Abo Bibliothek: Guest
Heat Transfer Research

Erscheint 18 Ausgaben pro Jahr

ISSN Druckformat: 1064-2285

ISSN Online: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

Advanced Aero-Thermal Investigation of High-Pressure Turbine Tip Flows

Volumen 42, Ausgabe 2, 2011, pp. 165-180
DOI: 10.1615/HeatTransRes.v42.i2.50
Get accessGet access

ABSTRAKT

The present contribution gives an overview of the numerical work performed at the Von Kármán Institute in the framework of the European research program AITEB-2, concerning the numerical investigation of tip gap flows in linear turbomachinery cascades, representatives of high-pressure turbine rotor blade geometries. The primary goal of the project is the simulation of flow and heat transfer on four distinct blade tip geometries in 3D, including the entire internal cooling setup inside a blade, the validation of the results versus the experimental campaign of Hofer et al. [1] and evaluation of the geometries. The paper presents the computations performed on the first tip geometry (TG1 hereinafter) with recessed tip. The geometry and the numerical setup are described in detail, with emphasis on the grid generation and connection method between internal and external flows. Validation is introduced on the most delicate, zero cooling flow case, in which internal flow in the cooling channels is driven exclusively by pressure difference between pressure side tip region and tip gap. The comparison with experiments is performed for one exit Reynolds number (Re = 900,000), and two exit Mach numbers; M = 0.8 (HRLM) and M = 1.1 (HRHM). Flow visualization is performed and set against experimental oil flow visualization; the basic features of the flow topology are analyzed. Typical results of from heat transfer simulations are shown in both test cases.

REFERENZIERT VON
  1. Vass P, Arts T, Numerical investigation of high-pressure turbine blade tip flows: analysis of aerodynamics, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225, 7, 2011. Crossref

  2. Zhang Q., He L., Tip-Shaping for HP Turbine Blade Aerothermal Performance Management, Journal of Turbomachinery, 135, 5, 2013. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain