Abo Bibliothek: Guest
Critical Reviews™ in Biomedical Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0278-940X

ISSN Online: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Compressed Sensing MRI: A Review

Volumen 41, Ausgabe 3, 2013, pp. 183-204
DOI: 10.1615/CritRevBiomedEng.2014008058
Get accessGet access

ABSTRAKT

Compressed sensing (CS) is a mathematical framework that reconstructs data from highly undersampled measurements. To gain acceleration in acquisition time, CS has been applied to MRI and has been demonstrated on diverse MRI methods. This review discusses the important requirements to qualify MRI to become an optimal application of CS, namely, sparsity, pseudo-random undersampling, and nonlinear reconstruction. By utilizing concepts of transform sparsity and compression, CS allows acquisition of only the important coefficients of the signal during the acquisition. A priori knowledge of MR images specifically related to transform sparsity is required for the application of CS. In this paper, Section I introduces the fundamentals of CS and the idea of CS as applied to MRI. The requirements for application of CS to MRI is discussed in Section II, while the various acquisition techniques, reconstruction techniques, the advantages of combining CS and parallel imaging, and sampling mask design problems are discussed in Section III. Numerous applications of CS in MRI due to its ability to improve imaging speed are reviewed in section IV. Clinical evaluations of some of the CS applications recently published are discussed in Section V. Section VI provides information on available open source software that could be used for CS implementations.

REFERENZIERT VON
  1. Hectors Stefanie J. C. G., Jacobs Igor, Heijman Edwin, Keupp Jochen, Berben Monique, Strijkers Gustav J., Grüll Holger, Nicolay Klaas, Multiparametric MRI analysis for the evaluation of MR-guided high intensity focused ultrasound tumor treatment, NMR in Biomedicine, 28, 9, 2015. Crossref

  2. Jaspan Oren N, Fleysher Roman, Lipton Michael L, Compressed sensing MRI: a review of the clinical literature, The British Journal of Radiology, 88, 1056, 2015. Crossref

  3. Konar Amaresha Shridhar, Aiholli Shivaraj, Shashikala H.C., Ramesh Babu D. R., Geethanath Sairam, Application of Region of Interest Compressed Sensing to accelerate magnetic resonance angiography, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014. Crossref

  4. Hectors Stefanie J.C.G., Jacobs Igor, Moonen Chrit T.W., Strijkers Gustav J., Nicolay Klaas, MRI methods for the evaluation of high intensity focused ultrasound tumor treatment: Current status and future needs, Magnetic Resonance in Medicine, 75, 1, 2016. Crossref

  5. Yang Yang, Liu Feng, Jin Zhaoyang, Crozier Stuart, Aliasing Artefact Suppression in Compressed Sensing MRI for Random Phase-Encode Undersampling, IEEE Transactions on Biomedical Engineering, 62, 9, 2015. Crossref

  6. Kijowski Richard, Rosas Humberto, Samsonov Alexey, King Kevin, Peters Rob, Liu Fang, Knee imaging: Rapid three-dimensional fast spin-echo using compressed sensing, Journal of Magnetic Resonance Imaging, 45, 6, 2017. Crossref

  7. Gamez Gerardo, Compressed sensing in spectroscopy for chemical analysis, Journal of Analytical Atomic Spectrometry, 31, 11, 2016. Crossref

  8. Shrividya G, Bharathi S. H., Application of compressed sensing on magnetic resonance imaging: A brief survey, 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2016. Crossref

  9. Kavitha S, Shrividya G, Bharathi S H, Analysis and application of compressive sensing technique for rapid magnetic resonance imaging, 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2016. Crossref

  10. Aggarwal Priya, Shrivastava Parth, Kabra Tanay, Gupta Anubha, Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage, Brain Informatics, 4, 1, 2017. Crossref

  11. Fagundes J., Longo M.G., Huang S.Y., Rosen B.R., Witzel T., Heberlein K., Gonzalez R.G., Schaefer P., Rapalino O., Diagnostic Performance of a 10-Minute Gadolinium-Enhanced Brain MRI Protocol Compared with the Standard Clinical Protocol for Detection of Intracranial Enhancing Lesions, American Journal of Neuroradiology, 38, 9, 2017. Crossref

  12. Kaldate Amruta, Patre B.M., Harsh Rajesh, Verma Dharmesh, MR image reconstruction based on compressed sensing using Poisson sampling pattern, 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 2016. Crossref

  13. Toledano-Massiah S., Sayadi A., de Boer R., Gelderblom J., Mahdjoub R., Gerber S., Zuber M., Zins M., Hodel J., Accuracy of the Compressed Sensing Accelerated 3D-FLAIR Sequence for the Detection of MS Plaques at 3T, American Journal of Neuroradiology, 39, 3, 2018. Crossref

  14. TERADA Yasuhiko, NAKAO Ai, NAKAGOMI Mayu, Fundamentals of Compressed Sensing for MR Imaging, Japanese Journal of Magnetic Resonance in Medicine, 38, 3, 2018. Crossref

  15. Staniszewski Michał, Image quality parameters in application of compressed sensing for MRI data, 1978, 2018. Crossref

  16. Krishnamurthy Ramkumar, Wang Danny J.J., Cervantes Barbara, McAllister Aaron, Nelson Eric, Karampinos Dimitrios C., Hu Houchun Harry, Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques, Pediatric Neurology, 96, 2019. Crossref

  17. Konar Amaresha Shridhar, Vajuvalli Nithin N., Rao Rashmi, Jain Divya, Ramesh Babu D.R., Geethanath Sairam, Accelerated dynamic contrast enhanced MRI based on region of interest compressed sensing, Magnetic Resonance Imaging, 67, 2020. Crossref

  18. Mönch Sebastian, Sollmann Nico, Hock Andreas, Zimmer Claus, Kirschke Jan S., Hedderich Dennis M., Magnetic Resonance Imaging of the Brain Using Compressed Sensing – Quality Assessment in Daily Clinical Routine, Clinical Neuroradiology, 30, 2, 2020. Crossref

  19. Rao Rashmi, Venkatesan Ramesh, Geethanath Sairam, Role of MRI in medical diagnostics, Resonance, 20, 11, 2015. Crossref

  20. Cho S.J., Choi Y.J., Chung S.R., Lee J.H., Baek J.H., High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique, Clinical Radiology, 74, 10, 2019. Crossref

  21. Kim Young Il, Yoo Ji Na, Kim Ji Min, Kim Sei Young, Kim Yoon Kook, Park Soon Kyu, A Study on the Optimization of Images by Controlling Extra Reduction and Denoising Level in Liver Examination Using Compressed SENSE Technique, Journal of the Korean Society of MR Technology, 29, 1, 2019. Crossref

  22. Gersing Alexandra S., Bodden Jannis, Neumann Jan, Diefenbach Maximillian N., Kronthaler Sophia, Pfeiffer Daniela, Knebel Carolin, Baum Thomas, Schwaiger Benedikt J., Hock Andreas, Rummeny Ernst J., Woertler Klaus, Karampinos Dimitrios C., Accelerating anatomical 2D turbo spin echo imaging of the ankle using compressed sensing, European Journal of Radiology, 118, 2019. Crossref

  23. Cabral Thales Wulfert, Khosravy Mahdi, Dias Felipe Meneguitti, Moreira Monteiro Henrique Luis, Alves Lima Marcelo Antônio, Manso Silva Leandro Rodrigues, Naji Rayen, Duque Carlos Augusto, Compressive sensing in medical signal processing and imaging systems, in Sensors for Health Monitoring, 2019. Crossref

  24. Matcuk George R., Gross Jordan S., Fields Brandon K.K., Cen Steven, Compressed Sensing MR Imaging (CS-MRI) of the Knee: Assessment of Quality, Inter-reader Agreement, and Acquisition Time, Magnetic Resonance in Medical Sciences, 19, 3, 2020. Crossref

  25. Bapst Blanche, Amegnizin Jean-Louis, Vignaud Alexandre, Kauv Paul, Maraval Anne, Kalsoum Erwah, Tuilier Titien, Benaissa Azzedine, Brugières Pierre, Leclerc Xavier, Hodel Jérôme, Post-contrast 3D T1-weighted TSE MR sequences (SPACE, CUBE, VISTA/BRAINVIEW, isoFSE, 3D MVOX): Technical aspects and clinical applications, Journal of Neuroradiology, 47, 5, 2020. Crossref

  26. Jee So-Young, Do JI-Hun, Park Si-Seob, Kim Sei-Young, Park Soon-Kyu, A Study on the Optimal Acceleration Factor of Double Arterial Phase Technique Using Compressed Sensing in Liver Dynamic Scan, Journal of the Korean Society of MR Technology, 29, 2, 2019. Crossref

  27. Wang Alan Q., Dalca Adrian V., Sabuncu Mert R., Neural Network-Based Reconstruction in Compressed Sensing MRI Without Fully-Sampled Training Data, in Machine Learning for Medical Image Reconstruction, 12450, 2020. Crossref

  28. Bhat Seema S., Fernandes Tiago T., Poojar Pavan, Silva Ferreira Marta, Rao Padma Chennagiri, Hanumantharaju Madigondanahalli Chikkamaraiah, Ogbole Godwin, Nunes Rita G., Geethanath Sairam, Low‐Field MRI of Stroke: Challenges and Opportunities, Journal of Magnetic Resonance Imaging, 54, 2, 2021. Crossref

  29. Kami Yukiko, Chikui Toru, Togao Osamu, Ooga Masahiro, Yoshiura Kazunori, Comparison of image quality of head and neck lesions between 3D gradient echo sequences with compressed sensing and the multi-slice spin echo sequence, Acta Radiologica Open, 9, 9, 2020. Crossref

  30. Matcuk George R., Gross Jordan S., Fritz Jan, Compressed Sensing MRI, Advances in Clinical Radiology, 2, 2020. Crossref

  31. Jiang Yuan, Wang Xiaoying, Zhu Lina, Liu Jing, Zhang Xiaodong, Hu Xiaoyu, Lin Zhiyong, Wang Ke, Qin Naishan, Compressed‐sensing accelerated magnetic resonance imaging of inner ear, Journal of Applied Clinical Medical Physics, 22, 9, 2021. Crossref

  32. Murata Syo, Hagiwara Akifumi, Fujita Shohei, Haruyama Takuya, Kato Shimpei, Andica Christina, Kamagata Koji, Goto Masami, Hori Masaaki, Yoneyama Masami, Hamasaki Nozomi, Hoshito Haruyoshi, Aoki Shigeki, Effect of hybrid of compressed sensing and parallel imaging on the quantitative values measured by 3D quantitative synthetic MRI: A phantom study, Magnetic Resonance Imaging, 78, 2021. Crossref

  33. Yarach Uten, Saekho Suwit, Setsompop Kawin, Suwannasak Atita, Boonsuth Ratthaporn, Wantanajittikul Kittichai, Angkurawaranon Salita, Angkurawaranon Chaisiri, Sangpin Prapatsorn, Feasibility of accelerated 3D T1-weighted MRI using compressed sensing: application to quantitative volume measurements of human brain structures, Magnetic Resonance Materials in Physics, Biology and Medicine, 34, 6, 2021. Crossref

  34. Kim Yeonsoo, Hwang Jiyoung, Hong Seong Sook, Kim Hyun-joo, Chang Yun-Woo, Sung JaeKon, Nickel Dominik, Clinical Feasibility of High-Resolution Contrast-Enhanced Dynamic T1-Weighted Magnetic Resonance Imaging of the Upper Abdomen Using Compressed Sensing, Journal of Computer Assisted Tomography, 45, 5, 2021. Crossref

  35. Wang Alan Q., Dalca Adrian V., Sabuncu Mert R., HyperRecon: Regularization-Agnostic CS-MRI Reconstruction with Hypernetworks, in Machine Learning for Medical Image Reconstruction, 12964, 2021. Crossref

  36. Faris M., Javid T., Rizvi SS H., Aziz Arshad, Segmented Region Based Reconstruction of Magnetic Resonance Image, 2021 International Conference on Computer & Information Sciences (ICCOINS), 2021. Crossref

  37. Takashima Hiroyuki, Nakanishi Mitsuhiro, Imamura Rui, Akatsuka Yoshihiro, Nagahama Hiroshi, Ogon Izaya, Optimal acceleration factor for image acquisition in turbo spin echo: diffusion-weighted imaging with compressed sensing, Radiological Physics and Technology, 14, 1, 2021. Crossref

  38. Marzik Guillermo, Sato Shin-ichi, Girola Mariano Ezequiel, Compressive sensing for perceptually correct reconstruction of music and speech signals, Applied Acoustics, 183, 2021. Crossref

  39. Molnar Una, Nikolov Jovana, Nikolić Olivera, Boban Nikola, Subašić Vesna, Till Viktor, Diagnostic quality assessment of compressed SENSE accelerated magnetic resonance images in standard neuroimaging protocol: Choosing the right acceleration, Physica Medica, 88, 2021. Crossref

  40. Chang Andrew L., Yu Hon J., von Borstel Donald, Nozaki Taiki, Horiuchi Saya, Terada Yasuhiko, Yoshioka Hiroshi, Advanced Imaging Techniques of the Wrist, American Journal of Roentgenology, 209, 3, 2017. Crossref

  41. Curtis Aaron D., Cheng Hai‐Ling M., Primer and Historical Review on Rapid Cardiac CINE MRI , Journal of Magnetic Resonance Imaging, 55, 2, 2022. Crossref

  42. Bernsen Monique R., van Straten Marcel, Kotek Gyula, Warnert Esther A. H., Haeck Joost C., Ruggiero Alessandro, Wielopolski Piotr A., Krestin Gabriel P., Computed Tomography and Magnetic Resonance Imaging, in Molecular Imaging in Oncology, 216, 2020. Crossref

  43. Wen Bihan, Li Yanjun, Bresler Yoram, Image Recovery via Transform Learning and Low-Rank Modeling: The Power of Complementary Regularizers, IEEE Transactions on Image Processing, 29, 2020. Crossref

  44. Fritz Jan, Guggenberger Roman, Grande Filippo Del, Rapid Musculoskeletal MRI in 2021: Clinical Application of Advanced Accelerated Techniques, American Journal of Roentgenology, 216, 3, 2021. Crossref

  45. Vornetti Gianfranco, Bartiromo Fiorina, Toni Francesco, Dall’Olio Massimo, Cirillo Mario, Speier Peter, Princiotta Ciro, Schmidt Michaela, Tonon Caterina, Zacà Domenico, Lodi Raffaele, Cirillo Luigi, Follow-Up Assessment of Intracranial Aneurysms Treated with Endovascular Coiling: Comparison of Compressed Sensing and Parallel Imaging Time-of-Flight Magnetic Resonance Angiography, Tomography, 8, 3, 2022. Crossref

  46. Fu Yabo, Zhang Hao, Morris Eric D., Glide-Hurst Carri K., Pai Suraj, Traverso Alberto, Wee Leonard, Hadzic Ibrahim, Lonne Per-Ivar, Shen Chenyang, Liu Tian, Yang Xiaofeng, Artificial Intelligence in Radiation Therapy, IEEE Transactions on Radiation and Plasma Medical Sciences, 6, 2, 2022. Crossref

  47. Karnjanapreechakorn Sarattha, Kusakunniran Worapan, Siriapisith Thanongchai, Saiviroonporn Pairash, Multi-level pooling encoder–decoder convolution neural network for MRI reconstruction, PeerJ Computer Science, 8, 2022. Crossref

  48. Peng Qi, Wu Can, Kim Jeehun, Li Xiaojuan, Efficient phase‐cycling strategy for high‐resolution 3D gradient‐echo quantitative parameter mapping, NMR in Biomedicine, 35, 7, 2022. Crossref

  49. Foreman Sarah C., Neumann Jan, Han Jessie, Harrasser Norbert, Weiss Kilian, Peeters Johannes M., Karampinos Dimitrios C., Makowski Marcus R., Gersing Alexandra S., Woertler Klaus, Deep learning–based acceleration of Compressed Sense MR imaging of the ankle, European Radiology, 2022. Crossref

  50. Sui He, Li Jin, Liu Lin, Lv Zhongwen, Zhang Yunfei, Dai Yongming, Mo Zhanhao, Accelerating Knee MRI: 3D Modulated Flip-Angle Technique in Refocused Imaging with an Extended Echo Train and Compressed Sensing, Journal of Pain Research, Volume 15, 2022. Crossref

  51. Schieda Nicola, Krishna Satheesh, Davenport Matthew S., Update on Gadolinium-Based Contrast Agent–Enhanced Imaging in the Genitourinary System, American Journal of Roentgenology, 212, 6, 2019. Crossref

  52. Raimondo Luisa, Knapen Tomas, Oliveira ĺcaro A.F, Yu Xin, Dumoulin Serge O, van der Zwaag Wietske, Siero Jeroen C.W, A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI, Journal of Cerebral Blood Flow & Metabolism, 41, 11, 2021. Crossref

  53. Ahn Sung Jun, Taoka Toshiaki, Moon Won‐Jin, Naganawa Shinji, Contrast‐Enhanced Fluid‐Attenuated Inversion Recovery in Neuroimaging: A Narrative Review on Clinical Applications and Technical Advances, Journal of Magnetic Resonance Imaging, 56, 2, 2022. Crossref

  54. Vaish Ashutosh, Rajwade Ajit, Gupta Anubha, TL-HARDI: Transform learning based accelerated reconstruction of HARDI data, Computers in Biology and Medicine, 143, 2022. Crossref

  55. Sundermann Benedikt, Billebaut Benoit, Bauer Jochen, Iacoban Catalin George, Alykova Olga, Schülke Christoph, Gerdes Maike, Kugel Harald, Neduvakkattu Sojan, Bösenberg Holger, Mathys Christian, Practical Aspects of novel MRI Techniques in Neuroradiology: Part 2 – Acceleration Methods and Implications for Individual Regions, RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 2022. Crossref

  56. Crop Frederik, Mouttet-Audouard Raphaëlle, Mirabel Xavier, Ceugnart Luc, Lacornerie Thomas, Technical note: Unexpected external markers artifact in 3D k-space based parallel imaging turbo spin-echo magnetic resonance imaging, Physica Medica, 90, 2021. Crossref

  57. Kami Yukiko, Chikui Toru, Togao Osamu, Kawano Shintaro, Fujii Shinsuke, Ooga Masahiro, Kiyoshima Tamotsu, Yoshiura Kazunori, Usefulness of reconstructed images of Gd-enhanced 3D gradient echo sequences with compressed sensing for mandibular cancer diagnosis: comparison with CT images and histopathological findings, European Radiology, 2022. Crossref

  58. Meister Rieke L., Groth Michael, Jürgens Julian H. W., Zhang Shuo, Buhk Jan H., Herrmann Jochen, Compressed SENSE in Pediatric Brain Tumor MR Imaging, Clinical Neuroradiology, 32, 3, 2022. Crossref

  59. Richards Caryl Elizabeth, Parker Alex E, Alfuhied Aseel, McCann Gerry P, Singh Anvesha, The role of 4-dimensional flow in the assessment of bicuspid aortic valve and its valvulo-aortopathies, The British Journal of Radiology, 2022. Crossref

  60. Crop Frederik, Guillaud Ophélie, Ben Haj Amor Mariem, Gaignierre Alexandre, Barre Carole, Fayard Cindy, Vandendorpe Benjamin, Lodyga Kaoutar, Mouttet-Audouard Raphaëlle, Mirabel Xavier, Comparison of compressed sensing and controlled aliasing in parallel imaging acceleration for 3D magnetic resonance imaging for radiotherapy preparation, Physics and Imaging in Radiation Oncology, 23, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain