Abo Bibliothek: Guest
Critical Reviews™ in Oncogenesis

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 0893-9675

ISSN Online: 2162-6448

SJR: 0.395 SNIP: 0.322 CiteScore™:: 2.5 H-Index: 54

Indexed in

Historical Perspectives of the Role of NO/NO Donors in Anti-Tumor Activities: Acknowledging Dr. Keefer's Pioneering Research

Volumen 28, Ausgabe 1, 2023, pp. 1-13
DOI: 10.1615/CritRevOncog.2021035853
Get accessGet access

ABSTRAKT

The role of nitric oxide (NO) in cancer has been a continuous challenge and particularly the contradictory findings in the literature reporting NO with either anti-cancer properties or pro-cancer properties. This dilemma was largely resolved by the level of NO/inducible nitric oxide synthase in the tumor environment as well as other cancer-associated gene activations in different cancers. The initial findings on the role of NO as an anti-cancer agent was initiated in the late 1990's in Dr. Larry Keefer's laboratory, who had been studying and synthesizing many compounds with releasing NO under different conditions. Using an experimental model with selected NO compounds they demonstrated for the first time that NO can inhibit tumor cell proliferation and sensitizes drug-resistant cancer cells to chemotherapy-induced cytotoxicity. This initial finding was the backbone and the foundation of subsequent reports by the Keefer's laboratory and followed by many others to date on NO-mediated anti-cancer activities and the clinical translation of NO donors in cancer therapy. Our laboratory initiated studies on NO-mediated anti-cancer therapy and chemo-immuno-sensitization following Keefer's findings and used one of his synthesized NO donors, namely, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate), throughout most of our studies. Many of Keefer's collaborators and other investigators have reported on the selected compound, O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl] diazen-1-ium-1,2-diolate (JS-K), and its therapeutic role in many tumor model systems. Several lines of evidence that investigated the treatment with NO donors in various cancer models revealed that a large number of gene products are modulated by NO, thus emphasizing the pleiotropic effects of NO on cancers and the identification of many targets of therapeutic significance. The present review reports historically of several examples reported in the literature that emanated on NO-mediated anti-cancer activities by the Keefer's laboratory and his collaborators and other investigators including my laboratory at the University of California at Los Angeles.

SCHLÜSSELWÖRTER: nitric oxide, NO donors, cancer
REFERENZEN
  1. Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB. Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide. 1997;1(1):88-94.

  2. Wink DA, Vodovotz Y, Cook JA, Krishna MC, Kim S, Coffin D, DeGraff W, Deluca AM, Liebmann J, Mitchell JB. The role of nitric oxide chemistry in cancer treatment. Biochemistry. 1998;63(7):802-9.

  3. Garban HJ, Bonavida B. Nitric oxide sensitizes ovarian tumor cells to Fasinduced apoptosis. Gynecol Oncol. 1999;73(2):257-64.

  4. Umansky V, Rocha M, Breitkreutz R, Hehner S, Bucur M, Erbe N, Droge W, Ushmorov A. Glutathione is a factor of resistance of Jurkat leukemia cells to nitric oxide-mediated apoptosis. J Cell Biochem. 2000;78(4):578-87.

  5. Garban HJ, Bonavida B. Nitric oxide inhibits the transcription repressor Yin-Yang 1 binding activity at the silencer region of the Fas promoter: A pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J Immunol. 2001;167(1):75-81.

  6. Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, Bonavida B. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene. 2004;23(29):4993-5003.

  7. Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res. 2005;65(2):516-25.

  8. Hongo F, Garban H, Huerta-Yepez S, Vega M, Jazirehi AR, Mizutani Y, Miki T, Bonavida B. Inhibition of the transcription factor Yin Yang 1 activity by S-nitrosation. Biochem Biophys Res Commun. 2005;336(2):692-701.

  9. Ridnour LA, Thomas DD, Donzelli S, Espey MG, Roberts DD, Wink DA, Isenberg JS. The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal. 2006;8(7-8):1329-37.

  10. Bratasz A, Weir NM, Parinandi NL, Zweier JL, Sridhar R, Ignarro LJ, Kuppusamy P. Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by NCX-4016, a nitro derivative of aspirin. Proc Natl Acad Sci U S A. 2006;103(10):3914-9.

  11. Bonavida B, Khineche S, Huerta-Yepez S, Garban H. Therapeutic potential of nitric oxide in cancer. Drug Resist Updat. 2006;9(3):157-73.

  12. Huerta S, Chilka S, Bonavida B. Nitric oxide donors: Novel cancer therapeutics (review). Int J Oncol. 2008;33(5):909-27.

  13. Fetz V, Bier C, Habtemichael N, Schuon R, Schweitzer A, Kunkel M, Engels K, Kovacs AF, Schneider S, Mann W, Stauber RH, Knauer SK. Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin. Int J Cancer. 2009;124(9):2033-41.

  14. Switzer CH, Flores-Santana W, Mancardi D, Donzelli S, Basudhar D, Ridnour LA, Miranda KM, Fukuto JM, Paolocci N, Wink DA. The emergence of nitroxyl (HNO) as a pharmacological agent. Biochim Biophys Acta. 2009;1787(7):835-40.

  15. Huerta-Yepez S, Vega M, Escoto-Chavez SE, Murdock B, Sakai T, Baritaki S, Bonavida B. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide. 2009;20(1):39-52.

  16. Huerta S, Baay-Guzman G, Gonzalez-Bonilla CR, Livingston EH, Huerta-Yepez S, Bonavida B. In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: Involvement of AIF. Nitric Oxide. 2009;20(3):182-94.

  17. Keefer LK. Behalf of the JS-K Consortium. Broad-spectrum anti-cancer activity of O-arylated diazeniumdiolates. For Immunopathol Dis Therap. 2010;1(3):205-18.

  18. Baritaki S, Huerta-Yepez S, Sahakyan A, Karagiannides I, Bakirtzi K, Jazirehi A, Bonavida B. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: Inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP. Cell Cycle. 2010;9(24):4931-40.

  19. Keefer LK. Fifty years of diazeniumdiolate research. From laboratory curiosity to broad-spectrum biomedical advances. ACS Chem Biol. 2011;6(11):1147-55.

  20. Drago RS, Karstetter BR. The reaction of nitrogen(II) oxide with various primary and secondary amines. J Am Chem Soc. 1961;83(8):1819-22.

  21. Ragsdale RO, Karstetter BR, Drago RS. Decomposition of the adducts of diethylamine and isopropylamine with nitrogen(II) oxide. Inorganic Chem. 1965;4(3):420-2.

  22. Keefer LK, Nims RW, Davies KM, Wink DA. "NONOates" (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: Convenient nitric oxide dosage forms. Methods Enzymol. 1996;268:281-93.

  23. Davies KM, Wink DA, Saavedra JE, Keefer LK. Chemistry of the diazeniumdiolates. 2. Kinetics and mechanism of dissociation to nitric oxide in aqueous solution. J Am Chem Soc. 2001;123:5473-81.

  24. Shami PJ, Saavedra JE, Wang LY, Bonifant CL, Diwan BA, Singh SV, Gu Y, Fox SD, Buzard GS, Citro ML, Waterhouse DJ, Davies KM, Ji X, Keefer LK. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol Cancer Ther. 2003;2:409-17.

  25. Kiziltepe T, Hideshima T, Ishitsuka K, Ocio EM, Raje N, Catley L, Li CQ, Trudel LJ, Yasui H, Vallet S, Kutok JL, Chauhan D, Mitsiades CS, Saavedra JE, Wogan GN, Keefer LK, Shami PJ, Anderson KC. JS-K, a GST-activated nitric oxide generator, induces DNA double strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood. 2007;110:709-18.

  26. Shami PJ, Saavedra JE, Bonifant CL, Chu J, Udupi V, Malaviya S, Carr BI, Kar S, Wang M, Jia L, Ji X, Keefer LK. Antitumor activity of JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate] and related O2-aryl diazeniumdiolates in vitro and in vivo. J Med Chem. 2006;49:4356-66.

  27. de Luca A, Moroni N, Serafino A, Primavera A, Pastore A, Pedersen JZ, Petruzzelli R, Farrace MG, Pierimarchi P, Moroni G, Federici G, Sinibaldi Vallebona P, Lo Bello M. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochem J. 2011;440(2):175-83.

  28. Bonavida B, Baritaki S. Dual role of NO donors in the reversal of tumor cell resistance and EMT: Downregulation of the NF-KB/Snail/YY1/RKIP circuitry. Nitric Oxide. 2011;24(1):1-7.

  29. Bonavida B, Baritaki S. Inhibition of epithelial-to-mesenchymal transition (EMT) in cancer by nitric oxide: Pivotal roles of nitrosylation of NF-KB, YY1 and Snail. For Immunopathol Dis Therap. 2012;3(2):125-33.

  30. Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol. 2015;6:486-94.

  31. Nandurdikar RS, Maciag AE, Holland RJ, Cao Z, Shami PJ, Anderson LM, Keefer LK, Saavedra JE. Structural modifications modulate stability of glutathione-activated arylated diazeniumdiolate prodrugs. Bioorg Med Chem. 2012;20(9):3094-9.

  32. Nagai H, Yasuda H, Hatachi Y, Xue D, Sasaki T, Yamaya M, Sakamori Y, Togashi Y, Masago K, Ito I, Kim YH, Mio T, Mishima M. Nitric oxide (NO) enhances pemetrexed cytotoxicity via NOcGMP signaling in lung adenocarcinoma cells in vitro and in vivo. Int J Oncol. 2012;41(1):24-30.

  33. Huerta-Yepez S, Baritaki S, Baay-Guzman G, Hernan-dez-Luna MA, Hernandez-Cueto A, Vega MI, Bonavida B. Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer. Nitric Oxide. 2013;29:17-24.

  34. Rapozzi V, Della Pietra E, Zorzet S, Zacchigna M, Bonavida B, Xodo LE. Nitric oxide-mediated activity in anti-cancer photodynamic therapy. Nitric Oxide. 2013;30:26-35.

  35. Rapozzi V, Pietra ED, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol. 2015;6:311-7.

  36. Bharadwaj G, Benini PG, Basudhar D, Ramos-Colon CN, Johnson GM, Larriva MM, Keefer LK, Andrei D, Miranda KM. Analysis of the HNO and NO donating properties of alicyclic amine diazeniumdiolates. Nitric Oxide. 2014;42:70-8.

  37. Cheng RY, Basudhar D, Ridnour LA, Heinecke JL, Kesarwala AH, Glynn S, Switzer CH, Ambs S, Miranda KM, Wink DA. Gene expression profiles of NO- and HNO-donor treated breast cancer cells: Insights into tumor response and resistance pathways. Nitric Oxide. 2014;43:17-28.

  38. Kaur I, Kosak KM, Terrazas M, Herron JN, Kern SE, Boucher KM, Shami PJ. Effect of a Pluronic(@) P123 formulation on the nitric oxide-generating drug JS-K. Pharm Res. 2015;32(4):1395-406.

  39. Basudhar D, Cheng RC, Bharadwaj G, Ridnour LA, Wink DA, Miranda KM. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer. Free Radic Biol Med. 2015;83:101-14.

  40. Gunzle J, Osterberg N, Saavedra JE, Weyerbrock A. Nitric oxide released from JS-K induces cell death by mitotic catastrophe as part of necrosis in glioblastoma multiforme. Cell Death Dis. 2016;7(9):e2349.

  41. Kim J, Yung BC, Kim WJ, Chen X. Combination of nitric oxide and drug delivery systems: Tools for overcoming drug resistance in chemotherapy. J Control Release. 2017;263:223-30.

  42. Walsh EM, Keane MM, Wink DA, Callagy G, Glynn SA. Review of triple negative breast cancer and the impact of inducible nitric oxide synthase on tumor biology and patient outcomes. Crit Rev Oncog. 2016;21(5-6): 333-51.

  43. Sousa EH, Ridnour LA, Gouveia FS Jr, Silva da Silva CD, Wink DA, de Franja Lopes LG, Sadler PJ. Thiol-activated HNO release from a ruthenium antiangiogenesis complex and HIF-1a inhibition for cancer therapy. ACS Chem Biol. 2016;11(7):2057-65.

  44. Tan G, Qiu M, Chen L, Zhang S, Ke L, Liu J. JS-K, a nitric oxide pro-drug, regulates growth and apoptosis through the ubiquitin-proteasome pathway in prostate cancer cells. BMC Cancer. 2017;17(1):376.

  45. Liu Z, Li G, Gou Y, Xiao D, Luo G, Saavedra JE, Liu J, Wang H. JS-K, a nitric oxide prodrug, induces DNA damage and apoptosis in HBV-positive hepatocellular carcinoma HepG2.2.15 cell. Biomed Pharmacother. 2017;92:989-97.

  46. Qiu M, Chen L, Tan G, Ke L, Zhang S, Chen H, Liu J. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells. Oncol Lett. 2017;13(3):1137-42.

  47. Bonavida B. Therapeutic YY1 inhibitors in cancer: ALL in ONE. Crit Rev Oncog. 2017;22(1-2):37-47.

  48. Hays E, Bonavida B. Nitric oxide-mediated enhancement and reversal of resistance of anticancer therapies. Antioxidants. 2019;8(9):407.

  49. Bonavida B. Sensitizing activities of nitric oxide donors for cancer resistance to anticancer therapeutic drugs. Biochem Pharmacol. 2020;176:113913.

  50. Liu L, Huang Z, Chen J, Wang J, Wang S. Protein phosphatase 2A activation mechanism contributes to JS-K induced caspase-dependent apoptosis in human hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2018;37(1):142.

  51. Sinha BK, Bortner CD, Mason RP, Cannon RE. Nitric oxide reverses drug resistance by inhibiting AT-Pase activity of p-glycoprotein in human multi-drug resistant cancer cells. Biochim Biophys Acta Gen Subj. 2018;1862(12):2806-14.

  52. Liu B, Huang X, Li Y, Liao W, Li M, Liu Y, He R, Feng D, Zhu R, Kurihara H. JS-K, a nitric oxide donor, induces autophagy as a complementary mechanism inhibiting ovarian cancer. BMC Cancer. 2019;19(1):645.

  53. Zhao X, Cai A, Peng Z, Liang W, Xi H, Li P, Chen G, Yu J, Chen L. JS-K induces reactive oxygen species-dependent anti-cancer effects by targeting mitochondria respiratory chain complexes in gastric cancer. J Cell Mol Med. 2019;23(4):2489-2504.

  54. Sinha BK, Perera L, Cannon RE. Reversal of drug resistance by JS-K and nitric oxide in ABCB1- and AB-CG2-expressing multi-drug resistant human tumor cells. Biomed Pharmacother. 2019;120:109468.

  55. Qiu M, Zhang S, Ke L, Tang H, Zeng X, Liu J. JS-K enhances chemosensitivity of prostate cancer cells to Taxol via reactive oxygen species activation. Oncol Lett. 2019;17(1):757-64.

  56. Song Z, Yin Y, Hao S, Wei J, Liu B, Huang X, Gao C, Zhu R, Liao W, Cai D. JSK induces G2/M phase cell cycle arrest and apoptosis in A549 and H460 cells via the p53/p21WAF1/CIP1 and p27KIP1 pathways. Oncol Rep. 2019;41(6):3475-87.

  57. Guenzle J, Garrelfs NWC, Goeldner JM, Weyerbrock A. Cyclooxygenase (COX) inhibition by acetyl salicylic acid (ASA) enhances antitumor effects of nitric oxide in glio-blastoma in vitro. Mol Neurobiol. 2019;56(9):6046-55.

  58. Tsai CK, Huang LC, Wu YP, Kan IY, Hueng DY. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT. FASEB J. 2019;33(12):14171-84.

  59. Pieretti JC, Pelegrino MT, Nascimento MHM, Tortella GR, Rubilar O, Seabra AB. Small molecules for great solutions: Can nitric oxide-releasing nanomaterials overcome drug resistance in chemotherapy? Biochem Pharmacol. 2020;176:113740.

  60. Zhao Y, Luo Q, Mo J, Li J, Ye D, Ao Z, Chen L, Liu J. Metformin in combination with JS-K inhibits growth of renal cell carcinoma cells via reactive oxygen species activation and inducing DNA breaks. J Cancer. 2020;11(13):3701-12.

  61. Qin L, Gao H. The application of nitric oxide delivery in nanoparticle-based tumor targeting drug delivery and treatment. Asian J Pharm Sci. 2019;14(4):380-90.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain