Abo Bibliothek: Guest
Composites: Mechanics, Computations, Applications: An International Journal

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 2152-2057

ISSN Online: 2152-2073

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00004 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.08 SJR: 0.153 SNIP: 0.178 CiteScore™:: 1 H-Index: 12

Indexed in

EFFECT OF ACETYLATION ON COMPOSITE MATERIALS BASED ON POLYPROPYLENE/COFFEE HUSK WASTE

Volumen 11, Ausgabe 4, 2020, pp. 309-322
DOI: 10.1615/CompMechComputApplIntJ.2020033271
Get accessGet access

ABSTRAKT

This study is a contribution to the search for a solution on the problem related to environmental pollution by lignocellulosic waste. Indeed, the exploitation of biomass plant makes the development of biodegradable composite materials (filler and matrices) possible. This work aims to prepare and characterize new composite materials based on polypropylene (PP) filled with either treated or untreated coffee husk waste (WCHT, WCHUT) collected from cafeteria waste. The chemical modification and thermal stability of the filler were analyzed. Tensile and rheological properties, water-absorption behavior, and surface morphology of the materials were investigated. The treatment has enhanced the compatibility between PP and WCH by decreasing the hydrophilicity of materials, which is confirmed by the moisture adsorption reduction of the composites. Also, the tensile properties were improved by introduction of treated filler because of the amelioration of interfacial properties.

REFERENZEN
  1. Abba, H.A., Nur, I.Z., and Salit, S.M., Review of Agro Waste Plastic Composites Production, J. Miner. Mater. Charact. Eng., vol. 1, pp. 271-279, 2013.

  2. Abdul Khalil, H.P.S., Issam, A.M., Ahmad Shakri, M.T., Suriani, R., and Awang, A.Y., Conventional Agro-Composites from Chemically Modified Fibers, Ind. Crops. Prod., vol. 26, pp. 315-323, 2007.

  3. Ashori, A. and Nourbakhsh, A., Performance Properties of Microcrystalline Cellulose as a Reinforcing Agent in Wood Plastic Composites, Composites: Part B, vol. 41, pp. 578-581, 2010.

  4. Bellili, N., Djidjelli, H., Boukerrou, A., Barres, C., and Fenouillot, F., Mechanical and Thermal Properties of Polyvinylchloride/Olive Residue Flour Blends Treated by Gamma Irradiation, J. Vinyl. Addit. Technol., vol. 22, no. 3, pp. 273-278, 2016.

  5. Beztout, M., Boukerrou, A., Djidjelli, H., Barres, C., and Fenouillot, F., Effects of Acetylation Process and Cellulose Content on the Mechanical, Thermal, Morphological and Rheological Properties of Poly(Vinyl Chloride)/Cellulose Composites, Cellul. Chem. Technol., vol. 49, nos. 5-6, pp. 517-528, 2015.

  6. Boukerrou, A., Beztout, M., Djidjelli, H., Krim, S., and Hammiche, D., The Effect of Chemical Treatment of Cellulose with Epoxidized Soybean Oil (ESO) on the Properties PVC/Cellulose Composites, Mol. Cryst. Liq. Cryst., vol. 556, no. 1, pp. 223-232, 2012.

  7. Boukerrou, A., Krim, S., Djidjelli, H., Ihamouchen, C., and Juan Martinez, J., Study and Characterization of Composites Materials Based on Polypropylene Loaded with Olive Husk Flour, J. Appl. Polym. Sci., vol. 122, pp. 1382-1394, 2011.

  8. Caraschi, J.C. and Leao, A.L., Wood Flour as Reinforcement of Polypropylene, Mater. Res., vol. 5, no. 4, pp. 405-409, 2002.

  9. Cemmi, A., Baccaro, S., Carewska, M., Casieri, C., and Lepore, A., Structure Modifications and Interaction with Moisture in G-Irradiated Pure Cellulose by Thermal Analysis and Infrared Spectroscopy, Polym. Degrad. Stab., vol. 98, pp. 2005-2010, 2013.

  10. Coroller, G., Ausias, G., Bourmaud, A., Tachon, M.-L., and Baley, C., Contribution a L'Etude des Proprietes d'un Composite Pp/Lin Mis en ffiuvre Par Extrusion, Comptes Rendus des JNC 17 (17emes Journees Nationales sur les Composites), Poitiers-Futuroscope, France, pp. 180, 2011.

  11. Djidjelli, H., Benachour, D., Boukerrou, A., Zefouni, O., Martinez-Vega, J., Farenc, J., Kaci, M., Thermal, Dielectric and Mechanical Study of Poly(Vinyl Chloride)/Olive Pomace Composites, EXPRESS Polym. Lett., vol. 1, no. 12, pp. 846-852, 2007.

  12. Figueroa, G.A., Homann, T., and Rawel, H.M., Coffee Production Wastes: Potentials and Perspectives, Austin Food Sci., vol. 1, no. 3, pp. 1-5, 2016.

  13. Gupta, A. and Kumar, A., Chemical Properties of Natural Fiber Composites and Mechanisms of Chemical Modifications, Asian J. Chem., vol. 24, no.4, pp. 1831-1836, 2012.

  14. Hosseinaei, O., Wang, S., Enayati, A.A., and Rials, T.G., Effects of Hemicellulose Extraction on Properties of Wood Flour and Wood-Plastic Composites, Composites: Part A, vol. 43, pp. 686-694, 2012.

  15. Ichazo, M.N., Albano, C., Ganzalez, J., Perera, R., and Candal, M.V., Polypropylene/Wood Flour Composite: Treatments and Properties, Compos. Struct., vol. 54, pp. 207-214, 2001.

  16. Jarukumjorn, K., Kaewkuk, S., and Sutapun, W., Effects of Interfacial Modification and Fiber Content on Physical Properties of Sisal Fiber/Polypropylene Composites, Composites: Part B, vol. 45, pp. 544-549, 2013.

  17. Jebrane, M., Pichavant, F., and Sebe, G., A Comparative Study on the Acetylation of Wood by Reaction with Vinyl Acetate and Acetic Anhydride, Carbohydr. Polym., vol. 83, pp. 339-345, 2011.

  18. Kabir, M.M., Wang, H., Lau, K.T., and Cardona F., Chemical Treatments on Plant-Based Natural Fiber Reinforced Polymer Composites: An Overview, Composites: Part B, vol. 43, pp. 2883-2892, 2012.

  19. Kalia, S., Kaith, B.S., and Kaur, I., Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites: A Review, Polym. Eng. Sci., vol. 49, pp. 131-145, 2009.

  20. Lee, S.-H. and Wang, S., Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio-Based Coupling Agent, Composites, Part A: Appl. Sci. Manuf., vol. 37, no. 1, pp. 80-91, 2006.

  21. Lu, X., Zhang, M.Q., Rong, M.Z., Shi, G., and Yang, G.C., Self-Reinforced Melt Processable Composites of Sisal, Compos. Sci. Technol., vol. 63, pp. 177-186, 2003.

  22. Malkapuram, R., Kumar, V., and Yuvraj, S.N., Recent Development in Natural Fiber Reinforced Polypropylene Composites, J. Reinf. Plast., vol. 28, no. 10, pp. 1169-1189, 2008.

  23. Monteiro, S.N., Calado, V., Rodriguez, R.J.S., and Margem, F.M., Thermogravimetric Behavior of Natural Fibers Reinforced Polymer Composites: An Overview, Mater. Sci. Eng. A, vol. 557, pp. 17-28, 2012.

  24. Nazrul, I., Rezaur, R., Haque, M., and Huque, M., Physico-Mechanical Properties of Chemically Treated Coir Reinforced Polypropylene Composites, Composites: Part A, vol. 41, pp. 192-198, 2010.

  25. Panayiotou, C., Tserki, V., Zafeiropoulos, N.E., and Simon, F., A Study of the Effect of Acetylation and Propionylation Surface Treatments on Natural Fibers, Composites: Part A, vol. 36, pp. 1110-1118, 2005.

  26. Poletto, M., Influence of Coupling Agents on Rheological, Thermal Expansion and Morphological Properties of Recycled Polypropylene Wood Flour Composites, Maderas. Ciencia y Tecnologia, vol. 20, no. 4, pp. 563-570, 2018.

  27. Rowell, R.M., Sanadi, A.R., Caulfield, D.F., and Jacobson, R.E., Utilization of Natural Fibers in Plastic Composites: Problems and Opportunities, Lignocellulosic-Plastics Composites, pp. 23-51, 1997.

  28. Shemekite, F., Gomez-Brandon, M., Franke-Whittle, H., Praehauser, B., Insam, H., and Assefa, F., Coffee Husk Composting: An Investigation of the Process Using Molecular and Non-Molecular Tools, Waste Manage., vol. 34, pp. 642-652, 2014.

  29. Silverstein, R.M. and Webster, F.X., Spectrometric Identification of Organic Compounds, 6th ed., New York: Wiley, 1998.

  30. Siyamak, S., Ibrahim, N.A., Abdolmohammadi, S., Yunus, W.Md.Z.W., and Rahman, M.Z.A.B., Effect of Fiber Esterification on Fundamental Properties of Oil Palm Empty Fruit Bunch Fiber/Poly(Butylene Adipate-Co-Terephthalate) Biocomposites, Int. J. Mol. Sci., vol. 13, pp. 1327-1346, 2012.

  31. Sreekumaret, P.A., Kuruvilla, J., Unnikrishnan, G., and Sabu, T., A Comparative Study on Mechanical Properties of Sisal-Leaf Fiber-Reinforced Polyester Composites Prepared by Resin Transfer and Compression Moulding Techniques, Compos. Sci. Technol., vol. 67, pp. 453-461, 2007.

  32. Stark, N.M. and Matuana, L.M., Characterization of Weathered Wood Plastic Composite Surfaces Using FTIR Spectroscopy, Contact Angle, and XPS*, Polym. Degrad. Stab., vol. 92, pp. 1883-1890, 2007.

  33. Wang, Z., Lemma, D.B., Qiu, Y., Dai, Y., Zhu, S., Sarsaiya, S., and Chen, J., Preparation and Characterization of Coffee Hull Fiber for Reinforcing Application in Thermoplastic Composites, Bioengineering, vol. 10, no. 1, pp. 397-408, 2019.

  34. Zhang, M., Rong, M., and Lu, X., Fully Biodegradable Natural Fiber Composites from Renewable Resources: All-Plant Fiber Composites, Compos. Sci. Technol., vol. 65, pp. 2514-2525, 2005.

REFERENZIERT VON
  1. Ojha Shakuntala, Boggarapu Vasavi, Kanakam Rakesh, Raghavendra Gujjala, Bose P. Subash Chandra, Chemical Modification and Fabrication of Epoxy/Natural Fiber Composites, in Handbook of Epoxy/Fiber Composites, 2022. Crossref

  2. Ojha Shakuntala, Boggarapu Vasavi, Kanakam Rakesh, Raghavendra Gujjala, Bose P. Subash Chandra, Chemical Modification and Fabrication of Epoxy/Natural Fiber Composites, in Handbook of Epoxy/Fiber Composites, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain