Abo Bibliothek: Guest
Critical Reviews™ in Oncogenesis

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 0893-9675

ISSN Online: 2162-6448

SJR: 0.395 SNIP: 0.322 CiteScore™:: 2.5 H-Index: 54

Indexed in

A Profound Relationship between Circadian Rhythm Dysfunction and Cancer Progression: An Approach to Exploration

Volumen 26, Ausgabe 3, 2021, pp. 1-41
DOI: 10.1615/CritRevOncog.2021039731
Get accessDownload

ABSTRAKT

Circadian (~ 24-hour) rhythm has been observed in all living organisms. In humans, the circadian system governs different physiological functions such as metabolism, sleep-wake cycle, body temperature, hormone secretion, and cellular proliferation. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the principal circadian pacemaker. The SCN receives input signals primarily from the retinohypothalamic tract (RHT), sends output signals to different parts of the hypothalamus, pineal gland, and the peripheral clocks through the neural or humoral network. The functions of the circadian clock are mediated by the rhythmic expression of the core clock genes through a complex feedback loop. Disruption of clock functions influences the development of several pathologic conditions, including cancer, shift work, chronic or acute jet lag, and light-at-night affect the circadian activity, leading to development of several physiological disorders, more specifically cancer. Circadian dysfunction alters the expression of core clock genes that promote the deregulation of the cell cycle, increase cell proliferation and survival, decrease apoptotic activity, alter metabolic functions, increase metastatic property, collectively induces cancer progression.

REFERENZEN
  1. Halberg F. Chronobiology. Annu Rev Physiol. 1969;31(1): 675-726. doi: 10.1146/annurev.ph.31.030169.003331.

  2. Sharma VK, Chandrashekaran MK. Zeitgebers (time cues) for biological clocks. Curr Sci. 2005;89(7):1136-46.

  3. Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci U S A. 2006;103(28):10618-23. doi: 10.1073/pnas.0604511103. PMID: 16818876.

  4. Pariollaud M, Lamia KA. Cancer in the fourth dimension: What is the impact of circadian disruption? Cancer Discov. 2020;10(10):1455-64. doi: 10.1158/2159-8290.CD-20-0413. PMID: 32934020.

  5. de Paula RM, Lamb TM, Bennett L, Bell-Pedersen D. A connection between mapk pathways and circadian clocks. Cell Cycle. 2008;7(17):2630-4. doi: 10.4161/cc.7.17.6516. PMID: 18728391.

  6. Benna C, Helfrich-Forster C, Rajendran S, Monticelli H, Pilati P, Nitti D, Mocellin S. Genetic variation of clock genes and cancer risk: A field synopsis and meta-analysis. Oncotarget. 2017;8(14):23978-95. doi: 10.18632/oncotarget.15074. PMID: 28177907.

  7. Farhud D, Aryan Z. Circadian rhythm, lifestyle and health: A narrative review. Iran J Public Health. 2018;47(8):1068-76. PMID: 30186777.

  8. Patel SA, Kondratov RV. Clock at the core of cancer development. Biology. 2021;10:150. doi: 10.3390/biology. PMID: 10020150.

  9. Foster RG, Kreitzman L. The rhythms of life: What your body clock means to you! Exp Physiol. 2014;99(4):599-606. doi: 10.1113/expphysiol.2012.071118. PMID: 24363383.

  10. Masri S, Sassone-Corsi P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med. 2018;24(12):1795-803. doi: 10.1038/s41591-018-0271-8. PMID: 30523327.

  11. Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-Lopez JC, Morell M. An overview of the poly-morphisms of circadian genes associated with endocrine cancer. Front Endocrinol. 2019;10:104. doi: 10.1038/s41591-018-0271-8. PMID: 30523327.

  12. Reghunandanan V, Reghunandanan R. Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms. 2006;4:2. doi: 10.1186/1740-3391-4-2. PMID: 16480518.

  13. Klein DC, Moore RY, Reppert SM, editors. Suprachiasmatic nucleus: The Mind's clock. New York: Oxford University Press; 1991. p. 467.

  14. Hannibal J, Hindersson P, Ostergaard J, Georg B, Heegaard S, Larsen PJ, Fahrenkrug J. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci. 2004;45(11):4202-9. doi: 10.1167/iovs.04-0313. PMID: 15505076.

  15. Do MT, Yau KW. Intrinsically photosensitive retinal ganglion cells. Physiol Rev. 2010;90(4):1547-81. doi: 10.1152/physrev.00013.2010. PMID: 20959623.

  16. Fu L, Lee CC. The circadian clock: Pacemaker and tumour suppressor. Nat Rev Cancer. 2003;3(5):350-61. doi: 10.1038/nrc1072. PMID: 12724733.

  17. Sahar S, Sassone-Corsi P. Metabolism and cancer: The circadian clock connection. Nat Rev Cancer. 2009;9(12):886-96. doi: 10.1038/nrc2747. PMID: 19935677.

  18. Lin HH, Farkas ME. Altered circadian rhythms and breast cancer: From the human to the molecular level. Front Endocrinol. 2018;9:219. doi: 10.3389/fendo.2018.00219. PMID: 29780357.

  19. Dibner C. The importance of being rhythmic: Living in harmony with your body clocks. Acta Physiol. 2019;00:e13281. doi: 10.1111/apha.13281.

  20. Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021;20(4):287-307. doi: 10.1038/s41573-020-00109-w. PMID: 33589815.

  21. Salamanca-Fernandez E, Rodriguez-Barranco M, Guevara M, Ardanaz E, Olry de Labry Lima A, Sanchez MJ. Night-shift work and breast and prostate cancer risk: Updating the evidence from epidemiological studies. An Sist Sanit Navar. 2018;41(2):211-26. doi: 10.23938/ ASSN.0307. PMID: 30063040.

  22. Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L, Shi Y, Giovannucci E, Speizer F, Schernhammer ES. Rotating night shift work and colorectal cancer risk in the nurses' health studies. Int J Cancer. 2018;143(11):2709-17. doi: 10.1002/ijc.31655. PMID: 29978466.

  23. Leung L, Grundy A, Siemiatycki J, Arseneau J, Gilbert L, Gotlieb WH, Provencher DM, Aronson KJ, Koushik A. Shift work patterns, chronotype, and epithelial ovarian cancer risk. Cancer Epidemiol Biomarkers Prev. 2019;28(5):987-95. doi: 10.1158/1055-9965.EPI-18-1112. PMID: 30842128.

  24. Bhatti P, Cushing-Haugen KL, Wicklund KG, Doherty JA, Rossing MA. Nightshift work and risk of ovarian cancer. Occup Environ Med. 2013;70(4):231-7. doi: 10.1136/oemed-2012-101146. PMID: 23343856.

  25. Carter BD, Diver WR, Hildebrand JS, Patel AV, Gapstur SM. Circadian disruption and fatal ovarian cancer. Am J Prev Med. 2014;46(3 Suppl 1):S34-41. doi: 10.1016/j. amepre.2013.10.032. PMID: 24512929.

  26. Wendeu-Foyet MG, Bayon V, Cenee S, Tretarre B, Rebillard X, Cancel-Tassin G, Cussenot O, Lamy PJ, Faraut B, Ben Khedher S, Leger D, Menegaux F. Night work and prostate cancer risk: Results from the EPICAP study. Occup Environ Med. 2018;75(8):573-81. doi: 10.1136/oemed-2018-105009. PMID: 29921728.

  27. Cordina-Duverger E, Menegaux F, Popa A, Rabstein S, Harth V, Pesch B, Bruning T, Fritschi L, Glass DC, Heyworth JS, Erren TC, Castano-Vinyals G, Papantoniou K, Espinosa A, Kogevinas M, Grundy A, Spinelli JJ, Aronson KJ, Guenel P. Night shift work and breast cancer: A pooled analysis of population-based case-control studies with complete work history. Eur J Epidemiol. 2018;33(4):369-79. doi: 10.1007/s10654-018-0368-x. PMID: 29464445.

  28. Gudmundsdottir EM, Hrafnkelsson J, Rafnsson V. Incidence of cancer among licenced commercial pilots flying North Atlantic routes. Environ Health. 2017;16(1):86. doi: 10.1186/s12940-017-0295-4. PMID: 28814301.

  29. McNeely E, Mordukhovich I, Staffa S, Tideman S, Gale S, Coull B. Cancer prevalence among flight attendants compared to the general population. Environ Health. 2018;17(1):49. doi: 10.1186/s12940-018-0396-8. PMID: 29940975.

  30. Reppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001;63:647-76. doi: 10.1146/annurev.physiol.63.1.647. PMID: 11181971.

  31. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: Cell autonomy and network properties. Annu Rev Physiol. 2010;72:551-77. doi: 10.1146/annurev-physiol-021909-135919. PMID: 20148688.

  32. Valenzuela FJ, Vera J, Venegas C, Munoz S, Oyarce S, Munoz K, Lagunas C. Evidence of polymorphism associated with circadian system and risk of pathologies: A review of the literature. Int J Endocrinol. 2016;2016:2746909. doi: 10.1155/2016/2746909. PMID: 27313610.

  33. Sulli G, Lam MTY, Panda S. Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer. 2019;5(8):475-94. doi: 10.1016/j.trecan.2019.07.002. PMID: 31421905.

  34. Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916(1-2): 172-91. doi: 10.1016/s0006-8993(01)02890-6. PMID: 11597605.

  35. Moore RY, Speh JC. GABA is the principal neurotransmitter of the circadian system. Neurosci Lett. 1993;150(1):112-16. doi: 10.1016/0304-3940(93)90120-a. PMID: 8097023.

  36. Hattar S, Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW. Melanopsin and rod-cone photo-receptive systems account for all accessory major visual functions in mice. Nature. 2003;424:75-81.

  37. Castel M, Morris JF. Morphological heterogeneity of the GABAergic network in the suprachiasmatic nucleus, the brain's circadian pacemaker. J Anat. 2000;196(1):1-13. doi: 10.1046/j.1469-7580.2000.19610001.x. PMID: 10697283.

  38. Kalsbeek A, Teclemariam-Mesbah R, Pevet P. Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus). J Com Neurol. 1993;332(3):293-314. doi: 10.1002/cne.903320304. PMID: 8331217.

  39. Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neuro-sci. 2005;28(3):152-7. doi: 10.1016/j.tins.2004.12.009. PMID: 15749169.

  40. Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE, Alster JM, McPherson PS, Campbell KP, Gillette MU. A neuronal ryanodine receptor mediates lightinduced phase delays of the circadian clock. Nature. 1998;394(6691):381-4. doi: 10.1038/28639. PMID: 9690474.

  41. Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28(8):436-45. doi: 10.1016/j.tins.2005.06.005. PMID: 15982754.

  42. Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science. 1993;260(5105):238-41. doi: 10.1126/science.8097062. PMID: 8097062.

  43. Obrietan K, Impey S, Storm DR. Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci. 1998;1(8):693-700. doi: 10.1038/3695. PMID: 10196585.

  44. Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF, Gillette MU. Ca2+/cAMP response element binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem. 2003;278(2):718-23. doi: 10.1074/jbc.M209241200. PMID: 12409294.

  45. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 2005;102(12):4459-64. doi: 10.1073/pnas.0501076102. PMID: 15753290.

  46. Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A. 2002;99(11):7728-33. doi: 10.1073/pnas.102075599. PMID: 12032351.

  47. Colwell CS, Menaker M. NMDA as well as non-NMDA receptor antagonists can prevent the phase-shifting effects of light on the circadian system of the golden hamster. J Biol Rhythms. 1992;7(2):125-36. doi: 10.1177/074873049200700204. PMID: 1611128.

  48. Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schutz G. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron. 2002;34(2):245-53. doi: 10.1016/s0896-6273(02)00656-6. PMID: 11970866.

  49. Pizzio GA, Hainich EC, Ferreyra GA, Coso OA, Golombek DA. Circadian and photic regulation of ERK, JNK and p38 in the hamster SCN. NeuroReport. 2003;14(11):1417-9. doi: 10.1097/00001756-200308060-00002. PMID: 12960755.

  50. Shinohara K, Funabashi T, Mitushima D, Kimura F. Effects of gap junction blocker on vasopressin and vasoactive intestinal polypeptide rhythms in the rat suprachi-asmatic nucleus in vitro. Neurosci Res. 2000;38(1):43-7. doi: 10.1016/s0168-0102(00)00141-3. PMID: 10997577.

  51. Pakhotin P, Harmar AJ, Verkhratsky A, Piggins H. VIP receptors control excitability of suprachiasmatic nuclei neurones. Pflugers Arch. 2006;452(1):7-15. doi: 10.1007/ s00424-005-0003-z. PMID: 16283205.

  52. Nielsen HS, Hannibal J, Fahrenkrug J. Vasoactive intestinal polypeptide induces per1 and per2 gene expression in the rat suprachiasmatic nucleus late at night. Eur J Neurosci. 2002;15(3):570-4. doi: 10.1046/j.0953-816x.2001.01882.x. PMID: 11876785.

  53. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell. 2002;109(4):497-508. doi: 10.1016/s0092-8674(02)00736-5. PMID: 12086606.

  54. Aida R, Moriya T, Araki M, Akiyama M, Wada K, Wada E, Shibata S. Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol Pharmacol. 2002;61(1):26-34. doi: 10.1124/mol.61.1.26. PMID: 11752203.

  55. Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, Vasudevan SR, Flanagan KC, Anthony D, Churchill GC, Wood MJA, Steiner G, Ebeling M, Hossbach M, Wettstein JG, Duffield GE, Gatti S, Hankins MW, Foster RG, Peirson SN. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell. 2013;154(5):1100-11. doi: 10.1016/j.cell.2013.08.004. PMID: 23993098.

  56. Sapede D, Cau E. The pineal gland from development to function. Curr Top Dev Biol. 2013;106:171-215. doi: 10.1016/B978-0-12-416021-7.00005-5. PMID: 24290350.

  57. Amaral FGD, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab. 2018;62(4):472-9. doi: 10.20945/2359-3997000000066. PMID: 30304113.

  58. Gheban BA, Rosca IA, Crisan M. The morphological and functional characteristics of the pineal gland. Med Pharm Rep. 2019;92(3):226-34. doi: 10.15386/mpr-1235. PMID: 31460502.

  59. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405-12. doi: 10.1523/JNEUR0SCI.21-16-06405.2001. PMID: 11487664.

  60. Tan DX, Xu B, Zhou X, Reiter RJ. Pineal calcification, melatonin production, aging, associated health conse-quences and rejuvenation of the pineal gland. Molecules. 2018;23(2):301. doi: 10.3390/molecules23020301. PMID: 29385085.

  61. Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom. 2019;102(2):99-108. doi: 10.1111/cxo.12824. PMID: 30074278.

  62. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, Cecon E, Wehbi VL, Kim J, Heath BE, Baranova OV, Wang X, Gable MJ, Kretz ES, Di Benedetto G, Lezon TR, Ferrando LM, Larkin TM, Sullivan M, Yablonska S, Wang J, Minnigh MB, Guillaumet G, Suzenet F, Richardson RM, Poloyac SM, Stolz DB, Jockers R, Witt-Enderby PA, Carlisle DL, Vilardaga JP, Friedlander RM. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci US A. 2017;114(38):E7997-8006. doi: 10.1073/pnas.1705768114. PMID: 28874589.

  63. Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int J Mol Sci. 2016;17(12):2124. doi: 10.3390/ijms17122124. PMID: 27999288.

  64. Krakowski G, Cieciura L. Ultrastructural studies on the pinealocyte mitochondria during the daytime and at night. J Pineal Res. 1985;2(4):315-24. doi: 10.1111/j.1600-079x.1985.tb00712.x. PMID: 3831315.

  65. Parameyong A, Charngkaew K, Govitrapong P, Chetsawang B. Melatonin attenuates methamphetamineinduced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res. 2013;55(3):313-23. doi: 10.1111/jpi.12078. PMID: 23889188.

  66. Chuang JI, Pan IL, Hsieh CY, Huang CY, Chen PC, Shin JW. Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment. J Pineal Res. 2016;61(2):230-40. doi: 10.1111/jpi.12343. PMID: 27159033.

  67. Ding M, Ning J, Feng N, Li Z, Liu Z, Wang Y, Wang Y, Li X, Huo C, Jia X, Xu R, Fu F, Wang X, Pei J. Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin. J Pineal Res. 2017;e12447. doi: 10.1111/jpi.12447.

  68. Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361-383. doi: 10.1146/annurev-pharm. PMID: 26514204.

  69. Bahna SG, Niles LP. Epigenetic regulation of melatonin receptors in neuropsychiatry disorders. Br J Pharmacol. 2018;175(16):3209-19. doi: 10.1111/bph.14058. PMID: 28967098.

  70. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin-a pleiotropic, orchestrating regulator molecule. Prog Neurobiol. 2011;93(3):350-84. doi: 10.1016/j.pneuro-bio.2010.12.004. PMID: 21193011.

  71. Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, Fauchere JL, Delagrange P, Canet E, Boutin JA. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem. 2000;275(40):31311-7. doi: 10.1074/jbc.M005141200. PMID: 10913150.

  72. Ye Y, Xiang Y, Ozguc FM, Kim Y, Liu CJ, Park PK, Hu Q, Diao L, Lou Y, Lin C, Guo AY, Zhou B, Wang L, Chen Z, Takahashi JS, Mills GB, Yoo SH, Han L. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst. 2018;6(3):314-328.e2. doi: 10.1016/j.cels.2018.01.013. PMID: 29525205.

  73. Zhang Z, Zeng P, Gao W, Zhou Q, Feng T, Tian X. Circadian clock: A regulator of the immunity in cancer. Cell Commun Signal. 2021;19(1):37. doi: 10.1186/s12964-021-00721-2. PMID: 33752691.

  74. Pett JP, Korencic A, Wesener F, Kramer A, Herzel H. Feed-back loops of the mammalian circadian clock constitute repressilator. PLoS Comp Biol. 2016;12(12):e1005266. doi: 10.1371/journal.pcbi.1005266. PMID: 27942033.

  75. Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS. Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 2007;129(5):1011-23. doi: 10.1016/j.cell.2007.04.030. PMID: 17462724.

  76. Cashmore AR, Jarillo JA, Wu YJ, Liu D. Cryptochromes: Blue light receptors for plants and animals. Science. 1999;284(5415):760-5. doi: 10.1126/science. 284.5415.760. PMID: 10221900.

  77. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS. Positional cloning of the mouse circadian Clock gene. Cell. 1997;89(4):641-53. doi: 10.1016/s0092-8674(00)80245-7. PMID: 9160755.

  78. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564-9. doi: 10.1126/science.280.5369.1564. PMID: 9616112.

  79. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian os-cillator. Cell. 2002;110(2):251-60. doi: 10.1016/s0092-8674(02)00825-5. PMID: 12150932.

  80. Kwon I, Choe HK, Son GH, Kim K. Mammalian molecular clocks. Exp Neurobiol. 2011;20(1): 18-28. doi: 10.5607/en.2011.20.1.18. PMID: 22110358.

  81. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 1999;96(1):57-68. doi: 10.1016/s0092-8674(00)80959-9. PMID: 9989497.

  82. DeBruyne JP, Weaver DR, Reppert SM. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci. 2007;10(5):543-5. doi: 10.1038/nn1884. PMID: 17417633.

  83. Landgraf D, Wang LL, Diemer T, Welsh DK. NPAS2 compensates for loss of CLOCK in peripheral circadian oscillators. PLoS Genet. 2016;12(2):e1005882. doi: 10.1371/journal.pgen.1005882. PMID: 26895328.

  84. Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 2007;8(2):139-48. doi: 10.1038/nrm2106. PMID: 17245414.

  85. Potter GDM, Skene DJ, Arendt J, Cade JE, Grant PJ, Hardie LJ. Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocr Rev. 2016;37(6):584-608. doi: 10.1210/er.2016-1083. PMID: 27763782.

  86. Kusch T, Mei A, Nguyen C. Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression. Proc Natl Acad Sci U S A. 2014;111(13):4850-5. doi: 10.1073/ pnas.1320337111. PMID: 24639513 H2a.

  87. Ravens S, Yu C, Ye T, Stierle M, Tora L. Tip60 complex binds to active Pol II promoters and a subset of enhancers and co-regulates the c-Myc network in mouse embryonic stem cells. Epigenetics Chromatin. 2015;8:45. doi: 10.1186/s13072-015-0039-z. PMID: 26550034.

  88. Shi J, Wang Y, Zeng L, Wu Y, Deng J, Zhang Q, Lin Y, Li J, Kang T, Tao M, Rusinova E, Zhang G, Wang C, Zhu H, Yao J, Zeng YX, Evers BM, Zhou MM, Zhou BP. Disrupting the interaction of BRD4 with diacetylated twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 2014;25(2):210-25. doi: 10.1016/j. ccr.2014.01.028. PMID: 24525235.

  89. Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell. 2014;54(5):728-36. doi: 10.1016/j.molcel.2014.05.016. PMID: 24905006.

  90. Liu X, Kraus WL, Bai X. Ready, pause, go: Regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci. 2015;40(9):516-25. doi: 10.1016/j.tibs.2015.07.003. PMID: 26254229.

  91. Petkau N, Budak H, Zhou X, Oster H, Eichele G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife. 2019;8:e43235. doi: 10.7554/eLife.43235. PMID: 31294688.

  92. Gilchrist DA, Fromm G, dos Santos G, Pham LN, McDaniel IE, Burkholder A, Fargo DC, Adelman K. Regulating the regulators: The pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev. 2012;26(9):933-44. doi: 10.1101/gad.187781.112. PMID: 22549956.

  93. Lin C, Garrett AS, De Kumar B, Smith ER, Gogol M, Seidel C, Krumlauf R, Shilatifard A. Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Dev. 2011;25(14):1486-98. doi: 10.1101/gad.2059211. PMID: 21764852.

  94. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 2007;450(7172):1086-90. doi: 10.1038/nature06394. PMID: 18075593.

  95. Angelousi A, Kassi E, Nasiri-Ansari N, Weickert MO, Randeva H, Kaltsas G. Clock genes alterations and endocrine disorders. Eur J Clin Invest. 2018;48(6):e12927. doi: 10.1111/eci.12927. PMID: 29577261.

  96. Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338(6105):349-54. doi: 10.1126/science. 1226339. PMID: 22936566.

  97. Toh KL. Basic science review on circadian rhythm biology and circadian sleep disorders. Ann Acad Med Singap. 2008;37(8):662-8. PMID 18797559.

  98. Akashi M, Tsuchiya Y, Yoshino T, Nishida E. Control of intracellular dynamics of mammalian Period proteins by casein kinase1epsilon (CKIs) and CK1delta in cultured cells. Mol Cell Biol. 2002;14:645-9. doi: 10.1128/ MCB.22.6.1693-1703.2002.

  99. Yang Y, Xu T, Zhang Y, Qin X. Molecular basis for the regulation of the circadian clock kinases CK1S and CK1s. Cell Signal. 2017;31:58-65. doi: 10.1016/j.cellsig.2016.12.010. PMID: 28057520.

  100. Ralph MR, Menaker M. Amutation of the circadian system in golden hamsters. Science. 1988;241(4870):1225-7. doi: 10.1126/science.3413487. PMID: 3413487.

  101. Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science. 2000;288(5465):483-92. doi: 10.1126/science.288.5465.483. PMID: 10775102.

  102. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291(5506):1040-3. doi: 10.1126/science.1057499. PMID: 11232563.

  103. Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM. Control of mammalian circadian rhythm by CKIs-regulated proteasomemediated PER2 degradation. Mol Cell Biol. 2005;25(7):2795-807. doi: 10.1128/MCB.25.7.2795-2807.2005. PMID: 15767683.

  104. Shirogane T, Jin J, Ang XL, Harper JW. SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem. 2005;280(29):26863-72. doi: 10.1074/jbc.M502862200. PMID: 15917222.

  105. Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SI, Draetta GF, Pagano M. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science. 2007;316(5826):900-4. doi: 10.1126/science.1141194. PMID: 17463251.

  106. Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P. CK2alpha phosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol. 2009;16(4):446-8. doi: 10.1038/nsmb.1578. PMID: 19330005.

  107. Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. Circadian clock control by SUMOy-lation of BMAL1. Science. 2005;309(5739):1390-4. doi: 10.1126/science.1110689. PMID: 16109848.

  108. Lee J, Lee Y, Lee MJ, Park E, Kang SH, Chung CH, Lee KH, Kim K. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation ofthe CLOCK/BMAL1 complex. Mol Cell Biol. 2008;28(19):6056-65. doi: 10.1128/MCB.00583-08. PMID: 18644859.

  109. Brancaccio M, Patton AP, Chesham JE, May wood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017;93(6):1420-1435.e5. doi: 10.1016/j.neuron.2017.02.030. PMID: 28285822.

  110. Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, Hastings MH. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science. 2019;363(6423):187-92. doi: 10.1126/science.aat4104. PMID: 30630934.

  111. Husse J, Leliavski A, Tsang AH, Oster H, Eichele G. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J. 2014;28(11):4950-60. doi: 10.1096/fj.14-256594. PMID: 25063847.

  112. Staiger D, Koster T. Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci. 2011;68(1):71-83. doi: 10.1007/s00018-010-0513-5. PMID: 20803230.

  113. Robles MS, Cox J, Mann M. In vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 2014;10(1):e1004047. doi: 10.1371/ journal.pgen.1004047. PMID: 24391516.

  114. Mehra A, Baker CL, Loros JJ, Dunlap JC. Post-translational modifications in circadian rhythms. Trends Biochem Sci. 2009;34(10):483-90. doi: 10.1016/j.tibs.2009.06.006. PMID: 19740663.

  115. Kaasik K, Kivimae S, Allen J, Chalkley R, Huang Y, Baer K, Kissel H, Burlingame A, Shokat K, Ptacek L, Fu Y. Glucose sensor OGlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab. 2013;17(2):291-302. doi: 10.1016/j.cmet.2012.12.017.

  116. Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, Claustrat B, Hastings MH, Levi F. Hosts. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 2002;94(9):690-7. doi: 10.1093/ jnci/94.9.690. PMID: 11983758.

  117. Alamoudi AA. Why do cancer cells break from host circadian rhythm? Insights from unicellular organisms. BioEssays. 2021;43(4):e2000205. doi: 10.1002/bies.202000205. PMID: 33533033.

  118. Fu L, Kettner NM. The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci. 2013; 119:221-82. doi: 10.1016/B978-0-12-396971-2.00009-9. PMID: 23899600.

  119. Shostak A. Circadian clock, cell division, and cancer: From molecules to organism. Int J Mol Sci. 2017;18(4). doi: 10.3390/ijms18040873. PMID: 28425940.

  120. Gaucher J, Montellier E, Sassone-Corsi P. Molecular cogs: Interplay between circadian clock and cell cycle. Trends Cell Biol. 2018;28(5):368-79. doi: 10.1016/j. tcb.2018.01.006. PMID: 29471986.

  121. Shafi AA, Knudsen KE. Cancer and the circadian clock. Cancer Res. 2019;79(15):3806-14. doi: 10.1158/0008- 5472.CAN-19-0566. PMID: 31300477.

  122. Du HB, Bin KY, Liu WH, Yang FS. Shift work, night work, and the risk of prostate cancer: A meta-analysis based on 9 cohort studies. Medicine. 2017;96(46):e8537. doi: 10.1097/MD.0000000000008537. PMID: 29145258.

  123. Lie JA, Roessink J, Kjaerheim K. Breast cancer and night work among Norwegian nurses. Cancer Causes Control. 2006;17(1):39-44. doi: 10.1007/s10552-005-3639-2. PMID: 16411051.

  124. Papantoniou K, Pozo OJ, Espinosa A, Marcos J, Castano-Vinyals G, Basagana X, Juanola Pages E, Mirabent J, Martin J, Such Faro P, Gasco Aparici A, Middleton B, Skene DJ, Kogevinas M. Increased and mistimed sex hormone production in night shift workers. Cancer Epidemiol Biomarkers Prev. 2015a;24(5):854-63. doi: 10.1158/1055-9965.EPI-14-1271. PMID: 25737330.

  125. Ward EM, Germolec D, Kogevinas M, McCormick D, Vermeulen R, Anisimov VN. Carcinogenicity of night shift work. Lancet Oncol. 2019;20(8):1058-9. doi: 10.1016/S1470-2045(19)30455-3. PMID: 31281097.

  126. Van Dycke KC, Rodenburg W, van Oostrom CT, van Kerkhof LW, Pennings JL, Roenneberg T, van Steeg H, van der Horst GT. Chronically alternating light cycles increase breast cancer risk in Mice. Curr Biol. 2015;25(14):1932- 7. doi: 10.1016/j.cub.2015.06.012. PMID: 26196479.

  127. Dun A, Zhao X, Jin X, Wei T, Gao X, Wang Y, Hou H. Association between night-shift work and cancer risk: Updated systematic review and meta-analysis. Front Oncol. 2020;10:1006. doi: 10.3389/fonc.2020.01006. PMID: 32656086.

  128. Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010;5(6):e10995. doi: 10.1371/journal.pone.0010995. PMID: 20539819.

  129. Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V. A review of human carcinogens. Part F: Chemical agents and related occupations. Lancet Oncol. 2009;10(12):1143-4. doi: 10.1016/S1470-2045(09).

  130. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature. 1999;400(6740):169-73. doi: 10.1038/22118. PMID: 10408444.

  131. Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J, Vander Heiden MG, Jacks T. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24(2):324- 31. doi: 10.1016/j.cmet.2016.07.001. PMID: 27476975.

  132. Fu L, Pelicano H, Liu J, Huang P, Lee CC. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002; 111(1):41-50. doi: 10.1016/s0092-8674(02)00961-3. PMID: 12372299.

  133. Mteyrek A, Filipski E, Guettier C, Okyar A, Levi F. Clock gene Per2 as a controller of liver carcinogenesis. Onco-target. 2016;7(52):85832-47. doi: 10.18632/oncotarget.11037. PMID: 27494874.

  134. Li HX, Fu XJ, Yang K, Chen D, Tang H, Zhao Q. The clock gene PER1 suppresses expression of tumor-related genes in human oral squamous cell carcinoma. Oncotarget. 2016;7(15):20574-83. doi: 10.18632/oncotarget.7827. PMID: 26943040.

  135. Antoch MP, Toshkov I, Kuropatwinski KK, Jackson M. Deficiency in PER proteins has no effect on the rate of spontaneous and radiation-induced carcinogenesis. Cell Cycle. 2013;12(23):3673-80. doi: 10.4161/cc.26614. PMID: 24091726.

  136. Puram RV, Kowalczyk MS, de Boer CG, Schneider RK, Miller PG, McConkey M, Tothova Z, Tejero H, Heckl D, Jaras M, Chen MC, Li H, Tamayo A, Cowley GS, Rozenblatt-Rosen O, Al-Shahrour F, Regev A, Ebert BL. Core circadian clock genes regulate leukemia stem cells in AML. Cell. 2016;165(2):303-16. doi: 10.1016/j. cell.2016.03.015. PMID: 27058663.

  137. Ozturk N, Lee JH, Gaddameedhi S, Sancar A. Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci US A. 2009;106(8):2841-6. doi: 10.1073/pnas.0813028106. PMID: 19188586.

  138. Wang J, Zou JX, Xue X, Cai D, Zhang Y, Duan Z, Xiang Q, Yang JC, Louie MC, Borowsky AD, Gao AC, Evans CP, Lam KS, Xu J, Kung HJ, Evans RM, Xu Y, Chen HW. ROR-y drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med. 2016;22(5):488-96. doi: 10.1038/ nm.4070. PMID: 27019329.

  139. de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Clock genes and the role of melatonin in cancer cells: An overview. Melatonin Res. 2019;2(2):133-57. doi: 10.32794/mr11250026.

  140. Masri S, Kinouchi K, Sassone-Corsi P. Circadian clocks, epigenetics, and cancer. Curr Opin Oncol. 2015;27(1):50-6. doi: 10.1097/Cm.0000000000000153. PMID: 25405464.

  141. Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis. 2005;26(7):1241-6. doi: 10.1093/carcin/bgi075. PMID: 15790588.

  142. Taniguchi H, Fernandez AF, Setien F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009;69(21):8447-54. doi: 10.1158/0008-5472.CAN-09-0551. PMID: 19861541.

  143. Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB, Zheng T, Hansen J. Epigenetic impact of long-term shiftwork: Pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int. 2011;28(10):852-61. doi: 10.3109/07420528.2011.618896. PMID: 22080730.

  144. Tsuchiya Y, Umemura Y, Yagita K. Circadian clock and cancer: From a viewpoint of cellular differentiation. Int J Urol. 2020;27(6):518-24. doi: 10.1111/iju.14231. PMID: 32223039.

  145. Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y, Leaderer D, Holford T, Hansen J, Zhu Y. The core circadian gene cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev Res. 2010a;3(4):539-48. doi: 10.1158/1940-6207.CAPR- 09-0127. PMID: 20233903.

  146. Hoffman AE, Yi CH, Zheng T, Stevens RG, Leaderer D, Zhang Y, Holford TR, Hansen J, Paulson J, Zhu Y. CLOCK in breast tumorigenesis: Genetic, epigenetic, and transcriptional profiling analyses. Cancer Res. 2010b;70(4):1459-68. doi: 10.1158/0008-5472.CAN-09-3798. PMID: 20124474.

  147. Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B, Zheng P, Xiao J, Lu Z, Lu Y, Ni J, Chen C, Wang X, Yang L, Wan R. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 2016;371(2):314-25. doi: 10.1016/j.canlet.2015.12.002. PMID: 26683776.

  148. Wang J, Li S, Li X, Li B, Li Y, Xia K, Yang Y, Aman S, Wang M, Wu H. Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int. 2019;19:182. doi: 10.1186/s12935-019-0902-2. PMID: 31346317.

  149. Jung-Hynes B, Reiter RJ, Ahmad N. Sirtuins, melatonin, and circadian rhythms: Building a bridge between aging and cancer. J Pineal Res. 2010;48(1):9-19. doi: 10.1111/j.1600-079X.2009.00729.x. PMID: 20025641.

  150. Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448-60. doi: 10.1016/j. cell.2013.05.027. PMID: 23791176.

  151. Wang J, Mauvoisin D, Martin E, Atger F, Galindo AN, Dayon L, Sizzano F, Palini A, Kussmann M, Waridel P, Quadroni M, Dulic V, Naef F, Gachon F. Nuclear pro- teomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab. 2017;25(1):102-17. doi: 10.1016/j. cmet.2016.10.003. PMID: 27818260.

  152. Sotak M, Sumova A, Pacha J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med. 2014;46(4):221-32. doi: 10.3109/07853890.2014.892296. PMID: 24779962.

  153. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science. 2003;302(5643):255-9. doi: 10.1126/science.1086271. PMID: 12934012.

  154. Bjarnason GA, Jordan RCK, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJM, Ben-David Y. Circadian expression of clock genes in human oralmucosa and skin: Association with specific cell-cycle phases. Am J Pathol. 2001;158(5):1793-801. doi: 10.1016/ S0002-9440(10)64135-1.

  155. Kowalska E, Ripperger JA, Hoegger DC, Bruegger P, Buch T, Birchler T, Mueller A, Albrecht U, Contaldo C, Brown SA. NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci U S A. 2013 1 29;110(5):1592- 9. doi: 10.1073/pnas.1213317110. PMID: 23267082.

  156. Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A. G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol. 2019;17(4):e3000228. doi: 10.1371/journal.pbio.3000228. PMID: 31039152.

  157. Walhout AJ, Gubbels JM, Bernards R, van der Vliet PC, Timmers HT. c-Myc/Max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene. Nucleic Acids Res. 1997;25(8):1493-501. doi: 10.1093/nar/25.8.1493. PMID: 9162900.

  158. Shostak A, Ruppert B, Ha N, Brans P, Toprak UH, ICGC MMML-Seq Project, Eils R, Schlesner M, Diernfellner A, Brunner M. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation. Nat Commun. 2016;7:11807. doi: 10.1038/ ncomms11807. PMID: 27339797.

  159. Altman BJ, Hsieh AL, Sengupta A, Krishnanaiah SY, Stine ZE, Walton ZE, Gouw AM, Venkataraman A, Li B, Goraksha-Hicks P, Diskin SJ, Bellovin DI, Simon MC, Rathmell JC, Lazar MA, Maris JM, Felsher DW, Hogenesch JB, Weljie AM, Dang CV. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 2015;22(6):1009-19. doi: 10.1016/j.cmet.2015.09.003. PMID: 26387865.

  160. Gotoh T, Vila-Caballer M, Santos CS, Liu J, Yang J, Finkielstein CV. The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell. 2014;25(19):3081-93. doi: 10.1091/ mbc.E14-05-0993. PMID: 25103245.

  161. Gotoh T, Vila-Caballer M, Liu J, Schiffhauer S, Finkielstein CV. Association of the circadian factor Period 2 to p53 influences p53's function in DNA-damage signaling. Mol Biol Cell. 2015;26(2):359-72. doi: 10.1091/mbc. E14-05-0994. PMID: 25411341.

  162. Miki T, Matsumoto T, Zhao Z, Lee CC. p53 regulates Period2 expression and the circadian clock. Nat Commun. 2013;4:2444. doi: 10.1038/ncomms3444. PMID: 24051492.

  163. Liu J, Zou X, Gotoh T, Brown AM, Jiang L, Wisdom EL, Kim JK, Finkielstein CV. Distinct control of PE-RIOD2 degradation and circadian rhythms by the oncoprotein and ubiquitin ligase MDM2. Sci Signal. 2018;11(556):eaau0715. doi: 10.1126/scisignal.aau0715. PMID: 30425162.

  164. Huber AL, Papp SJ, Chan AB, Henriksson E, Jordan SD, Kriebs A, Nguyen M, Wallace M, Li Z, Metallo CM, Lamia KA. CRY2 and FBXL3 cooperatively degrade c-MYC. Mol Cell. 2016;64(4):774-89. doi: 10.1016/j.mol-cel.2016.10.012. PMID: 27840026.

  165. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell. 2006;22(3):375-82. doi: 10.1016/j.mol-cel.2006.03.038. PMID: 16678109.

  166. Blakeman V, Williams JL, Meng QJ, Streuli CH. Circadian clocks and breast cancer. Breast Cancer Res. 2016;18(1):89. doi: 10.1186/s13058-016-0743-z. PMID: 27590298.

  167. Chen WD, Wen MS, Shie SS, Lo YL, Wo HT, Wang CC, Hsieh IC, Lee TH, Wang CY. The circadian rhythm controls telomeres and telomerase activity. Biochem Bio-phys Res Commun. 2014;451(3):408-14. doi: 10.1016/j. bbrc.2014.07.138. PMID: 25109806.

  168. Samanta S. Physiological and pharmacological perspectives of melatonin. Arch Physiol Biochem. 2020; 1-22. doi: 10.1080/13813455.2020.1770799. PMID: 32520581.

  169. Schernhammer ES, Schulmeister K. Melatonin and cancer risk: Does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br J Cancer. 2004;90(5):941-3. doi: 10.1038/sj.bjc.6601626. PMID: 14997186.

  170. Kantermann T, Roenneberg T. Is light-at-night a health risk factor or a health risk predictor? Chronobiol Int. 2009;26(6):1069-74. doi: 10.3109/07420520903223984. PMID: 19731106.

  171. Song G, Yoon KA, Chi H, Roh J, Kim JH. Decreased concentration of serum melatonin in nighttime compared with daytime female medical technologists in South Korea. Chronobiol Int. 2016;33(9):1305-10. doi: 10.1080/07420528.2016.1199562. PMID: 27385051.

  172. Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB. Melatonin for the prevention and treatment of cancer. Oncotarget. 2017;8(24):39896-921. doi: 10.18632/oncotarget.16379. PMID: 28415828.

  173. Gil-Martin E, Egea J, Reiter RJ, Romero A. The emergence of melatonin in oncology: Focus on colorectal cancer. Med Res Rev. 2019;9(6):2239-85. doi: 10.1002/ med.21582.

  174. Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Benbrahim-Tallaa L, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8(12):1065-6. doi: 10.1016/S1470-2045(07) 70373-X. PMID: 19271347.

  175. Hansen J. Night shift work and risk of breast cancer. Curr Environ Health Rep. 2017;4(3):325-39. doi: 10.1007/s40572-017-0155-y. PMID: 28770538.

  176. Pauley SM. Lighting for the human circadian clock: Recent research indicates that lighting has become a public health issue. Med Hypotheses. 2004;63(4):588-96. doi: 10.1016/j.mehy.2004.03.020. PMID: 15325001.

  177. Costa G, Haus E, Stevens R. Shift work and cancer - considerations on rationale, mechanisms, and epidemiology. Scand J Work Environ Health. 2010;36(2):163-79. doi: 10.5271/sjweh.2899. PMID: 20126969.

  178. Benabu JC, Stoll F, Gonzalez M, Mathelin C. Night work, shift work: Breast cancer risk factor? Gynecol Obstet Fertil. 2015;43(12):791-9. doi: 10.1016/j.gyobfe.2015.10.004. PMID: 26597486.

  179. Leung M, Tranmer J, Hung E, Korsiak J, Day AG, Aronson KJ. Shift work, chronotype, and melatonin patterns among female hospital employees on day and night shifts. Cancer Epidemiol Biomarkers Prev. 2016;25(5):830-8. doi: 10.1158/1055-9965.EPI-15-1178. PMID: 26941366.

  180. James P, Bertrand KA, Hart JE, Schernhammer ES, Tamimi RM, Laden F. Outdoor light at night and breast cancer incidence in the nurses health study II. Environ Health Perspect. 2017;125(8):087010. doi: 10.1289/EHP935. PMID: 28886600.

  181. Kubatka P, Zubor P, Busselberg D, Kwon TK, Adamek M, Petrovic D, Opatrilova R, Gazdikova K, Caprnda M, Rodrigo L, Danko J, Kruzliak P. Melatonin and breast cancer: Evidence from preclinical and human studies. Crit Rev Oncol Hematol. 2018;122:133-43. doi: 10.1016/j. critrevonc.2017.12.018. PMID: 29458781.

  182. Papantoniou K, Castano-Vinyals G, Espinosa A, Aragones N, Perez-Gomez B, Burgos J, Gomez-Acebo I, Llorca J, Peiro R, Jimenez-Moleon JJ, Arredondo F, Tardon A, Pollan M, Kogevinas M. Night shift work, chronotype and prostate cancer risk in the MCC-Spain case-control study. Int J Cancer. 2015;137(5):1147-57. doi: 10.1002/ijc.29400. PMID: 25530021.

  183. Agez L, Laurent V, Pevet P, Masson-Pevet M, Gauer F. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience. 2007;144(2):522-30. doi: 10.1016/j.neuroscience.2006.09.030. PMID: 17067745.

  184. von Gall C, Weaver DR, Moek J, Jilg A, Stehle JH, Korf HW. Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann N Y Acad Sci. 2005;1040:508-11. doi: 10.1196/annals.1327.105. PMID: 15891103.

  185. Hablitz LM, Molzof HE, Abrahamsson KE, Cooper JM, Prosser RA, Gamble KL. GIRK channels mediate the nonphotic effects of exogenous melatonin. J Neurosci. 2015;35(45):14957-65. doi: 10.1523/JNEURO-SCI.1597-15.2015. PMID: 26558769.

  186. Vriend J, Reiter RJ. Melatonin feedback on clock genes: A theory involving the proteasome. J Pineal Res. 2015; 58(1):1-11. doi: 10.1111/jpi.12189. PMID: 25369242.

  187. Mattam U, Jagota A. Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Biogerontology. 2014;15(3):257-68. doi: 10.1007/s10522-014-9495-2. PMID: 24619734.

  188. Nilsonne G, Lekander M, Akerstedt T, Axelsson J, Ingre M. Diurnal variation of circulating interleukin-6 in humans: A meta-analysis. PLoS One. 2016;11(11):e0165799. doi: 10.1371/journal.pone.0165799. PMID: 27832117.

  189. Foggo V, Cavenagh J. Malignant causes of fever of un-known origin. Clin Med. 2015;15(3):292-4. doi: 10.7861/ clinmedicine.15-3-292. PMID: 26031983.

  190. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood. 2009;113(21): 5134-43. doi: 10.1182/blood-2008-11-190769. PMID: 19293427.

  191. Cortes-Hernandez LE, Eslami SZ, Dujon AM, Giraudeau M, Ujvari B, Thomas F, Alix-Panabieres C. Do malignant cells sleep at night? Genome Biol. 2020;21(1):276. doi: 10.1186/s13059-020-02179-w. PMID: 33183336.

  192. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. Nat Rev Immunol. 2013;13(3):190-8. doi: 10.1038/nri3386. PMID: 23391992.

  193. Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to immunity. Nat Rev Immunol. 2018;18(7):423-37. doi: 10.1038/s41577-018-0008-4. PMID: 29662121.

  194. Early JO, Menon D, Wyse CA, Cervantes-Silva MP, Zaslona Z, Carroll RG, Palsson-McDermott EM, Angiari S, Ryan DG, Corcoran SE, Timmons G, Geiger SS, Fitzpatrick DJ, O'Connell D, Xavier RJ, Hokamp K, O'Neill LAJ, Curtis AM. Circadian clock protein BMAL1 regulates IL-1P in macrophages via NRF2. Proc Natl Acad Sci U S A. 2018;115(36):E8460-8. doi: 10.1073/ pnas.1800431115. PMID: 30127006.

  195. Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun. 2012;26(3):407-13. doi: 10.1016/j.bbi.2011.10.001. PMID: 22019350.

  196. Hemmers S, Rudensky AY. The cell-intrinsic circadian clock is dispensable for lymphocyte differentiation and function. Cell Rep. 2015;11(9):1339-49. doi: 10.1016/j. celrep.2015.04.058. PMID: 26004187.

  197. Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, Rothman PB, Takahashi JS, Hooper LV. TH17 cell differentiation is regulated by the circadian clock. Science. 2013;342(6159):727-30. doi: 10.1126/science.1243884. PMID: 24202171.

  198. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS, Watowich SS, Tian Q, Jetten AM, Dong C. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 2008;28(1):29-39. doi: 10.1016/j.immuni.2007.11.016. PMID: 18164222.

  199. Logan RW, Zhang C, Murugan S, O'Connell S, Levitt D, Rosenwasser AM, Sarkar DK. Chronic shiftlag alters the circadian clock of NK cells and promotes lung cancer growth in rats. J Immunol. 2012;188(6):2583-91. doi: 10.4049/jimmunol.1102715. PMID: 22308312.

  200. Curtis AM, Fagundes CT, Yang G, Palsson-McDermott EM, Wochal P, McGettrick AF, Foley NH, Early JO, Chen L, Zhang H, Xue C, Geiger SS, Hokamp K, Reilly MP, Coogan AN, Vigorito E, FitzGerald GA, O'Neill LA. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A. 2015;112(23):7231-6. doi: 10.1073/pnas.1501327112. PMID: 25995365.

  201. Man K, Loudon A, Chawla A. Immunity around the clock. Science. 2016;354(6315):999-1003. doi: 10.1126/science.aah4966. PMID: 27885005.

  202. Cao Q, Zhao X, Bai J, Gery S, Sun H, Lin DC, Chen Q, Chen Z, Mack L, Yang H, Deng R, Shi X, Chong LW, Cho H, Xie J, Li QZ, Muschen M, Atkins AR, Liddle C, Yu RT, Alkan S, Said JW, Zheng Y, Downes M, Evans RM, Koeffler HP. Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci U S A. 2017;114(47):12548-53. doi: 10.1073/pnas.1619119114. PMID: 29109286.

  203. Chen WD, Yeh JK, Peng MT, Shie SS, Lin SL, Yang CH, Chen TH, Hung KC, Wang CC, Hsieh IC, Wen MS, Wang CY. Circadian CLOCK mediates activation of transforming growth factor-P signaling and renal fibrosis through cyclooxygenase 2. Am J Pathol. 2015;185(12):3152-63. doi: 10.1016/j.ajpath.2015.08.003. PMID: 26458764.

  204. Bass JJST, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349-54. doi: 10.1126/science.1195027. PMID: 21127246.

  205. Asher G, Sassone-Corsi P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell. 2015;161(1):84-92. doi: 10.1016/j. cell.2015.03.015. PMID: 25815987.

  206. Karatsoreos IN. The relationship between circadian disruption and the development of metabolic syndrome and type 2 diabetes. Chronol Physiol Ther. 2014;4:137-45. doi: 10.2147/CPT.S44799.

  207. Maury EKMR, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome from experimental genetics to human disease. Circ Res. 2010;106(3):447-62. doi: 10.1161/CIRCRESAHA.109.208355. PMID: 20167942.

  208. Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes. 2013;62(7):2195-203. doi: 10.2337/db12-1449. PMID: 23434933.

  209. Masri S, Papagiannakopoulos T, Kinouchi K, Liu Y, Cervantes M, Baldi P, Jacks T, Sassone-Corsi P. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell. 2016;165(4):896-909. doi: 10.1016/j. cell.2016.04.039. PMID: 27153497.

  210. Brady JJ, Chuang CH, Greenside PG, Rogers ZN, Murray CW, Caswell DR, Hartmann U, Connolly AJ, Sweet-Cordero EA, Kundaje A, Winslow MM. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cancer Cell. 2016;29(5):697-710. doi: 10.1016/j. ccell.2016.03.003. PMID: 27150038.

  211. Hadadi E, Taylor W, Li XM, Aslan Y, Villote M, Riviere J, Duvallet G, Auriau C, Dulong S, Raymond-Letron I, Provot S, Bennaceur-Griscelli A, Acloque H. Chronic circadian disruption modulates breast cancer sternness and immune microenvironment to drive metastasis in mice. Nat Commun. 2020;11(1):3193. doi: 10.1038/s41467- 020-16890-6. PMID: 32581213.

  212. Hojo H, Enya S, Arai M, Suzuki Y, Nojiri T, Kangawa K, Koyama S, Kawaoka S. Remote reprogramming of hepatic circadian transcriptome by breast cancer. Oncotarget. 2017;8(21):34128-40. doi: 10.18632/oncotarget.16699. PMID: 28388556.

  213. Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Bran SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, Gerken L, Greenwood J, Bhat S, Harriman G, Westlin WF, Harwood HJ, Saghatelian A, Kapeller R, Metallo CM, Shaw RJ. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 2016;22(10):1108-19. doi: 10.1038/nm.4181. PMID: 27643638.

  214. Sahar S, Masubuchi S, Eckel-Mahan K, Vollmer S, Galla L, Ceglia N, Masri S, Barth TK, Grimaldi B, Oluyemi O, Astarita G, Hallows WC, Piomelli D, Imhof A, Baldi P, Denu JM, Sassone-Corsi P. Circadian control of fatty acid elongation by SIRT1-mediated deacetylation of acetyl-CoA synthetase 1. J Biol Chem. 2014;289(9):6091-7. doi: 10.1074/jbc.M113.537191. PMID: 24425865.

  215. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J. Circadian clock feedback cycle through NAMPTmediated NAD+ biosyn-thesis. Science. 2009;324(5927):651-4. doi: 10.1126/science.1171641. PMID: 19299583.

  216. Hardie DG. AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895-908. doi: 10.1101/gad.17420111. PMID: 21937710.

  217. Samanta S, Dassarma B, Jana S, Rakshit S, Saha SA. Hypoxia inducible factor-1 (HIF-1) and cancer progression: A comprehensive review. Indian J Cancer Edu Res. 2018;6(1):94-109. doi: 10.21088/ijcer. 2321.9815.6118.11.

  218. Wu D, Potluri N, Lu J, Kim Y, Rastinejad F. Structural integration in hypoxia-inducible factors. Nature. 2015;524(7565):303-8. doi: 10.1038/nature14883. PMID: 26245371.

  219. Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting protein-protein interactions in the HIF system. ChemMedChem. 2016;11(8):773-86. doi: 10.1002/ cmdc.201600012. PMID: 26997519.

  220. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci US A. 1995;92(12):5510-14. doi: 10.1073/ pnas.92.12.5510. PMID: 7539918.

  221. Gao S, Zhou J, Zhao Y, Toselli P, Li W. Hypoxia-response element (HRE)-directed transcriptional regulation of the rat lysyl oxidase gene in response to cobalt and cadmium. Toxicol Sci. 2013;132(2):379-89. doi: 10.1093/toxsci/ kfs327. PMID: 23161664.

  222. Adamovich Y, Ladeuix B, Golik M, Koeners MP, Asher G. Rhythmic oxygen levels reset circadian clocks through HIF1a. Cell Metab. 2017;25(1):93-101. doi: 10.1016/j. cmet.2016.09.014. PMID: 27773695.

  223. Wu Y, Tang D, Liu N, Xiong W, Huang H, Li Y, Ma Z, Zhao H, Chen P, Qi X, Zhang EE. Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals. Cell Metab. 2017;25(1):73-85. doi: 10.1016/j.cmet.2016.09.009. PMID: 27773697.

  224. Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, Bonar NA, McNulty MR, Ramsey KM, Bass J. Circadian clock interaction with HIF1a mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017;25(1):86-92. doi: 10.1016/j. cmet.2016.09.010. PMID: 27773696.

  225. Ijaz S, Verbeek J, Seidler A, Lindbohm ML, Ojajarvi A, Orsini N, Costa G, Neuvonen K. Nightshift work and breast cancer-a systematic review and meta-analysis. Scand J Work Environ Health. 2013;39(5):431-47. doi: 10.5271/sjweh.3371. PMID: 23804277.

  226. Wegrzyn LR, Tamimi RM, Rosner BA, Brown SB, Stevens RG, Eliassen AH, Laden F, Willett WC, Hankinson SE, Schernhammer ES. Rotating night-shift work and the risk of breast cancer in the nurses' health studies. Am J Epidemiol. 2017;186(5):532-40. doi: 10.1093/aje/kwx140. PMID: 28541391.

  227. Stevens RG. Epidemiological evidence on artificial lighting patterns and risk of breast cancer [final report]. In: The fifth international LRO lighting Res symposium, light and human health. Palo Alto, CA: Electric Power Research Institute; Nov. 3-5, 2002. Report No. 1009370. p. 2004.

  228. Lee HE, Lee J, Jang TW, Kim IA, Park J, Song J. The relationship between night work and breast cancer. Ann Occup Environ Med. 2018;30:11. doi: 10.1186/s40557-018-0221-4. PMID: 29445504.

  229. He C, Anand ST, Ebell MH, Vena JE, Robb SW. Circadian disrupting exposures and breast cancer risk: A meta-analysis. Int Arch Occup Environ Health. 2015;88(5):533-47. doi: 10.1007/s00420-014-0986-x. PMID: 25261318.

  230. Wang F, Yeung KL, Chan WC, Kwok CCH, Leung SL, Wu C, Chan EY, Yu IT, Yang XR, Tse LA. A meta-analysis on dose-response relationship between night shift work and the risk of breast cancer. Ann Oncol. 2013;24(11):2724-32. doi: 10.1093/annonc/mdt283. PMID: 23975662.

  231. Lin X, Chen W, Wei F, Ying M, Wei W, Xie X. Night-shift work increases morbidity of breast cancer and all-cause mortality: A metaanalysis of 16 prospective cohort studies. Sleep Med. 2015;16(11):1381-7. doi: 10.1016/j. sleep.2015.02.543. PMID: 26498240.

  232. Travis RC, Balkwill A, Fensom GK, Appleby PN, Reeves GK, Wang XS, Roddam AW, Gathani T, Peto R, Green J, Key TJ, Beral V. Night shift work and breast cancer incidence: Three prospective studies and meta-analysis ofpublished studies. J Natl Cancer Inst. 2016;108(12):djw169. doi: 10.1093/jnci/djw169. PMID: 27758828.

  233. Muschler J, Streuli CH. Cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb Perspect Biol. 2010;2(10):a003202. doi: 10.1101/cshperspect.a003202. PMID: 20702598.

  234. Perou CM, S0rlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, L0nning PE, B0rresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52. doi: 10.1038/35021093. PMID: 10963602.

  235. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW. A collection of breast cancer cell lines for the study of functionally distinct cancer sub-types. Cancer Cell. 2006;10(6):515-27. doi: 10.1016/j.ccr.2006.10.008. PMID: 17157791.

  236. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339-46. doi: 10.1073/pnas.0308709101. PMID: 14963227.

  237. Casey TM, Crodian J, Erickson E, Kuropatwinski KK, Gleiberman AS, Antoch MP. Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biol Reprod. 2014;90(6):127. doi: 10.1095/biolreprod.113.116137. PMID: 24759789.

  238. Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, Haymond MW. Gene expression in the human mammary epithelium during lactation: The milk fat globule transcriptome. Physiol Genomics. 2009;37(1):12-22. doi: 10.1152/physiolgenomics.90341.2008. PMID: 19018045.

  239. Yang C, Wu J, Liu X, Wang Y, Liu B, Chen X, Wu X, Yan D, Han L, Liu S, Shan L, Shang Y. Circadian rhythm is disrupted by ZNF704 in breast carcinogenesis. Cancer Res. 2020;80(19):4114-28. doi: 10.1158/0008-5472. CAN-20-0493. PMID: 32651256.

  240. Rossetti S, Corlazzoli F, Gregorski A, Azmi NH, Sacchi N. Identification of an estrogen-regulated circadian mechanism necessary for breast acinar morphogenesis. Cell Cycle. 2012;11(19):3691-700. doi: 10.4161/cc.21946. PMID 22935699.

  241. Xiang S, Coffelt SB, Mao L, Yuan L, Cheng Q, Hill SM. Period-2: A tumor suppressor gene in breast cancer. J Circadian Rhythms. 2008;6:4. doi: 10.1186/1740-3391-6-4. PMID: 18334030.

  242. Teboul M, Grechez-Cassiau A, Guillaumond F, Delaunay F. How nuclear receptors tell time. J Appl Physiol. 2009;107(6):1965-71. doi: 10.1152/japplphysiol.00515. 2009. PMID: 19628724.

  243. Jung CH, Kim EM, Park JK, Hwang SG, Moon SK, Kim WJ, Um HD. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep. 2013;29(6):2109-13. doi: 10.3892/or.2013.2381. PMID: 23563360.

  244. Xiao L, Chang AK, Zang MX, Bi H, Li S, Wang M, Xing X, Wu H. Induction of the CLOCK gene by E2-ERa signaling promotes the proliferation of breast cancer cells. PLoS One. 2014;9(5):e95878. doi: 10.1371/journal.pone. PMID: 0095878.

  245. Lai L, Yuan L, Chen Q, Dong C, Mao L, Rowan B, Frasch T, Hill SM. The Galpha I and Galpha q proteins mediate the effects of melatonin on steroid/thyroid hormone receptor transcriptional activity and breast cancer cell proliferation. J Pineal Res. 2008;45(4):476-88. doi: 10.1111/j.1600-079X.2008.00620.x. PMID: 18705646.

  246. Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE. Melatonin: An inhibitor of breast cancer. Endocr Relat Cancer. 2015;22(3):R183-204. doi: 10.1530/ERC-15-0030. PMID: 25876649.

  247. Fang N, Hu C, Sun W, Xu Y, Gu Y, Wu L, Peng Q, Reiter RJ, Liu L. Identification of a novel melatonin-binding nuclear receptor: Vitamin D receptor. J Pineal Res. 2020;68(1):e12618. doi: 10.1111/jpi.12618. PMID: 31631405.

  248. Gonzalez A, Martmez-Campa C, Mediavilla MD, Alonso-Gonzalez C, Sanchez-Mateos S, Hill SM, Sanchez-Barcelo EJ, Cos S. Effects of MT1 melatonin receptor overexpression on the aromatase-suppressive effect of melatonin in MCF-7 human breast cancer cells. Oncol Rep. 2007;17(4):947-53. doi: 10.3892/or.17.4.947. PMID: 17342341.

  249. Dauchy RT, Xiang S, Mao L, Brimer S, Wren MA, Yuan L, Anbalagan M, Hauch A, Frasch T, Rowan BG, Blask DE, Hill SM. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 2014;74(15):4099-110. doi: 10.1158/0008-5472.CAN-13-3156. PMID: 25062775.

  250. Martmez-Campa C, Gonzalez A, Mediavilla MD, Alonso-Gonzalez C, Alvarez-Garda V, Sanchez-Barcelo EJ, Cos S. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer. 2009;101(9):1613-9. doi: 10.1038/sj.bjc.6605336. PMID: 19773750.

  251. Blask DE, Dauchy RT, Dauchy EM, Mao L, Hill SM, Greene MW, Belancio VP, Sauer LA, Davidson L. Light exposure at night disrupts host/cancer circadian regulatory dynamics: Impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One. 2014;9(8):e102776. doi: 10.1371/journal.pone.0102776. PMID: 25099274.

  252. Li L, Lee KM, Han W, Choi JY, Lee JY, Kang GH, Park SK, Noh DY, Yoo KY, Kang D. Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet. 2010;19(21):4273-7. doi: 10.1093/hmg/ddq351. PMID: 20724461.

  253. Karoutsou E, Karoutsos P, Karoutsos D. The role of biological clock in gynecologic cancer. Arch Can Res. 2017;5(1):1. doi: 10.21767/2254-6081.1000133.

  254. Jim HS, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Chen Z, Chen AY, Permuth-Wey J, Aben KK. Common genetic variation in circadian rhythm genes and risk of epithelial ovarian cancer (EOC). J Genet Genome Res. 2015;2:017. doi: 10.23937/2378-3648/1410017. PMID: 26807442.

  255. Yeh CM, Shay J, Zeng TC, Chou JL, Huang TH, Lai HC, Chan MW. Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. Int J Oncol. 2014;45(5):2101-7. doi: 10.3892/ijo.2014.2627. PMID: 25175925.

  256. Tokunaga H, Takebayashi Y, Utsunomiya H, Akahira J, Higashimoto M, Mashiko M, Ito K, Niikura H, Takenoshita S, Yaegashi N. Clinicopathological significance of circadian rhythm-related gene expression levels in patients with epithelial ovarian cancer. Acta Obstet Gynecol Scand. 2008;87(10):1060-70. doi: 10.1080/00016340802348286. PMID: 18720043.

  257. Gonzalez-Gonzalez A, Mediavilla MD, Sanchez-Barcelo EJ. Melatonin: A molecule for reducing breast cancer risk. Molecules. 2018;23(2):E336. doi: 10.3390/molecules23020336. PMID: 29415446.

  258. Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L, Duplessis T, Mao L, Dauchy E, Sauer LA. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J Pineal Res. 2011;51(3):259-69. doi: 10.1111/j.1600-079X.2011.00888.x. PMID: 21605163.

  259. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225-49. doi: 10.3322/caac.20006. PMID: 19474385.

  260. Flynn-Evans EE, Mucci L, Stevens RG, Lockley SW. Shiftwork and prostate-specific antigen in the national health and nutrition examination survey. J Natl Cancer Inst. 2013;105(17):1292-7. doi: 10.1093/jnci/djt169. PMID: 23943864.

  261. Garcia-Saenz A, Sanchez de Miguel A, Espinosa A, Valentin A, Aragones N, Llorca J, Amiano P, Martin Sanchez V, Guevara M, Capelo R, Tardon A, Peiro-Perez R, Jimenez-Moleon JJ, Roca-Barcelo A, Perez-Gomez B, Dierssen-Sotos T, Fernandez-Villa T, Moreno-Iribas C, Moreno V, Garda-Perez J, Castano-Vinyals G, Pollan M, Aube M, Kogevinas M. Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain study). Environ Health Perspect. 2018;126(4):047011. doi: 10.1289/ EHP1837. PMID: 29687979.

  262. Wendeu-Foyet MG, Menegaux F. Circadian disruption and prostate cancer risk: An updated review of epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 2017;26(7):985-91. doi: 10.1158/1055-9965.EPI-16-1030. PMID 28377415.

  263. Barul C, Richard H, Parent ME. Night-shift work and risk of prostate cancer: Results from a Canadian case-control study, the prostate cancer and environment study. Am J Epidemiol. 2019;188(10):1801-11. doi: 10.1093/aje/ kwz167. PMID: 31360990.

  264. Plymate SR, Tenover JS, Bremner WJ. Circadian variation in testosterone, sex hormone-binding globulin, and calculated non-sex hormone-binding globulin bound testosterone in healthy young and elderly men. J Androl. 1989; 10(5):366-71. doi: 10.1002/j.1939-4640.1989.tb00120. x. PMID: 2592266.

  265. Chu LW, Zhu Y, Yu K, Zheng T, Yu H, Zhang Y, Sesterhenn I, Chokkalingam AP, Danforth KN, Shen MC, Stanczyk FZ, Gao YT, Hsing AW. Variants in circadian genes and prostate cancer risk: A population-based study in China. Prostate Cancer Prostatic Dis. 2008;11(4):342-8. doi: 10.1038/sj.pcan.4501024. PMID: 17984998.

  266. Li Q, Xia D, Wang Z, Liu B, Zhang J, Peng P, Tang Q, Dong J, Guo J, Kuang D, Chen W, Mao J, Li Q, Chen X. Circadian rhythm gene PER3 negatively regulates stemness of prostate cancer stem cells via WNT/p-catenin signaling in tumor microenvironment. Front Cell Dev Biol. 2021;9:656981. doi: 10.3389/fcell.2021.656981.

  267. Frungieri MB, Mayerhofer A A, Zitta K, Pignataro OP, Calandra RS, Gonzalez-Calvar SI. Direct effect of melatonin on Syrian hamster testes: Melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system. Endocrinology. 2005;146(3):1541-52.

  268. Mukherjee A, Haldar C. Photoperiodic regulation of melatonin membrane receptor (MT1R) expression and steroidogenesis in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B. 2014;140:374-80. doi: 10.1016/j.jphotobiol.2014.08.022. PMID: 25255424.

  269. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA. Night-shift work and risk of colorectal cancer in the Nurses' Health Study. J Natl Cancer Inst. 2003;95(11):825-8. doi: 10.1093/jnci/95.11.825. PMID: 12783938.

  270. Walasa WM, Carey RN, Si S, Fritschi L, Heyworth JS, Fernandez RC, Boyle T. Association between shiftwork and the risk of colorectal cancer in females: A population-based case-control study. Occup Environ Med. 2018;75(5):344-50. doi: 10.1136/oemed-2017-104657. PMID: 29438001.

  271. Wang X, Ji A, Zhu Y, Liang Z, Wu J, Li S, Meng S, Zheng X, Xie L. A meta-analysis including dose-response relationship between night shift work and the risk of colorectal cancer. Oncotarget. 2015;6(28):25046-60. doi: 10.18632/oncotarget.4502. PMID: 26208480.

  272. Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Ray M, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Yang X, Hebert JR. Case-control study of the PERIOD3 clock gene length polymorphism and colorectal adenoma formation. Oncol Rep. 2015;33(2):935-41. doi: 10.3892/or.2014.3667. PMID: 25501848.

  273. Yang MY, Chang JG, Lin PM, Tang KP, Chen YH, Lin HY, Liu TC, Hsiao HH, Liu YC, Lin SF. Downregulation of circadian clock genes in chronic myeloid leukemia: Alternative methylation pattern of hPER3. Cancer Sci. 2006;97(12):1298-307. doi: 10.1111/j.1349- 7006.2006.00331.x. PMID: 16999817.

  274. Gery S, Koeffler HP. Circadian rhythms and cancer. Cell Cycle. 2010;9(6):1097-103. doi: 10.4161/cc.9.6.11046. PMID: 20237421.

  275. Lahti TA, Partonen T, Kyyronen P, Kauppinen T, Pukkala E. Night-time work predisposes to non-Hodgkin lymphoma. Int J Cancer. 2008;123(9):2148-51. doi: 10.1002/ijc.23566. PMID: 18697199.

  276. Zhu Y, Leaderer D, Guss C, Brown HN, Zhang Y, Boyle P, Stevens RG, Hoffman A, Qin Q, Han X, Zheng T. Al-a394Thr polymorphism in the clock gene NPAS2: A circadian modifier for the risk of non-Hodgkin's lymphoma. Int J Cancer. 2007;120(2):432-5. doi: 10.1002/ijc.22321. PMID: 17096334.

  277. Hoffman AE, Zheng T, Stevens RG, Ba Y, Zhang Y, Leaderer D, Yi C, Holford TR, Zhu Y. Clock-cancer connection in non-Hodgkin's lymphoma: A genetic association study and pathway analysis of the circadian gene cryptochrome 2. Cancer Res. 2009;69(8):3605-13. doi: 10.1158/0008-5472.CAN-08-4572. PMID: 19318546.

  278. Gery S, Gombart AF, Yi WS, Koeffler C, Hofmann WK, Koeffler HP. Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood. 2005;106(8):2827-36. doi: 10.1182/ blood-2005-01-0358. PMID: 15985538.

  279. Koschmieder S, Halmos B, Levantini E, Tenen DG. Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol. 2009;27(4):619-28. doi: 10.1200/JTO.2008.17.9812.

  280. ThoennissenNH,Thoennissen GB,Abbassi S,Nabavi-Nouis S, Sauer T, Doan NB, Gery S, Muller-Tidow C, Said JW, Koeffler HP. Transcription factor CCAAT/enhancer-binding protein alpha and critical circadian clock downstream target gene PER2 are highly deregulated in diffuse large B-cell lymphoma. Leuk Lymphoma. 2012;53(8):1577-85. doi: 10.3109/10428194.2012.658792. PMID: 22260161.

  281. Zhang Z, Ma F, Zhou F, Chen Y, Wang X, Zhang H, Zhu Y, Bi J, Zhang Y. Functional polymorphisms of circadian negative feedback regulation genes are associated with clinical outcome in hepatocellular carcinoma patients receiving radical resection. Med Oncol. 2014;31(12):179. doi: 10.1007/s12032-014-0179-1. PMID: 25344870.

  282. Siegel AB, Zhu AX. Metabolic syndrome and hepatocellular carcinoma: Two growing epidemics with a potential link. Cancer. 2009;115(24):5651-61. doi: 10.1002/cncr.24687. PMID: 19834957.

  283. Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013; 10(11):656-65. doi: 10.1038/nrgastro.2013.183. PMID: 24080776.

  284. Guzman G, Brunt EM, Petrovic LM, Chejfec G, Layden TJ, Cotler SJ. Does nonalcoholic fatty liver disease predis-pose patients to hepatocellular carcinoma in the absence of cirrhosis? Arch Pathol Lab Med. 2008;132(11):1761-6. doi: 10.5858/132.11.1761. PMID: 18976012.

  285. Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A, Putluri N, Katchy CA, Lee C, Moore DD, Fu L. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell. 2016;30(6):909-24. doi: 10.1016/j.ccell.2016.10.007. PMID: 27889186.

  286. Zimberg IZ, Fernandes Junior SA, Crispim CA, Tufik S, de Mello MT. Metabolic impact of shift work. Work. 2012;41(Suppl 1):4376-83. doi: 10.3233/WOR-2012-0733-4376. PMID: 22317392.

  287. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell. 2000;6(3):517-26. doi: 10.1016/s1097-2765(00)00051-4. PMID: 11030332.

  288. Lopez-Velazquez JA, Carrillo-Cordova LD, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. Nuclear receptors in nonalcoholic fatty liver disease. J Lipids. 2012;2012:139875. doi: 10.1155/2012/139875.

  289. Guo GL, Lambert G, Negishi M, Ward JM, Brewer HB, Kliewer SA, Gonzalez FJ, Sinal CJ. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem. 2003;278(46):45062-71. doi: 10.1074/jbc.M307145200. PMID: 12923173.

  290. Zhang J, Huang W, Qatanani M, Evans RM, Moore DD. The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem. 2004;279(47):49517-22. doi: 10.1074/jbc.M409041200. PMID: 15358766.

  291. Dong B, Lee JS, Park YY, Yang F, Xu G, Huang W, Finegold MJ, Moore DD. Activating CAR and beta-catenin induces uncontrolled liver growth and tumorigenesis. Nat Commun. 2015;6:5944. doi: 10.1038/ncomms6944. PMID: 25661872.

  292. Viswanathan AN, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res. 2007;67(21):10618-22. doi: 10.1158/0008-5472. CAN-07-2485. PMID: 17975006.

  293. Schernhammer ES, Feskanich D, Liang G, Han J. Rotating night-shift work and lung cancer risk among female nurses in the United States. Am J Epidemiol. 2013;178(9):1434-41. doi: 10.1093/aje/kwt155. PMID: 24049158.

  294. Cotterchio M, Lowcock E, Bider-Canfield Z, Lemire M, Greenwood C, Gallinger S, Hudson T. Association between variants in atopy-related immunologic candidate genes and pancreatic cancer risk. PLoS One. 2015;10(5):e0125273. doi: 10.1371/journal.pone.0125273. PMID: 25945796.

  295. Zhao M, Wan J, Zeng K, Tong M, Lee AC, Ding J, Chen Q. The reduction in circulating melatonin level may contribute to the pathogenesis of ovarian cancer: A retrospective study. J Cancer. 2016;7(7):831-6. doi: 10.7150/ jca.14573. PMID: 27162542.

  296. Kasai H, Kawai K, Li YS. Free radical-mediated cytosine C-5 methylation triggers epigenetic changes during carcinogenesis. Biomol Concepts. 2013;4(3):213-20. doi: 10.1515/bmc-2012-0052. PMID: 25436577.

  297. Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, Merchut-Maya JM, Hodny Z, Bartkova J, Christensen C, Bartek J. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. 2015;9(3):601-16. doi: 10.1016/j.molonc.2014.11.001. PMID: 25435281.

  298. Park MT, Kim MJ, Suh Y, Kim RK, Kim H, Lim EJ, Yoo KC, Lee GH, Kim YH, Hwang SG, Yi JM, Lee SJ. Novel signaling axis for ROS generation during KRas-induced cellular transformation. Cell Death Differ. 2014;21(8):1185-97. doi: 10.1038/cdd.2014.34. PMID: 24632950.

  299. Samanta S. Melatonin: An endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol. 2020;146(8):1893-922. doi: 10.1007/s00432-020-03292-w. PMID: 32583237.

  300. Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res. 2017;63(1):e12416. doi: 10.1111/jpi.12416. PMID: 28439991.

  301. Liu R, Fu A, Hoffman AE, Zheng T, Zhu Y. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol. 2013b;14:1. doi: 10.1186/1471-2121-14-1. PMID: 23294620.

  302. Valizadeh M, Shirazi A, Izadi P, Tavakkoly Bazzaz J, Rezaeejam H. Expression levels of two dna repair-related genes under 8 gy ionizing radiation and 100 mg/kg melatonin delivery in rat peripheral blood. J Biomed Phys Eng. 2017;7(1):27-36. PMID 28451577.

  303. Fischer TW, Kleszczynski K, Hardkop LH, Kruse N, Zillikens D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2'-deoxyguanosine) in ex vivo human skin. J Pineal Res. 2013;54(3):303-12. doi: 10.1111/jpi.12018. PMID: 23110400.

  304. Bizzarri M, Proietti S, Cucina A, Reiter RJ. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: A review. Expert Opin Ther Targets. 2013;17(12):1483-96. doi: 10.1517/14728222.2013. 834890. PMID: 24032643.

  305. Zha L, Fan L, Sun G, Wang H, Ma T, Zhong F, Wei W. Melatonin sensitizes human hepatoma cells to endoplasmic reticulum stress-induced apoptosis. J Pineal Res. 2012;52(3):322-31. doi: 10.1111/j.1600-079X.2 011.00946.x. PMID: 22225575.

  306. Cheng Y, Cai L, Jiang P, Wang J, Gao C, Feng H, Wang C, Pan H, Yang Y. SIRT1 inhibition by melatonin exerts antitu-mor activity in human osteosarcoma cells. Eur J Pharmacol. 2013;715(1-3):219-29. doi: 10.1016/j.ejphar.2013.05.017. PMID: 23726949.

  307. Liu L, Xu Y, Reiter RJ. Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. Bone. 2013;55(2):432-8. doi: 10.1016/j.bone.2013.02.021. PMID: 23470834.

  308. Alvarez-Artime A, Cernuda-Cernuda R, Francisco-Artime-Naveda F-A, Cepas V, Gonzalez-Menendez P, Fernadez-Vega S, Quiros-Gonzalez I, Sainz RM, Mayo JC. Melatonin-induced cytoskeleton reorganization leads to inhibition of melanoma cancer cell proliferation. Int J Mol Sci. 2020;21(2):548. doi: 10.3390/ijms21020548. PMID: 31952224.

  309. Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol. 2010;222(1):1-15. doi: 10.1002/path.2727. PMID: 20681009.

  310. Bill R, Christofori G. The relevance of EMT in breast cancer metastasis: Correlation or causality? FEBS Lett. 2015;589(14):1577-87. doi: 10.1016/j.febslet.2015.05.002. PMID: 25979173.

  311. Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castro-viejo D, Qin L, Yang SF, Xu K. Melatonin, a full service anti-cancer agent: Inhibition ofinitiation, progression and metastasis. Int J Mol Sci. 2017;18(4):e843. doi: 10.3390/ ijms18040843. PMID: 28420185.

  312. Bourboulia D, Stetler-Stevenson WG. Matrix metallopro-teinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20(3):161-8. doi: 10.1016/j.semcancer.2010.05.002. PMID: 20470890.

  313. Lin YW, Lee LM, Lee WJ, Chu CY, Tan P, Yang YC, Chen WY, Yang SF, Hsiao M, Chien MH. Melatonin inhibits MMP-9 Transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs Pathway and NF-kappaB DNA-binding activity. J Pineal Res. 2016;60(3):277-90. doi: 10.1111/jpi.12308. PMID: 26732239.

  314. Borin TF, Arbab AS, Gelaleti GB, Ferreira LC, Moschetta MG, Jardim-Perassi BV, Iskander AS, Varma NR, Shankar A, Coimbra VB, Fabri VA, de Oliveira JG, Zuccari DA. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res. 2016;60(1):3-15. doi: 10.1111/jpi.12270. PMID: 26292662.

  315. Zhou Q, Gui S, Zhou Q, Wang Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS One. 2014;9(7):e101132. doi: 10.1371/journal.pone.0101132. PMID: 24992189.

  316. Park JW, Hwang MS, Suh SI, Baek WK. Melatonin down-regulates HIF-1a expression through inhibition of protein translation in prostate cancer cells. J Pineal Res. 2009; 46(4):415-21. doi: 10.1111/j.1600-079X.2009.00678.x. PMID: 19552765.

  317. Park SY, Jang WJ, Yi EY, Jang JY, Jung Y, Jeong JW, Kim YJ. Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J Pineal Res. 2010;48(2):178-84. doi: 10.1111/j.1600-079x.2009.00742.x. PMID: 20449875.

  318. Carbajo-Pescador S, Ordonez R, Benet M, Jover R, Garda-Palomo A, Mauriz JL, Gonzalez-Gallego J. Inhibition of VEGF expression through blockade of Hif1alpha and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer. 2013;109(1):83-91. doi: 10.1038/bjc.2013.285. PMID: 23756865.

  319. Zamfir Chiru AA, Popescu CR, Gheorghe DC. Melatonin and cancer. J Med Life. 2014;7(3):373-4. PMID 25408757.

  320. Mancio J, Leal C, Ferreira M, Norton P, Lunet N. Does the association of prostate cancer with night-shift work differ according to rotating vs. fixed schedule? A systematic review and metaanalysis. Prostate Cancer Prostatic Dis. 2018;21(3):337-44. doi: 10.1038/s41391-018-0040-2. PMID: 29700389.

  321. Dallmann R, Okyar A, Levi F. Dosing-time makes the poison: Circadian regulation and pharmacotherapy. Trends Mol Med. 2016;22(5):430-45. doi: 10.1016/j. molmed.2016.03.004. PMID: 27066876.

  322. Sancar A, Van Gelder RN. Clocks, cancer, and chronoche-motherapy. Science. 2021;371(6524):eabb0738. doi: 10.1126/science.abb0738. PMID: 33384351.

  323. Sulli G, Manoogian ENC, Taub PR, Panda S. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends Pharmacol Sci. 2018;39(9):812-27. doi: 10.1016/j. tips.2018.07.003. PMID: 30060890.

  324. Coudert B, Focan C, Genet D, Giacchetti S, Cvickovic F, Zambelli A, Fillet G, Chollet P, Amoroso D, Van Der Auwera J, Lentz MA, Marreaud S, Baron B, Gorlia T, Biville F, Levi F. A randomized multicenter study of optimal circadian time of vinorelbine combined with chronomodulated 5-fluorouracil in pretreated metastatic breast cancer patients: EORTC trial 05971. Chronobiol Int. 2008;25(5):680-96. doi: 10.1080/07420520802384036. PMID: 18780198.

  325. Levi F, Zidani R, Misset JL. Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. International Organization for Cancer Chronotherapy. Lancet. 1997;350(9079):681-6. doi: 10.1016/s0140-6736(97)03358-8. PMID: 9291901.

  326. Gallion HH, Brunetto VL, Cibull M, Lentz SS, Reid G, Soper JT, Burger RA, Andersen W. Randomized phase III trial of standard timed doxorubicin plus cisplatin versus circadian timed doxorubicin plus cisplatin in stage III and IV or recurrent endometrial carcinoma: A Gynecologic Oncology Group Study. J Clin Oncol. 2003;2.

  327. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint block-ade. N Engl J Med. 2018;378(2):158-68. doi: 10.1056/ NEJMra1703481. PMID: 29320654.

  328. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science. 2013;341(6153):1483-8. doi: 10.1126/science.1240636. PMID: 23970558.

  329. Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, Cao L, Wang H, Billiar TR, Jiang J, Xie M, Tang D. The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep. 2018;24(2):366-78. doi: 10.1016/j.cel-rep.2018.06.026. PMID: 29996098.

  330. Ballesta A, Innominato PF, Dallmann R, Rand DA, Levi FA. Systems chronotherapeutics. Pharmacol Rev. 2017;69(2):161-99. doi: 10.1124/pr.116.013441. PMID: 28351863.

  331. De Mei C, Ercolani L, Parodi C, Veronesi M, Lo Vecchio C, Bottegoni G, Torrente E, Scarpelli R, Marotta R, Ruffili R, Mattioli M, Reggiani A, Wade M, Grimaldi B. Dual inhibition of REV-ERBp and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. Oncogene. 2015;34(20):2597-608. doi: 10.1038/onc.2014.203. PMID: 25023698.

  332. Kennaway DJ, Varcoe TJ, Voultsios A, Salkeld MD, Rattanatray L, Boden MJ. Acute inhibition of casein kinase 15/s rapidly delays peripheral clock gene rhythms. Mol Cell Biochem. 2015;398(1-2):195-206. doi: 10.1007/s11010-014-2219-8. PMID: 25245819.

  333. Rosenberg LH, Lafitte M, Quereda V, Grant W, Chen W, Bibian M, Noguchi Y, Fallahi M, Yang C, Chang JC, Roush WR, Cleveland JL, Duckett DR. Therapeutic targeting of casein kinase 15 in breast cancer. Sci Transl Med. 2015;7(318):318ra202. doi: 10.1126/scitranslmed. aac8773. PMID: 26676609.

  334. Huang HL, Weng HY, Wang LQ, Yu CH, Huang QJ, Zhao PP, Wen JZ, Zhou H, Qu LH. Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis. Mol Cancer Ther. 2012;11(5):1155-65. doi: 10.1158/1535-7163.MCT-12-0066. PMID: 22389469.

  335. Lytle NK, Ferguson LP, Rajbhandari N, Gilroy K, Fox RG, Deshpande A, Schurch CM, Hamilton M, Robertson N, Lin W, Noel P, Wartenberg M, Zlobec I, Eichmann M, Galvan JA, Karamitopoulou E, Gilderman T, Esparza LA, Shima Y, Spahn P, French R, Lewis NE, Fisch KM, Sasik R, Rosenthal SB, Kritzik M, Von Hoff D, Han H, Ideker T, Deshpande AJ, Lowy AM, Adams PD, Reya T. A multiscale map of the stem cell state in pancreatic adenocarcinoma. Cell. 2019;177(3):572-86.e22. doi: 10.1016/j. cell.2019.03.010. PMID: 30955884.

  336. Sulli G, Rommel A, Wang X, Kolar MJ, Puca F, Saghatelian A, Plikus MV, Verma IM, Panda S. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature. 2018;553(7688):351-5. doi: 10.1038/nature25170. PMID: 29320480.

  337. Wang X, Wang N, Wei X, Yu H, Wang Z. REV-ERBa reduction is associated with clinicopathological features and prognosis in human gastric cancer. Oncol Lett. 2018;16(2):1499-506. PMID 30008829.

  338. Chun SK, Chung S, Kim HD, Lee JH, Jang J, Kim J, Kim D, Son GH, Oh YJ, Suh YG, Lee CS, Kim K. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells. Biochem Biophys Res Commun. 2015;467(2):441-6. doi: 10.1016/j.bbrc.2015.09.103. PMID: 26407844.

  339. Hu X, Majchrzak K, Liu X, Wyatt MM, Spooner CJ, Moisan J, Zou W, Carter LL, Paulos CM. In vitro priming of adoptively transferred T cells with a RORy agonist confers durable memory and Stemnness in vivo. Cancer Res. 2018;78(14):3888-98. doi: 10.1158/0008-5472.CAN-17-3973. PMID: 29769201.

  340. Hu X, Liu X, Moisan J, Wang Y, Lesch CA, Spooner C, Morgan RW, Zawidzka EM, Mertz D, Bousley D, Majchrzak K, Kryczek I, Taylor C, Van Huis C, Skalitzky D, Hurd A, Aicher TD, Toogood PL, Glick GD, Paulos CM, Zou W, Carter LL. Synthetic RORy agonists regulate multiple pathways to enhance antitumor immunity. Oncoimmunology. 2016;5(12):e1254854. doi: 10.1080/2162402X.2016.1254854. PMID: 28123897.

  341. Lee IK, Song H, Kim H, Kim IS, Tran NL, Kim SH, Oh SJ, Lee JM. RORa regulates cholesterol metabolism of CD8+ T cells for anticancer immunity. Cancers. 2020;12(7):1733. doi: 10.3390/cancers12071733. PMID: 32610705.

REFERENZIERT VON
  1. Li Xiaoying, Gao Chang, Wei Yifan, Wen Zhaoyan, Li Xinyu, Liu Fanghua, Gong Tingting, Yan Shi, Qin Xue, Gao Song, Zhao Yuhong, Wu Qijun, Pre-Diagnosis Sleep Status and Survival after a Diagnosis of Ovarian Cancer: A Prospective Cohort Study, Journal of Clinical Medicine, 11, 23, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain