Abo Bibliothek: Guest
International Journal for Uncertainty Quantification

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 2152-5080

ISSN Online: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

STOCHASTIC POLYNOMIAL CHAOS EXPANSIONS TO EMULATE STOCHASTIC SIMULATORS

Volumen 13, Ausgabe 2, 2023, pp. 31-52
DOI: 10.1615/Int.J.UncertaintyQuantification.2022042912
Get accessGet access

ABSTRAKT

In the context of uncertainty quantification, computational models are required to be repeatedly evaluated. This task is intractable for costly numerical models. Such a problem turns out to be even more severe for stochastic simulators, the output of which is a random variable for a given set of input parameters. To alleviate the computational burden, surrogate models are usually constructed and evaluated instead. However, due to the random nature of the model response, classical surrogate models cannot be applied directly to the emulation of stochastic simulators. To efficiently represent the probability distribution of the model output for any given input values, we develop a new stochastic surrogate model called stochastic polynomial chaos expansions. To this aim, we introduce a latent variable and an additional noise variable, on top of the well-defined input variables, to reproduce the stochasticity. As a result, for a given set of input parameters, the model output is given by a function of the latent variable with an additive noise, thus a random variable. Because the latent variable is purely artificial and does not have physical meanings, conventional methods (pseudo-spectral projections, collocation, regression, etc.) cannot be used to build such a model. In this paper, we propose an adaptive algorithm that does not require repeated runs of the simulator for the same input parameters. The performance of the proposed method is compared to the generalized lambda model and a state-of-the-art kernel estimator on two case studies in mathematical finance and epidemiology and on an analytical example whose response distribution is bimodal. The results show that the proposed method is able to accurately represent general response distributions, i.e., not only normal or unimodal ones. In terms of accuracy, it generally outperforms both the generalized lambda model and the kernel density estimator.

REFERENZEN
  1. McNeil, A.J., Frey, R., and Embrechts, P., Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton, NJ: Princeton University Press, 2005.

  2. Britton, T., Stochastic Epidemic Models: A Survey, Math. Biosci, 225:24-35,2010.

  3. Ghanem, R. and Spanos, P., Stochastic Finite Elements: A Spectral Approach, 2nd ed., Mineola, NY: Courier Dover Publications, 2003.

  4. Rasmussen, C.E. and Williams, C.K.I., Gaussian Processes for Machine Learning, Adaptive Computation and Machine Learning, Internet ed., Cambridge, MA: MIT Press, 2006.

  5. Ankenman, B., Nelson, B., and Staum, J., Stochastic Kriging for Simulation Metamodeling, Oper. Res, 58:371-382, 2010.

  6. Marrel, A., Iooss, B., Da Veiga, S., and Ribatet, M., Global Sensitivity Analysis of Stochastic Computer Models with Joint Metamodels, Stat. Comput., 22:833-847, 2012.

  7. Wooldridge, J.M., Introductory Econometrics: A Modern Approach, 5th ed., Boston: Cengage Learning, 2013.

  8. Binois, M., Gramacy, R.B., and Ludkovski, M., Practical Heteroscedastic Gaussian Process Modeling for Large Simulation Experiments, J. Comput. Graph. Stat, 27:808-821, 2018.

  9. Koenker, R. and Bassett, G., Regression Quantiles, Econometrica, 46:33-50, 1978.

  10. Plumlee, M. and Tuo, R., Building Accurate Emulators for Stochastic Simulations via Quantile Kriging, Technometrics, 56:466-473,2014.

  11. Torossian, L., Picheny, V., Faivre, R., and Garivier, A., A Review on Quantile Regression for Stochastic Computer Experiments, Reliab. Eng. Sys. Safety, 201:106858, 2020.

  12. Moutoussamy, V., Nanty, S., and Pauwels, B., Emulators for Stochastic Simulation Codes, ESAIM: Math. Model. Num. Anal., 48:116-155,2015.

  13. Zhu, X. and Sudret, B., Replication-Based Emulation of the Response Distribution of Stochastic Simulators Using Generalized Lambda Distributions, Int. J. Uncertainty Quantif., 10:249-275,2020.

  14. Azzi, S., Sudret, B., and Wiart, J., Surrogate Modeling of Stochastic Functions-Application to Computational Electromagnetic Dosimetry, Int. J. Uncertainty Quantif, 9:351-363, 2019.

  15. Luthen, N., Marelli, S., and Sudret, B., A Spectral Surrogate Model for Stochastic Simulators Computed from Trajectory Samples, Stat. Comput, arXiv:2207.05653,2022.

  16. McCullagh, P. andNelder, J., Generalized Linear Models, Boca Raton, FL: Chapman and Hall/CRC, 1989.

  17. Hastie, T. and Tibshirani, R., Generalized Additive Models, Boca Raton, FL: Chapman and Hall/CRC, 1990.

  18. Fan, J. and Gijbels, I., Local Polynomial Modelling and Its Applications, Boca Raton: Chapman and Hall/CRC, 1996.

  19. Hall, P., Racine, J., and Li, Q., Cross-Validation and the Estimation of Conditional Probability Densities, J. Am. Stat. Assoc., 99:1015-1026, 2004.

  20. Efromovich, S., Dimension Reduction and Adaptation in Conditional Density Estimation, J. Am. Stat. Assoc., 105:761-774, 2010.

  21. Zhu, X. and Sudret, B., Emulation of Stochastic Simulators Using Generalized Lambda Models, SIAM/ASA J. Uncertainty Quantif., 9:1345-1380, 2021.

  22. Zhu, X. and Sudret, B., Global Sensitivity Analysis for Stochastic Simulators Based on Generalized Lambda Surrogate Models, Reliab. Eng. Sys. Safety, 214:107815, 2021.

  23. Nataf, A., Determination Des Distributions Dont Les Marges Sont Donnees, C.R. Acad. Sci. Paris, 225:42-43, 1962.

  24. Rosenblatt, M., Remarks on a Multivariate Transformation, Ann. Math. Stat., 23:470-472,1952.

  25. Blatman, G. and Sudret, B., An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis, Prob. Eng. Mech., 25:183-197, 2010.

  26. Ernst, O.G., Mugler, A., Starkloff, H.J., and Ullmann, E., On the Convergence of Generalized Polynomial Chaos Expansions, ESAIM: Math. Model. Numer. Anal, 46:317-339, 2012.

  27. Xiu, D. and Karniadakis, G.E., The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput, 24(2):619-644,2002.

  28. Gautschi, W., Orthogonal Polynomials: Computation and Approximation, Oxford: Oxford University Press, 2004.

  29. Blatman, G. and Sudret, B., Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression, J. Comput. Phys, 230:2345-2367, 2011.

  30. Berveiller, M., Sudret, B., and Lemaire, M., Stochastic Finite Elements: A Non-Intrusive Approach by Regression, Eur. J. Comput. Mech, 15(1-3):81-92, 2006.

  31. Doostan, A. and Owhadi, H., A Non-Adapted Sparse Approximation of PDEs with Stochastic Inputs, J. Comput. Phys, 230(8):3015-3034, 2011.

  32. Babacan, S., Molina, R., and Katsaggelos, A., Bayesian Compressive Sensing Using Laplace Priors, IEEE Trans. Image Process, 19(1):53-63, 2010.

  33. Luthen, N., Marelli, S., and Sudret, B., Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark, SIAM/ASA J. Uncertainty Quantif., 9(2):593-649, 2021.

  34. Luthen, N., Marelli, S., and Sudret, B., A Benchmark of Basis-Adaptive Sparse Polynomial Chaos Expansions for Engineering Regression Problems, Int. J. Uncertainty Quantif., 12:49-74, 2022.

  35. Sudret, B., Global Sensitivity Analysis Using Polynomial Chaos Expansions, Reliab. Eng. Sys. Safety, 93:964-979, 2008.

  36. Everitt, B.S., An Introduction to Latent Variables Models, Baca Raton, FL: Chapman & Hall, 1984.

  37. Desceliers, C., Ghanem, R., and Soize, C., Maximum Likelihood Estimation of Stochastic Chaos Representations from Experimental Data, Int. J. Numer. Methods Eng., 66:978-1001, 2006.

  38. Jacod, J. and Protter, P., Probability Essentials, 2nd ed., New York: Springer, 2004.

  39. Hastie, T., Tibshirani, R., and Friedman, J., The Elements of Statistical Learning: Data Mining, Inference and Prediction, New York: Springer, 2001.

  40. Golub, G.H. and Welsch, J.H., Calculation of Gauss Quadrature Rules, Math. Comput, 23(106):221-230, 1969.

  41. Fletcher, R., Practical Methods of Optimization, 2nd ed., Hoboken, NJ: Wiley, 1987.

  42. Snoek, J., Larochelle, H., and Adams, R.P., Practical Bayesian Optimization of Machine Learning Algorithms, in Advances in Neural Information Processing Systems, F. Pereira, C.J.C. Burges, L. Bottou, andK.Q. Weinberger, Eds., Curran Associates, pp. 2951-2959,2012.

  43. Hayfield, T. and Racine, J., Nonparametric Econometrics: The Np Package, J. Stat. Software, 27:1-32, 2008.

  44. Villani, C., Optimal Transport, Old and New, Cambridge: Springer, 2000.

  45. McKay, M.D., Beckman, R.J., and Conover, W. J., A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21(2):239-245, 1979.

  46. Reddy, K. and Clinton, V., Simulating Stock Prices Using Geometric Brownian Motion: Evidence from Australian Companies, Australasian Accounting, Business Finance J, 10(3):23-47, 2016.

  47. Shreve, S., Stochastic Calculus for Finance II, New York: Springer, 2004.

  48. Gillespie, D.T., Exact Stochastic Simulation of Coupled Chemical Reactions, J. Phys. Chem., 81:2340-2361, 1977.

  49. Abdallah, I., Lataniotis, C., and Sudret, B., Parametric Hierarchical Kriging for Multi-Fidelity Aero-Servo-Elastic Simulators-Application to Extreme Loads on Wind Turbines, Probab. Eng. Mech., 55:67-77, 2019.

  50. Mai, C.V., Konakli, K., and Sudret, B., Seismic Fragility Curves for Structures Using Non-Parametric Representations, Front. Struct. Civ. Eng., 11(2):169-186, 2017.

  51. James, G., Witten, D., Hastie, T., and Tibshirani, R., An Introduction to Statistical Learning: With Applications in R, New York: Springer, 2014.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain