Abo Bibliothek: Guest
Heat Transfer Research

Erscheint 18 Ausgaben pro Jahr

ISSN Druckformat: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

Experimental Study of Particle Size, Sound Velocity, and Resonance Phenomena in a Two-Phase Foam Flow

Volumen 32, Ausgabe 4-6, 2001, 5 pages
DOI: 10.1615/HeatTransRes.v32.i4-6.220
Get accessGet access

ABSTRAKT

In a number of cases a two-phase foam mixture flow in a rectangular channel is accompanied by appearance of geometric resonances. Measurement of resonance frequency at the known parameters of the channel allows one to determine a velocity of sound in a two-phase flow and a characteristic size of "bubbles". Measurements of eigennoises of a vapor-water flow at a mixture temperature of 50°C, a velocity of 50 m/sec, and a volumetric vapor content of 0.727 revealed the range of bubble sizes by a continuous portion of the spectrum and frequencies of resonances (transverse and longitudinal) in the diffuser throat with a cross-section of 6×40 mm and a length of 18 mm.
The results of measurements were compared to the values of a sound velocity calculated by theoretical relations derived by I. S. Radovskii (Moscow Institute of Engineering Physics). Resonances on eight frequencies (transverse and two longitudinal) found in the experiments arise at a sound velocity of 90−400 m/sec and coincide with the calculated values within the error of the experiment (deviation not higher than 4%). The scheme of measurements may be used to diagnose a structure of a two-phase flow at mean values of volumetric vapor content.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain