Abo Bibliothek: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Nanocarriers for Anticancer Drug Targeting: Recent Trends and Challenges

Volumen 38, Ausgabe 6, 2021, pp. 49-103
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021035650
Get accessDownload

ABSTRAKT

Nanocarriers are nanostructured vehicles employed to deliver anticancer drugs to the targeted tumor sites in the body. Nanocarriers have been successfully employed to circumvent certain limitations of conventional anticancer drug delivery while providing greater bioavailability, prolonged circulation time and higher tumor accumulation for enhanced therapeutic outcomes in cancer treatment. Nanocarriers are also responsive to functionalization to tailor their pharmaco-kinetics and achieve enhanced therapeutic outcomes in cancer therapy. Among organic, inorganic and hybrid type, several nanocarriers have gained approval for use in cancer patients, while many more are under clinical development. For the last two decades, cancer immunotherapy-based advanced targeting approaches such as monoclonal antibodies, antibody drug conjugates and immune checkpoint inhibitors that utilize human immune system functions have vastly developed which furnish better treatment options in several intractable cancers compared with traditional cancer therapies. This review discusses the imperative role of tumor vasculature in passive and active targeting of anticancer drugs using organic and inorganic nanocarriers and the current research efforts underway. The advanced targeting approaches for treatment of various cancers and their most recent clinical development scenario have been comprehensively explored. Further, potential challenges associated with each type of nanocarrier, and their translational obstacles are addressed.

REFERENZEN
  1. National Institutes ofHealth (US); Biological Sciences Curriculum Study. NIH Curriculum Supplement Series [Internet]. Bethesda, MD: National Institutes of Health; 2007. Understanding Cancer. Available from: https://www.ncbi.nlm.nih.gov/books/NBK20362/.

  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-86.

  3. Jahan ST, Sadat SMA, Walliser M, Haddadi A. Targeted therapeutic nanoparticles: An immense promise to fight against cancer. J Drug Deliv. 2017;2017:9090325.

  4. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.

  5. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291-309.

  6. Estanqueiro M, Amaral MH, Conceifao J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf B Biointerfaces. 2015;126:631-48.

  7. Ruiz ME, Gantner ME, Talevi A. Applications of nanosystems to anticancer drug therapy (Part II. Dendrimers, micelles, lipid-based nanosystems). Recent Pat Anticancer Drug Discov. 2014;9(1):99-128.

  8. Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: From cells to clinics. Biomed Res Int. 2014;2014:814208.

  9. Lheureux S, Denoyelle C, Ohashi PS, De Bono JS, Mottaghy FM. Molecularly targeted therapies in cancer: A guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging. 2017;44:41-54.

  10. Maeda H, Fang J, Inutsuka T, Kitamoto Y. Vascular permeability enhancement in solid tumor: Various factors, mechanisms involved and its implications. Int Immunopharmacol. 2003;3(3):319-28.

  11. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653-60.

  12. Tee JK, Yip LX, Tan ES, Santitewagun S, Prasath A, Ke PC, Ho HK, Leong DT. Nanoparticles' interactions with vasculature in diseases. Chem Soc Rev. 2019;48:5381-407.

  13. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9:E128-47.

  14. Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv. 2018;15(7):641-63.

  15. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2010;63:131-5.

  16. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25:4633-6.

  17. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Canc Metastasis Rev. 2006;25:9-34.

  18. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013;65:1866-79.

  19. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53:12320-64.

  20. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: A review of recent success in drug delivery. Clinic Transl Med. 2017;6:44.

  21. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145-60.

  22. Abu Lila AS, Ishida T. Liposomal delivery systems: Design optimization and current applications. Biol Pharm Bull. 2017;40:1-10.

  23. Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, Torres A, Milian M, Griebenow K. Smart targeting to improve cancer therapeutics. Drug Des Devel Ther. 2019;13:3753-72.

  24. Kushwah V, Jain DK, Agrawal AK, Jain S. Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes. Colloids Surf B Biointerfaces. 2018;172:213-23.

  25. Zhang Z, Yang J, Min Q, Ling C, Maiti D, Xu J, Qin L, Yang K. Holo-lactoferrin modified liposome for relieving tumor hypoxia and enhancing radiochemotherapy of cancer. Small. 2019;15(6):e1803703.

  26. Song XL, Liu S, Jiang Y, Gu LY, Xiao Y, Wang X, Cheng L, Li XT. Targeting vincristine plus tetrandrine liposomes modified with DSPE-PEG2000-transferrin in treatment of brain glioma. Eur J Pharm Sci. 2017;96:129-40.

  27. Nguyen VD, Min HK, Kim CS, Han J, Park JO, Choi E. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B Biointerfaces. 2019;173:539-48.

  28. Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, Angali KA, Dorkoosh FA, Handali S. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur J Pharm Sci. 2018;114:166-74.

  29. Chiani M, Norouzian D, Shokrgozar MA, Azadmanesh K, Najmafshar A, Mehrabi MR, Akbarzadeh A. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artif Cells Nanomed Biotechnol. 2018;46(4):757-63.

  30. Della Giovampaola C, Capone A, Ermini L, Lupetti P, Vannuccini E, Finetti F, Donnini S, Ziche M, Magnani A, Leone G, Rossi C, Rosati F, Bonechi C. Formulation of liposomes functionalized with Lotus lectin and effective in targeting highly proliferative cells. Biochim Biophys Acta Gen Subj. 2017;1861(4):860-70.

  31. Nguyen VD, Min HK, Kim CS, Han J, Park JO, Choi E. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B Biointerfaces. 2019;173:539-48.

  32. Yuan BO, Zhao Y, Dong S, Sun Y, Hao F, Xie J, Teng L, Lee RJ, Fu Y, Bi YE. Cell-penetrating peptide-coated liposomes for drug delivery across the blood-brain barrier. Anticancer Res. 2019;39(1):237-43.

  33. Wang Y, Wang Z, Qian Y, Fan L, Yue C, Jia F, Sun J, Hu Z, Wang W. Synergetic estrogen receptor-targeting liposome nanocarriers with anti-phagocytic properties for enhanced tumor theranostics. J Mater Chem B. 2019;7(7):1056-63.

  34. Liu KC, Arivajiagane A, Wu SJ, Tzou SC, Chen CY, Wang YM. Development of a novel thermal-sensitive multifunctional liposome with antibody conjugation to target EGFR-expressing tumors. Nanomedicine. 2019;15(1):285-94.

  35. Cheng Y, Ou Z, Li Q. Cabazitaxel liposomes with aptamer modification enhance tumor-targeting efficacy in nude mice. Mol Med Rep. 2019;19(1):490-8.

  36. Moosavian SA, Bianconi V, Pirro M, Sahebkar A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol. 2021;69:337-48.

  37. Kim EM, Jeong HJ. Liposomes: Biomedical applications. Chonnam Med J. 2021;57(1):27-35.

  38. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592-9.

  39. Zeb A, Qureshi OS, Kim HS, Kim MS, Kang JH, Park, JS, Kim JK. High payload itraconazole-incorporated lipid nanoparticles with modulated release property for oral and parenteral administration. J Pharm Pharmacol. 2017;69:955-66.

  40. Garanti T, Alhnan MA, Wan KW. RGD-decorated solid lipid nanoparticles enhanced tumor targeting, penetration and anticancer effect of asiatic acid. Nanomedicine. 2020;15(16):1567-83.

  41. Karamchedu S, Tunki L, Kulhari H, Pooja D. Morin hydrate loaded solid lipid nanoparticles: Characterization, stability, anticancer activity, and bioavailability. Chem Phys Lipids. 2020;233:104988.

  42. Bhagwat GS, Athawale RB, Gude RP, Md S, Alhakamy NA, Fahmy UA, Kesharwani P. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front Pharmacol. 2020;11:614290.

  43. Smith T, Affram K, Nottingham EL, Han B, Amissah F, Krishnan S, Trevino J, Agyare T. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep. 2020;10:16989.

  44. Bayon-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9(3):474.

  45. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247.

  46. de Groot FM, Albrecht C, Koekkoek R, Beusker PH, Scheeren HW. "Cascade-release dendrimers" liberate all end groups upon a single triggering event in the dendritic core. Angew Chem Int Ed Engl. 2003;42:4490-4.

  47. Rompicharla SVK, Kumari P, Bhatt H, Ghosh B, Biswas S. Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int J Pharm. 2019;557:329-41.

  48. Bhatt H, Kiran Rompicharla SV, Ghosh B, Torchilin V, Biswas S. Transferrin/a-tocopherol modified poly(amidoamine) dendrimers for improved tumor targeting and anticancer activity of paclitaxel. Nanomedicine. 2019;14(24):3159-76.

  49. Liu C, Gao H, Zhao Z, Rostami I, Wang Chen, Zhu L. Improved tumor targeting and penetration by a dual-functional poly(amidoamine) dendrimer for the therapy of triple-negative breast cancer. J Mater Chem B. 2019;7:3724-36.

  50. Ouyang Z, Li D, Xiong Z, Song C, Gao Y, Liu R, Shen M, Shi X. Antifouling dendrimer-entrapped copper sulfide nanoparticles enable photoacoustic imaging-guided targeted combination therapy of tumors and tumor metastasis. ACS Appl Mater Interfaces. 2021;13(5):6069-80.

  51. Wu LP, Ficker M, Christensen JB, Trohopoulos PN, Moghimi SM. Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjug Chem. 2015;26(7):1198-211.

  52. Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25(17):3982.

  53. Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int J Nanomedicine. 2015;10:1001-18.

  54. Zhu Y, Liao L. Applications of nanoparticles for anticancer drug delivery: A review. J Nanosci Nanotechnol. 2015;15:4753-73.

  55. Zhu D, Tao W, Zhang H, Liu G, Wang T, Zhang L, Zeng X, Mei L. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater. 2016;30:144-54.

  56. Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Water-soluble chitosan conjugated DOTA-bombesin peptide capped gold nanoparticles as a targeted therapeutic agent for prostate cancer. Nanotechnol Sci Appl. 2021;14:69-89.

  57. Deepika MS, Thangam R, Sheena TS, Vimala RTV, Sivasubramanian S, Jeganathan K, Thirumurugan R. Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Mater Sci Eng C Mater Biol Appl. 2019;103:109716.

  58. Zu M, Ma L, Zhang X, Xie D, Kang Y, Xiao B. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy. Colloids Surf B Biointerfaces. 2019;177:399-406.

  59. Wu P, Zhou Q, Zhu H, Zhuang Y, Bao J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-fluorouracil and perfluorocarbon. BMC Cancer. 2020;20(1):354.

  60. Zielinska A, Carreiro F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.

  61. Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184-202.

  62. Gothwal A, Khan I, Gupta U. Polymeric micelles: Recent advancements in the delivery of anticancer drugs. Pharm Res. 2016;33:18-39.

  63. Tesauro D, Mastro R, Cusimano A, Emma MR, Cervello M. Synthetic peptide-labelled micelles for active targeting of cells overexpressing EGF receptors. Amino Acids. 2019;51(8):1177-85.

  64. Baidya D, Kushwaha J, Mahadik K, Patil S. Chrysin-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells. Drug Dev Ind Pharm. 2019;45(5):852-60.

  65. Guan J, Zhou ZQ, Chen MH, Li HY, Tong DN, Yang J, Yao J, Zhang ZY. Folate-conjugated and pH-responsive polymeric micelles for target-cell-specific anticancer drug delivery. Acta Biomater. 2017;60:244-55.

  66. Xu C, Xu J, Zheng Y, Fang Q, Lv X, Wang X, Tang R. Active-targeting and acid-sensitive plu- ronic prodrug micelles for efficiently overcoming MDR in breast cancer. J Mater Chem B. 2020; 8(13):2726-37.

  67. Majumdar N, Das NG, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv. 2020;11(10):613-35.

  68. Dahiya R, Dahiya S. Ch 13. Advanced drug delivery applications of self-assembled nanostructures and polymeric nanoparticles. In: Anand K, Sarvanan M, Chandrasekaran B, Kanchi S, Panchu SJ, Chen Q, editors. Handbook on nanobiomaterials for therapeutics and diagnostic applications. Netherlands: Elsevier; 2021. p. 297-339.

  69. Molino NM, Wang SW. Caged protein nanoparticles for drug delivery. Curr Opin Biotechnol. 2014;28:75-82.

  70. Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev. 2020;156:214-35.

  71. Wang C, Beiss V, Steinmetz NF. Cowpea mosaic virus nanoparticles and empty virus-like particles show distinct but overlapping immunostimulatory properties. J Virol. 2019;93(21):e00129-19.

  72. Aljabali AAA, Alzoubi L, Hamzat Y, Alqudah A, Obeid MA, Al Zoubi MS, Ennab RM, Alshaer W, Albatayneh K, Al-Trad B, Alqudah DA, Chellappan DK, Gupta G, Tambuwala MM, Kamal D, Evans DJ. A potential MRI agent and an anticancer drug encapsulated within CPMV virus-like particles. Comb Chem High Throughput Screen. In press 2020.

  73. Gan BK, Rullah K, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS. Targeted delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells overexpressing epithelial growth factor receptor (EGFR) using virus-like nanoparticles. Sci Rep. 2020;10(1):16867.

  74. Sainsbury F. Virus-like nanoparticles: Emerging tools for targeted cancer diagnostics and therapeutics. Ther Del. 2017;8(12):1019-21.

  75. Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: From preparation to encapsulation of active molecules. Int J Pharm. 2017;522:172-97.

  76. DeFrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X. Protein polymer-based nanoparticles: Fabrication and medical applications. Int J Mol Sci. 2018;19(6):1717.

  77. Zhou C, Song X, Guo C, Tan Y, Zhao J, Yang Q, Chen D, Tan T, Sun X, Gong T, Zhang Z. Alternative and injectable preformed albumin-bound anticancer drug delivery system for anticancer and antimetastasis treatment. ACS Appl Mater Interfaces. 2019;11(45):42534-48.

  78. Shi L, Xu L, Wu C, Xue B, Jin X, Yang J, Zhu X. Celecoxib-induced self-assembly of smart albumin-doxorubicin conjugate for enhanced cancer therapy. ACS Appl Mater Interfaces. 2018;10(10):8555-65.

  79. Choi SH, Byeon HJ, Choi JS, Thao L, Kim I, Lee ES, Shin BS, Lee KC, Youn YS. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Control Release. 2015;197:199-207.

  80. Kim SS, Kim HK, Kim H, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Hyperthermal paclitaxel-bound albumin nanoparticles co-loaded with indocyanine green and hyaluronidase for treating pancreatic cancers. Arch Pharm Res. 2021;44(2):182-93.

  81. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282-95.

  82. National Cancer Institute, Division of Cancer Treatment and Diagnosis, National Institutes of Health. Current nanotechnology treatments. Available from: https://www.cancer.gov/nano/ cancer-nanotechnology/current-treatments.

  83. Tonga GY, Moyano DF, Kim CS, Rotello VM. Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise. Curr Opin Colloid Interface Sci. 2014;19:49-55.

  84. Ng CM, Loh HS, Muthoosamy K, Sridewi N, Manickam S. Conjugation of insulin onto the sidewalls of single-walled carbon nanotubes through functionalization and diimide-activated amidation. Int J Nanomedicine. 2016;11:1607-14.

  85. Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH. Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharm. 2009;6:1092-9.

  86. Lay CL, Liu HQ, Tan HR, Liu Y. Delivery ofpaclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology. 2010;21(6):065101.

  87. Das M, Datir SR, Singh RP, Jain S. Augmented anticancer activity of a targeted, intracellularly activatable, theranostic nanomedicine based on fluorescent and radiolabelled, methotrexate-folic acid-multiwalled carbon nanotube conjugate. Mol Pharm. 2013;10:2543-57.

  88. Liu D, Zhang Q, Wang J, Fan L, Zhu W, Cai D. Hyaluronic acid-coated single-walled carbon nanotubes loaded with doxorubicin for the treatment of breast cancer. Pharmazie. 2019;74(2):83-90.

  89. Yan Y, Wang R, Hu Y, Sun R, Song T, Shi X, Yin S. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv. 2018;25(1): 1607-16.

  90. Yang S, Wang Z, Ping Y, Miao Y, Xiao Y, Qu L, Zhang L, Hu Y, Wang J. PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: Synthesis, characterization, and in vitro evaluation. Beilstein J Nanotechnol. 2020;11:1728-41.

  91. Sousa SPB, Peixoto T, Santos RM, Lopes A, Paiva MdC, Marques AT. Health and safety concerns related to CNT and graphene products, and related composites. J Compos Sci. 2020;4(3):106.

  92. Luanpitpong S, Wang L, Rojanasakul Y. The effects of carbon nanotubes on lung and dermal cellular behaviors. Nanomedicine. 2014;9(6):895-912.

  93. Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Todoroki M, Yamamoto M, Hashiba M, Mizuguchi Y, Lee BW, Kuroda E, Shimada M, Wang WN, Yamamoto K, Fujita K, Endoh S, Uchida K, Kobayashi N, Mizuno K, Inada M, Tao H, Nakazato T, Nakanishi J, Tanaka I. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology. 2012;6(6):587-99.

  94. Wang Y, Xie X, Wang X, Ku G, Gill KL, O'Neal DP. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 2004;4:1689-92.

  95. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83-90.

  96. Garcia MA. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J Phys D Appl Phys. 2011;44:283001.

  97. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2000;297:1536-40.

  98. Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D, Brecht P, Su R, Oraevsky A, Wang LV, Li C. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials. 2010;31:2617-26.

  99. Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-responsive gold nanoparticles for cancer diagnosis and therapy. J Funct Biomater. 2016;7:E19.

  100. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012;3:457-78.

  101. Xiong Z, Alves CS, Wang J, Li A, Liu J, Shen M, Rodrigues J, Tomas H, Shi X. Zwitterion-functionalized dendrimer-entrapped gold nanoparticles for serum-enhanced gene delivery to inhibit cancer cell metastasis. Acta Biomater. 2019;99:320-9.

  102. Wan J, Ma X, Xu D, Yang B, Yang S, Han S. Docetaxel-decorated anticancer drug and gold nanoparticles encapsulated apatite carrier for the treatment of liver cancer. J Photochem Photobiol B. 2018;185:73-9.

  103. Del Valle AC, Su CK, Sun YC, Huang YF. NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors. Biomater Sci. 2020;8(7):1934-50.

  104. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662-8.

  105. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 2008;4(12):2108-11.

  106. Carnovale C, Bryant G, Shukla R, Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega. 2019;4(1):242-56.

  107. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421-31.

  108. Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim KS, Yetisen AK, Yun SH, Kwon W, Hahn SK. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications. Adv Mater. 2018;30:1701460.

  109. Li WQ, Wang Z, Hao S, Sun L, Nisic M, Cheng G, Zhu C, Wan Y, Ha L, Zheng SY. Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug. Nanoscale. 2018;10(8):3744-52.

  110. Jia Q, Li Z, Guo C, Huang X, Song Y, Zhou N, Wang M, Zhang Z, He L, Du M. A y-cyclodextrin-based metal-organic framework embedded with graphene quantum dots and modified with PEGMA via SI-ATRP for anticancer drug delivery and therapy. Nanoscale. 2019;11(43):20956-67.

  111. Li Y, Shi N, Zhang W, Zhang H, Song Y, Zhu W, Feng X. Supramolecular hybrids of carbon dots and dihydroartemisinin for enhanced anticancer activity and mechanism analysis. J Mater Chem B. 2020;8(42):9777-84.

  112. Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. Revisiting the cytotoxicity of quantum dots: An in-depth overview. Biophys Rev. 2020;12(3):703-8.

  113. Jha S, Mathur P, Ramteke S, Jain NK. Pharmaceutical potential of quantum dots. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 1):57-65.

  114. Duan M, Shapter JG, Qi W, Yang S, Gao G. Recent progress in magnetic nanoparticles: Synthesis, properties, and applications. Nanotechnology. 2018;29:452001.

  115. Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia. 2008;24:451-66.

  116. Jha S, Mathur P, Ramteke S, Jain NK. Pharmaceutical potential of quantum dots. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 1):57-65.

  117. Jin Z, Chang J, Dou P, Jin S, Jiao M, Tang H, Jiang W, Ren W, Zheng S. Tumor targeted multifunctional magnetic nanobubbles for MR/US dual imaging and focused ultrasound triggered drug delivery. Front Bioeng Biotechnol. 2020;8:586874.

  118. Attari E, Nosrati H, Danafar H, Kheiri Manjili H. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res A. 2019;107(11):2492-500.

  119. Khaledian M, Nourbakhsh MS, Saber R, Hashemzadeh H, Darvishi MH. Preparation and evaluation of doxorubicin-loaded plapegfa copolymer containing superparamagnetic iron oxide nanoparticles (spions) for cancer treatment: Combination therapy with hyperthermia and chemotherapy. Int J Nanomedicine. 2020;15:6167-82.

  120. Mukherjee S, Liang L, Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics. 2020;12(2):147.

  121. Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. J Colloid Interface Sci. 2018;521:261-79.

  122. Musso GE, Bottinelli E, Celi L, Magnacca G, Berlier G. Influence of surface functionalization on the hydrophilic character of mesoporous silica nanoparticles. Phys Chem Chem Phys. 2015;17:13882-94.

  123. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A. 2005;102:11539-44.

  124. Shen Y, Li M, Liu T, Liu J, Xie Y, Zhang J, Xu S, Liu H. A dual-functional HER2 aptamer-conjugated, pH-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in HER2-positive breast cancer cells. Int J Nanomedicine. 2019;14:4029-44.

  125. Ding Z, Wang D, Shi W, Yang X, Duan S, Mo F, Hou X, Liu A, Lu X. In vivo targeting of liver cancer with tissue- and nuclei-specific mesoporous silica nanoparticle-based nanocarriers in mice. Int J Nanomedicine. 2020;15:8383-400.

  126. Zhao P, Qiu L, Zhou S, Li L, Qian Z, Zhang H. Cancer cell membrane camouflaged mesoporous silica nanoparticles combined with immune checkpoint blockade for regulating tumor microenvironment and enhancing antitumor therapy. Int J Nanomedicine. 2021;16:2107-21.

  127. Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials. 2017;7(7):189.

  128. Hemati Azandaryani A, Kashanian S, Derakhshandeh K. Folate-conjugated hybrid nanocarrier for targeted letrozole delivery in breast cancer treatment. Pharm Res. 2017;34(12):2798-808.

  129. Bagheri E, Ansari L, Abnous K, Taghdisi SM, Charbgoo F, Ramezani M, Alibolandi M. Silica based hybrid materials for drug delivery and bioimaging. J Control Release. 2018;277:57-76.

  130. Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2018;271:60-73.

  131. Han N, Zhao Q, Wan L, Wang Y, Gao Y, Wang P, Wang Z, Zhang J, Jiang T, Wang S. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS Applied Mater Interfaces. 2015;7:3342-51.

  132. Desai D, Zhang J, Sandholm J, Lehtimaki J, Gronroos T, Tuomela J, Rosenholm JM. Lipid bilayer-gated mesoporous silica nanocarriers for tumor-targeted delivery of zoledronic acid in vivo. Mol Pharm. 2017;14:3218-27.

  133. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, Suri KB, Levy C, Allen T, Mavroukakis S, Lowy I, White DE, Rosenberg SA. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30:825.

  134. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.

  135. Coulson A, Levy A, Gossell-Williams M. Monoclonal antibodies in cancer therapy: Mechanisms, successes and limitations. West Indian Med J. 2014;63:650-4.

  136. Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol. 2015;67:28-45.

  137. Tsumoto K, Isozaki Y, Yagami H, Tomita M. Future perspectives of therapeutic monoclonal antibodies. Immunotherapy. 2019;11:119-27.

  138. Chiavenna SM, Jaworski JP, Vendrell A. State of the art in anti-cancer mAbs. J Biomed Sci. 2017;24:15.

  139. Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35(4):e00225.

  140. Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-crug conjugates: Possibilities and challenges. Avicenna J Med Biotechnol. 2019;11(1):3-23.

  141. Damelin M, Zhong W, Myers J, Sapra P. Evolving strategies for target selection for antibody-drug conjugates. Pharm Res. 2015;32(11):3494-507.

  142. Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-drug conjugates for cancer therapy. Molecules. 2020;25(20):4764.

  143. Leung D, Wurst JM, Liu T, Martinez RM, Datta-Mannan A, Feng Y. Antibody conjugates-recent advances and future innovations. Antibodies. 2020;9(1):2.

  144. Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B. 2020;10(9):1589-600.

  145. Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, Iacobelli S, Sala G, Capone E, Flavell DJ, Ippoliti R, Giansanti F. Antibody-drug conjugates: The new frontier of chemotherapy. Int J Mol Sci. 2020;21(15):5510.

  146. Lu J, Jiang F, Lu A, Zhang G. Linkers having a crucial role in antibody-drug conjugates. Int J Mol Sci. 2016;17(4):561.

  147. Dan N, Setua S, Kashyap VK, Khan S, Jaggi M, Yallapu MM, Chauhan SC. Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications. Pharmaceuticals. 2018;11(2):32.

  148. Lambert JM, Morris CQ. Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: A review. Adv Ther. 2017;34(5):1015-35.

  149. Jain N, Smith SW, Ghone S, Tomczuk B. Current ADC linker chemistry. Pharm Res. 2015;32(11):3526-40.

  150. Tsuchikama K, An Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33-46.

  151. Sun X, Ponte JF, Yoder NC, Laleau R, Coccia J, Lanieri L, Qiu Q, Wu R, Hong E, Bogalhas M, Wang L, Dong L, Setiady Y, Maloney EK, Ab O, Zhang X, Pinkas J, Keating TA, Chari R, Erickson HK, Lambert JM. Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates. Bioconjug Chem. 2017;28(5):1371-81.

  152. Agarwal P, Bertozzi CR. Site-specific antibody-drug conjugates: The nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug Chem. 2015;26(2):176-92.

  153. Zhou Q. Site-specific antibody conjugation for ADC and beyond. Biomedicines. 2017;5(4):64.

  154. Stein EM, Walter RB, Erba HP, Fathi AT, Advani AS, Lancet JE, Ravandi F, Kovacsovics T, DeAngelo DJ, Bixby D, Faderl S, Jillella AP, Ho PA, O'Meara MM, Zhao B, Biddle-Snead C, Stein AS. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood. 2018;131(4):387-96.

  155. Kline T, Steiner AR, Penta K, Sato AK, Hallam TJ, Yin G. Methods to make homogenous antibody drug conjugates. Pharm Res. 2015;32(11):3480-93.

  156. Tang H, Liu Y, Yu Z, Sun M, Lin L, Liu W, Han Q, Wei M, Jin Y. The analysis of key factors related to ADCs structural design. Front Pharmacol. 2019;10:373.

  157. Fenn KM, Kalinsky K. Sacituzumab govitecan: Antibody-drug conjugate in triple-negative breast cancer and other solid tumors. Drugs Today. 2019;55(9):575-85.

  158. www.ClinicalTrials.gov. ASCENT-study of Sacituzumab govitecan in refractory/relapsed triple-negative breast cancer (ASCENT). Available from: https://clinicaltrials.gov/ct2/show/NCT02574455.

  159. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, Andre F, Iwata H, Ito Y, Tsurutani J, Sohn J, Denduluri N, Perrin C, Aogi K, Tokunaga E, Im SA, Lee KS, Hurvitz SA, Cortes J, Lee C, Chen S, Zhang L, Shahidi J, Yver A, Krop I; DESTINY-Breast01 investigators. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382(7):610-21.

  160. Andrikopoulou A, Zografos E, Liontos M, Koutsoukos K, Dimopoulos MA, Zagouri F. Trastuzumab Deruxtecan (DS-8201a): The latest research and advances in breast cancer. Clin Breast Cancer. 2021;21(3):e212-9.

  161. www.ClinicalTrials.gov. A phase 3, multicenter, randomized, open-label, active controlled trial of DS-8201a, an anti-HER2-antibody drug conjugate (ADC), versus treatment of physician's choice for HER2-low, unresectable and/or metastatic breast cancer subjects. Available from: https://clinicaltrials. gov/ct2/show/NCT03734029.

  162. www.ClinicalTrials.gov. Trastuzumab duocarmazine. Concept ID: C3896762. Available from: https://clinicaltrials.gov/ct2/show/NCT03262935?term=Trastuzumab+Duocarmazine&cond=cancer&draw =2&rank=2.

  163. www.ClinicalTrials.gov. A multi-centre, open-label, randomized clinical trial comparing the efficacy and safety of the antibody-drug conjugate SYD985 to physician's choice in patients with HER2-positive unresectable locally advanced or metastatic breast cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT03262935.

  164. Dine J, Gordon R, Shames Y, Kasler MK, Barton-Burke M. Immune checkpoint inhibitors: An innovation in immunotherapy for the treatment and management of patients with cancer. Asia Pac J Oncol Nurs. 2017;4(2):127-35.

  165. Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers. 2019;11:1756.

  166. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252-64.

  167. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94(1):41-53.

  168. Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. Application of PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 2019;17:661-74.

  169. Liu JKH. The history of monoclonal antibody development - progress, remaining challenges and future innovations. Ann Med Surg. 2014;3:113-6.

  170. Yang EY, Shah K. Nanobodies: Next generation of cancer diagnostics and therapeutics. Front Oncol. 2020;10:1182.

  171. Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol. 2017;8:1603.

  172. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103:4586-91.

  173. Morrison C. Nanobody approval gives domain antibodies a boost. Nat Rev Drug Discov. 2019;18(7):485-7.

  174. Ruseska I, ZimmerA. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol. 2020;11:101-23.

  175. Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov Today. 2012;17:850-60.

  176. Zorko M, Langel U. Cell-penetrating peptides: Mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 2005;57:529-45.

  177. Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19:3794-804.

  178. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60:548-58.

  179. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res. 2002;62(15):4263-72.

  180. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18:84.

  181. Smith NR, Baker D, Farren M, Pommier A, Swann R, Wang X, Mistry S, McDaid K, Kendrew J, Womack C, Wedge SR, Barry ST. Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res. 2013;19:6943-56.

  182. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582-98.

  183. Micke P, Ostman A. Exploring the tumour environment: Cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets. 2005;9:1217-33.

  184. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335-48.

  185. Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316:2713-22.

  186. Zhou L, Yang K, Andl T, Wickett RR, Zhang Y. Perspective of targeting cancer-associated fibroblasts in melanoma. J Cancer. 2015;6:717-26.

  187. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145-50.

  188. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20-37.

  189. Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: Current status, challenges and future prospects. Ther Deliv. 2019;10:113-32.

  190. Gong X, Li J, Tan T, Wang Z, Wang H, Wang Y, Xu X, Zhang Z, Li Y. Emerging approaches of cell-based nanosystems to target cancer metastasis. Adv Funct Mater. 2019;29:1903441.

REFERENZIERT VON
  1. Banthia Poonam, Gambhir Lokesh, Sharma Asha, Daga Dhiraj, Kapoor Neha, Chaudhary Rishabh, Sharma Gaurav, Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer, 3 Biotech, 12, 3, 2022. Crossref

  2. Dahiya Sunita, Dahiya Rajiv, Liposomes in drug targeting to brain tumors, in Nanocarriers for Drug-Targeting Brain Tumors, 2022. Crossref

  3. Li Linfeng, Zhou Baotong, Xu Haoyang, Shi Hailin, Gao Li, Ge Bo, Zinc-Loaded Black Phosphorus Multifunctional Nanodelivery System Combined With Photothermal Therapy Have the Potential to Treat Prostate Cancer Patients Infected With COVID-19, Frontiers in Endocrinology, 13, 2022. Crossref

  4. Ahmad Javed, Rizwanullah Md., Suthar Teeja , Albarqi Hassan A. , Ahmad Mohammad Zaki, Vuddanda Parameswara Rao , Khan Mohammad Ahmed , Jain Keerti , Receptor-Targeted Surface-Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications , Critical Reviews™ in Therapeutic Drug Carrier Systems, 39, 6, 2022. Crossref

  5. Chandakavathe Baburao N., Kulkarni Ravindra G. , Dhadde Shivsharan B., Grafting of Natural Polymers and Gums for Drug Delivery Applications: A Perspective Review , Critical Reviews™ in Therapeutic Drug Carrier Systems, 39, 6, 2022. Crossref

  6. Stepanova Darya A., Pigareva Vladislava A., Berkovich Anna K., Bolshakova Anastasia V., Spiridonov Vasiliy V., Grozdova Irina D., Sybachin Andrey V., Ultrasonic Film Rehydration Synthesis of Mixed Polylactide Micelles for Enzyme-Resistant Drug Delivery Nanovehicles, Polymers, 14, 19, 2022. Crossref

  7. Suvarna Vasanti, Sawant Niserga, Desai Namita, A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics, Critical Reviews™ in Therapeutic Drug Carrier Systems, 40, 2, 2023. Crossref

  8. Liu Qian, Sun Henglai, Li Xinyu, Sheng Huagang, Zhu Liqiao, Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin, Molecules, 27, 22, 2022. Crossref

  9. Li Shuping, Gao Xiaodong, WITHDRAWN: A combinational chemo-immune therapy using outer membrane vesicles for enhanced cancer therapy by RGD targeting, Nanomedicine: Nanotechnology, Biology and Medicine, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain