomial equations related to the GMDH-ANN forf prediction

y1 = 0.21712− 6.11× 10−6x1 + 0.08929x2 − 8.39× 10−7x1x2

+ 1.14× 10−10x2
1 + 0.05475x22

y2 = 0.30877+ 0.08325x2 − 0.06738x3 + 0.00716x2x3 + 5.08× 10−3x2
2 + 0.00631x23

z1 = 0.19796+ 0.648610y1 − 0.07296x3 − 0.01205y1x3 + 1.0807y21 + 0.00744x23
z2 = 0.11478+ 0.25988y2 − 4.06× 10−6x1 − 1.85× 10−5y2x1 + 2.8152y22

+ 1.46× 10−10x2
1

F = f = 0.00088+ 4.1490z1 − 3.1516z2 + 123.33z1z2 − 71.447z21 − 51.877z22

3.4 Compare the Accuracy of the Models

The prediction performance of the investigated models was compared. Table 8 reports the devi-
ation values of the MLP and GMDH neural networks and GA-basedcorrelations for predicting
Nu andf . The errors related to the prediction of training, testing,and overall data points are
reported in the table. In general, the performances of the three models are acceptable. The neural
networks appear more accurate in comparison with the GA correlations. However, the results
indicate the superior performance of the MLP neural network, especially about the prediction
of f .

3.5 GA Multiobjective Optimization

The higher heat transfer coefficients for the investigated heat exchanger are associated with
higherf and the importance of optimization is determined. The global optimal results can be
obtained using the GA procedure after searching for a part ofthe search space. The operating
parameters including Re,y/w, andϕ according to the studied ranges (reported in Table 1) were
optimized using GA multiobjective optimization to achievemaximum Nu and minimumf . For
this reason, the objective functions of OF1 and OF2 [Eqs. (28) and (29)] were introduced to the
GA. In this study, the more accurate predictive model, MLP-ANN, was used to calculate the
objective function values, and the GA multiobjective optimization is adopted in searching for
optimum parameters based on the estimated fitness values. The purpose of the used optimization

TABLE 8: Prediction accuracy of the employed models

Model Stage Data points
Nu — f —

MRE (%) MSE MRE (%) MSE

MLP-ANN
Training 88 0.169 0.086 0.040 1.21 × 10−8

Testing 44 0.250 0.162 0.112 9.65 × 10−8

Overall 132 0.196 0.111 0.063 3.97 × 10−8

GMDH-ANN
Training 88 0.687 1.865 1.268 1.16 × 10−5

Testing 44 0.780 3.013 1.390 1.46 × 10−5

Overall 132 0.718 2.248 1.309 1.26 × 10−5

GA-based correlation
[Eqs. (31) and (32)] — — 2.243 14.67 2.747 3.80 × 10−5
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method is to achieve a trade-off between the heat transfer coefficient and friction characteristic.
The optimum answers (Pareto set) of the system generated by the GA multiobjective optimiza-
tion and the corresponding Nu andf were shown in Figs. 5(a) and 5(b), respectively. Each point
in the Pareto set presented two values of the objectives thatare a global optimal result and there
is no point superior to the other. The conflict changes of the target variables prove the need for
optimization.

Three desired parameters for optimization (Re,y/w, andϕ) related to the Pareto set points
were shown in Fig. 6. As seen in Fig. 6(a), the obtained optimum values of Re were approxi-
mately constant at its upper limit due to ideal values of Nu and f in higher values of Re. Fig-
ure 6(b) illustrates the optimal values of they/w in terms of Nu. As expected, they/w decreases
with increasing Nu in higher values ofy/w. However, there is a constant trend fory/w at its

(a) (b)

FIG. 5: (a) The obtained Pareto set of the objective functions and (b) corresponding Nu andf values

(a) (b)

(c)

FIG. 6: The values of the operating variables (Re,y/w, andϕ) related to the points on the Pareto set
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low values versus increasing Nu. The optimum values of theϕ in terms of Nu were shown in
Fig. 6(c). The figure indicates that the nanomaterial is moreeffective at lower concentrations.

The optimization results indicate that higher Re values lead to ideal Nu andf . Therefore,
design parameters have to be determined in a given Re. The obtained Pareto set at different Re
is shown in Fig. 7. The figure shows the significant effect of the Re on the optimum answers. In
addition, Table 9 reports some of the selected optimum answers and related Nu andf at various
Re. More geometrical parameters can be obtained using the GAmultiobjective optimization
method for different Re. Each value reported in the table wasobtained based on a trade-off
between Nu andf . The designing of the heat exchanger and selecting the design parameters
(Re,y/w, andϕ) was performed based on the importance of Nu andf .

4. CONCLUSIONS

This study introduced and compared three well-known ANN techniques including MLP, GMDH,
and GA. The heat exchanger, which benefits three HTE options (tube insert, corrugated tube, and
nanofluid), has been modeled successfully by these techniques to estimate the thermal and flow
characteristics. The Nu andf were modeled as functions of mainly influencing parameters in-
cluding volume fraction of nanoparticle (ϕ), twist ratios of twisted tape (y/w), and Re. The
MLP-ANNs with three layers and eight and nine neurons in the hidden layer were proposed
for Nu andf prediction, respectively. The polynomial equations related to the two developed
GMDH-ANNs were presented. In addition, two GA-based correlations in the form of the power-
law equation were developed for predicting the target variables. Evaluating the prediction accu-
racy of the model outputs indicates that all three approaches are precise and reliable. However,
the lower deviation values related to the MLP-ANN indicate this technique is proper to predict
target variables in the investigated heat exchanger.

The simultaneous use of twisted tape and nanofluid increasesthe convective heat transfer
and pressure drop. The increasing CuO concentration and twisted ratio of twisted tape lead
to an increase in the Nu andf . The enhancement of the convective heat transfer is a useful
effect but increasing the pressure drop follows with more needed pumping power. Therefore

FIG. 7: Optimum answers (Pareto set) in different Re
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TABLE 9: A selection of the optimum results

Re ϕ (%) y/w Nu f

7000 0.0030 5.29 61.78 0.1574
7000 0.0126 3.68 73.27 0.1776
7000 0.0940 2.74 86.80 0.2075
7000 0.2286 2.75 90.91 0.2275
7000 0.4124 2.78 96.08 0.2541
7000 0.6088 2.75 101.91 0.2831
7000 0.6873 2.72 104.65 0.2955
10000 0.0074 5.27 81.87 0.1461
10000 0.0160 4.19 91.28 0.1580
10000 0.0403 3.88 95.57 0.1650
10000 0.1543 2.91 114.06 0.1964
10000 0.3423 2.76 124.49 0.2256
10000 0.6042 2.78 133.79 0.2600
10000 0.6940 2.74 137.84 0.2730
15000 0.0033 5.28 112.01 0.1329
15000 0.0469 4.62 121.32 0.1435
15000 0.0110 3.59 134.27 0.1509
15000 0.1193 2.79 157.49 0.1773
15000 0.2418 2.75 165.68 0.1938
15000 0.4703 2.73 178.46 0.2226
15000 0.6959 2.73 189.70 0.2501
20000 0.0029 5.29 140.13 0.1246
20000 0.0210 3.72 166.03 0.1411
20000 0.0482 3.02 184.68 0.1538
20000 0.0873 2.74 196.12 0.1633
20000 0.2944 2.76 210.63 0.1877
20000 0.4697 2.75 222.48 0.2082
20000 0.6997 2.70 238.68 0.2356
24000 0.0020 5.29 161.36 0.1195
24000 0.0281 4.17 182.13 0.1315
24000 0.0110 3.19 204.62 0.1410
24000 0.0803 2.71 226.75 0.1565
24000 0.1591 2.72 233.03 0.1654
24000 0.3815 2.71 251.67 0.1911
24000 0.5641 2.73 264.19 0.2107
24000 0.7000 2.70 275.23 0.2263

the multiobjective optimization is essential for the investigated system. The optimum operating
parameters of the investigated heat exchanger that led to a trade-off between heat transfer and
friction characteristics were proposed using the GA multiobjective optimization. Each value of
the operating conditions can be selected according to the project purpose.
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