Abo Bibliothek: Guest
Journal of Flow Visualization and Image Processing

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 1065-3090

ISSN Online: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

DYNAMICS OF A DROPLET IMPACTING A SESSILE DROPLET ON A SUPERHYDROPHOBIC SURFACE: ROLE OF BOUNDARY CONDITIONS DURING DROPLET PLACEMENT

Volumen 28, Ausgabe 4, 2021, pp. 69-89
DOI: 10.1615/JFlowVisImageProc.2021037109
Get accessGet access

ABSTRAKT

Experimental investigation of drop-on-drop impact on a superhydrophobic surface (contact angle ~ 155°) is performed owing to the importance of this configuration in various engineering applications. A sessile drop is first placed on the substrate in mechanical equilibrium, with two distinct deposition methods, viz., (i) gentle deposition (Wedrop 1 < 1) and (ii) impact deposition (Wedrop 1 > 1). The second drop is then made to merge in-line with the first drop (vertical coalescence) with two downward velocities, Wedrop 2 = 9.42 and 15.01, respectively. The ensuing dynamical behavior of the coalescence process of the two droplets is significantly different, depending on how the first sessile droplet is placed on the substrate. For the gentle deposition case, the two droplets coalesce, then the combined mass spreads, recedes, bounces-off, and re-impacts on the substrate before reaching the final equilibrium. However, for the second case of impact deposition, there is considerable pinning of the droplet contact line during the receding phase of the combined droplet, which is not observed in the previous case of gentle deposition. Pinning leads to breaking of the droplet mass into two unequal volume droplets; the lower, smaller droplet tending to stay back on the substrate, without participating in the rebound-process of the remaining mass. Due to difference in energetics of the two cases, the duration of combined droplet hovering in the ambient air, after bounce-off, is less for impact deposition as compared to the gentle deposition case. Maximum spread ratio is estimated with the existing analytical models and is found to be in very good agreement with the experimental values. It is concluded that drop-on-drop mergers are strongly dependent on wetting behavior and initial boundary condition/wetting transition which the droplet experiences during its placement on the substrate.

REFERENZEN
  1. Attinger, D., Moore, C., Donaldson, A., Jafari, A., and Stone, H.A., Fluid Dynamics Topics in Blood-stain Pattern Analysis: Comparative Review and Research Opportunities, Forensic Sci. Int., vol. 231, nos. 1-3 pp. 375-396, 2013. DOI: 10.1016/j.forsciint.2013.04.018.

  2. Aybar, E., Sobel Edge Detection Method for MATLAB, Anadolu University, Porsuk Vocational School, 26410, 2006.

  3. Bartolo, D., Josserand, C., and Bonn, D., Retraction Dynamics of Aquous Drops upon Impact on Non-wetting Surfaces, J. Fluid Mech., vol. 545, pp. 329-338, 2005. DOI: 10.1017/S0022112005007184.

  4. Batzdorf, S., Breitenbach, J., Schlawitschek, C., Roisman, I.V., Tropea, C., Stephan, P., and Gambary-an-Roisman, T., Heat Transfer during Simultaneous Impact of Two Drops onto a Hot Solid Substrate, Int. J. Heat Mass Transf., vol. 113, pp. 898-907, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.05.091.

  5. Bhushan, B., Jung, Y.C., and Koch, K., Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces, Langmuir, vol. 25, no. 5, pp. 3240-3248, 2009. DOI: 10.1021/la803860d.

  6. Biole, D. and Bertola, V., Measuring Fluid Interfaces, Corners, and Angles from High-Speed Digital Images of Impacting Drops, J. Flow Visualiz. Image Process., vol. 28, no. 1, 2021.

  7. Breitenbach, J., Roisman, I.V., and Tropea, C., From Drop Impact Physics to Spray Cooling Models: A Critical Review, Exp. Fluids, vol. 59, no. 3, p. 55, 2018. DOI: 10.1007/s00348-018-2514-3.

  8. Clanet, C., Beguin, C., Richard, D., and Quere, D., Maximal Deformation of an Impacting Drop, J. Fluid Mech., vol. 517, p. 199, 2004. DOI: 10.1017/S0022112004000904.

  9. Damak, M. and Varanasi, K., Expansion and Retraction Dynamics in Drop-on-Drop Impacts on Non-wetting Surfaces, Phys. Rev. Fluids, vol. 3, no. 9, p. 093602, 2018. DOI: 10.1103/PhysRevFluids.3.093602.

  10. Dbouk, T. and Drikakis, D., On Coughing and Airborne Droplet Transmission to Humans, Phys. Fluids, vol. 32, no. 5, p. 053310, 2020. DOI: 10.1063/5.0011960.

  11. Guggilla, G., Narayanaswamy, R., and Pattamatta, A., An Experimental Investigation into the Spread and Heat Transfer Dynamics of a Train of Two Concentric Impinging Droplets over a Heated Surface, Exp. Therm. Fluid Sci, vol. 110, p. 109916, 2020. DOI: 10.1016/j.expthermflusci.2019.109916.

  12. Guggilla, G., Pattamatta, A., and Narayanaswamy, R., Numerical Investigation into the Evaporation Dynamics of Drop-on-Drop Collisions over Heated Wetting Surfaces, Int. J. Heat Mass Transf., vol. 123, pp. 1050-1067, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.029.

  13. Gunjan, M.R., Somwanshi, P.M., Agrawal, A., Khandekar, S., and Muralidhar, K., Recoil of Drops during Coalescence on Superhydrophobic Surfaces, Interfacial Phenom. Heat Transf., vol. 3, no. 2, 2015.

  14. Janjua, Z.A., Turnbull, B., Hibberd, S., and Choi, K.S., Mixed Ice Accretion on Aircraft Wings, Phys. Fluids, vol. 30, no. 2, p. 027101, 2018. DOI: 10.1063/1.5007301.

  15. Josserand, C. and Thoroddsen, S.T., Drop Impact on a Solid Surface, Annu. Rev. Fluid Mech., vol. 48, pp. 365-391, 2016. DOI: 10.1146/annurev-fluid-122414-034401.

  16. Jung, Y.C. and Bhushan, B., Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces, Langmuir, vol. 24, no. 12, pp. 6262-6269, 2008. DOI: 10.1021/la8003504.

  17. Khandekar, S., Sahu, G., Muralidhar, K., Gatapova, E.Y., Kabov, O.A., Hu, R., Luo, X., and Zhao, L., Cooling of High-Power LEDs by Liquid Sprays: Challenges and Prospects, Appl. Therm. Eng., p. 115640, 2020. DOI: 10.1016/j.applthermaleng.2020.115640.

  18. Kumar, M. and Bhardwaj, R., Wetting Vharacteristics of Colocasia esculenta (Taro) Leaf and a Bioin-spired Surface Thereof, Sci. Rep., vol. 10, no. 1, pp. 1-15, 2020. DOI: 10.1038/s41598-020-57410-2.

  19. Kumar, M., Bhardwaj, R., and Sahu, K.C., Coalescence Dynamics of a Droplet on a Sessile Droplet, Phys. Fluids, vol. 32, no. 1, p. 012104, 2020. DOI: 10.1063/1.5129901.

  20. Liang, G. and Mudawar, I., Review of Spray Cooling-Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux, Int. J. Heat Mass Transf., vol. 115, pp. 1174-1205, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.029.

  21. Lin, S., Zhao, B., Zou, S., Guo, J., Wei, Z., and Chen, L., Impact of Viscous Droplets on Different Wettable Surfaces: Impact Phenomena, the Maximum Spreading Factor, Spreading Time and Post-Impact Oscillation, J. Colloid Interface Sci., vol. 516, pp. 86-97, 2018. DOI: 10.1016/j.jcis.2017.12.086.

  22. Mittal, R., Ni, R., and Seo, J.H., The Flow Physics of COVID-19, J. Fluid Mech., vol. 894, 2020. DOI: 10.1017/jfm.2020.330.

  23. Nansen, C., Ferguson, J.C., Moore, J., Groves, L., Emery, R., Garel, N., and Hewitt, A., Optimizing Pesticide Spray Coverage Using a Novel Web and Smartphone Tool, SnapCard, Agronomy Sustain. Develop., vol. 35, no. 3, pp. 1075-1085, 2015. DOI: 10.1007/s13593-015-0309-y.

  24. Qahtan, T.F., Gondal, M.A., Alade, I.O., and Dastageer, M.A., Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion, Sci. Rep., vol. 7, no. 1, pp. 1-7, 2017. DOI: 10.1038/s41598-017-06753-4.

  25. Qu, J., Yang, Y., Yang, S., Hu, D., and Qiu, H., Droplet Impingement on Nano-Textured Superhydrophobic Surface: Experimental and Numerical Study, Appl. Surf. Sci., vol. 491, pp. 160-170, 2019. DOI: 10.1016/j.apsusc.2019.06.104.

  26. Ramirez-Soto, O., Sanjay, V., Lohse, D., Pham, J.T., and Vollmer, D., Lifting a Sessile Oil Drop with an Impacting One, arXiv preprint arXiv:1912.02667, 2019.

  27. Richard, D., Clanet, C., and Quere, D., Contact Time of a Bouncing Drop, Nature, vol. 417, no. 6891, pp. 811-811, 2002. DOI: 10.1038/417811a.

  28. Roisman, I.V., Inertia Dominated Drop Collisions. II. An Analytical Solution of the Navier-Stokes Equations for a Spreading Viscous Film, Phys. Fluids, vol. 21, no. 5, p. 052104, 2009. DOI: 10.1063/1.3129283.

  29. Roisman, I.V., Opfer, L., Tropea, C., Raessi, M., Mostaghimi, J., and Chandra, S., Drop Impact onto a Dry Surface: Role of the Dynamic Contact Angle, Colloids Surfaces A: Physicochem. Eng. Aspects, vol. 322, nos. 1-3, pp. 183-191, 2008. DOI: 10.1016/j.colsurfa.2008.03.005.

  30. Roisman, I.V., Prunet-Foch, B., Tropea, C., and Vignes-Adler, M., Multiple Drop Impact onto a Dry Solid Substrate, J. Colloid Interface Sci., vol. 256, no. 2, pp. 396-410, 2002b. DOI: 10.1006/jcis.2002.8683.

  31. Roisman, I.V., Rioboo, R., and Tropea, C., Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding, Proc. Roy. Soc. London. Series A: Math. Phys. Eng. Sci., vol. 458, no. 2022, pp. 1411-1430, 2002a. DOI: 10.1098/rspa.2001.0923.

  32. Sikalo, S., Wilhelm, H.D., Roisman, I.V., Jakirlic, S., and Tropea, C., Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations, Phys. Fluids, vol. 17, no. 6, p. 062103, 2005. DOI: 10.1063/1.1928828.

  33. Somwanshi, P.M., Muralidhar, K., and Khandekar, S., Coalescence of Vertically Aligned Drops over a Superhydrophobic Surface, Phys. Fluids, vol. 32, no. 5, p. 052106, 2020. DOI: 10.1063/5.0007419.

  34. Stadnytskyi, V., Bax, C.E., Bax, A., and Anfinrud, P., The Airborne Lifetime of Small Speech Droplets and Their Potential Importance in SARS-CoV-2 Transmission, Proc. Nat. Acad. Sci., vol. 117, no. 22, pp. 11875-11877, 2020. DOI: 10.1073/pnas.2006874117.

  35. Visser, C.W., Frommhold, P.E., Wildeman, S., Mettin, R., Lohse, D., and Sun, C., Dynamics of High-Speed Micro-Drop Impact: Numerical Simulations and Experiments at Frame-to-Frame Times Below 100 ns, Soft Matter, vol. 11, no. 9, pp. 1708-1722, 2015. DOI: 10.1039/C4SM02474E.

  36. Wakefield, J., Tilger, C.F., and Oehlschlaeger, M.A., The Interaction of Falling and Sessile Drops on a Hydrophobic Surface, Exp. Therm. Fluid Sci., vol. 79, pp. 36-43, 2016. DOI: 10.1016/j.exptherm-flusci.2016.06.022.

  37. Wang, F. and Fang, T., Post-Impact Drop Vibration on a Hydrophilic Surface, Exp. Therm. Fluid Sci., vol. 98, pp. 420-428, 2018. DOI: 10.1016/j.expthermflusci.2018.06.013.

  38. Wang, Z., Lopez, C., Hirsa, A., and Koratkar, N., Impact Dynamics and Rebound of Water Droplets on Superhydrophobic Carbon Nanotube Arrays, Appl. Phys. Lett., vol. 91, no. 2, p. 023105, 2007. DOI: 10.1063/1.2756296.

  39. Wildeman, S., Visser, C.W., Sun, C., and Lohse, D., On the Spreading of Impacting Drops, J. Fluid Mech., vol. 805, pp. 636-655, 2016. DOI: 10.1017/jfm.2016.584.

  40. Yarin, A.L., Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing..., Annu. Rev. Fluid Mech., vol. 38, pp. 159-192, 2006. DOI: 10.1146/annurev.fluid.38.050304.092144.

REFERENZIERT VON
  1. Jaiswal Ankush Kumar, Khandekar Sameer, Drop-on-Drop Impact Dynamics on a Superhydrophobic Surface, Langmuir, 37, 43, 2021. Crossref

  2. Somwanshi Praveen M., Cheverda V. V., Muralidhar K., Khandekar S., Kabov O. A., Understanding vertical coalescence dynamics of liquid drops over a superhydrophobic surface using high-speed orthographic visualization, Experiments in Fluids, 63, 2, 2022. Crossref

  3. Fan Shuangshuang, Wang Ying, Yao Kun, Shi Jiakui, Han Jun, Wan Jie, Distribution Characteristics of High Wetness Loss Area in the Last Two Stages of Steam Turbine under Varying Conditions, Energies, 15, 7, 2022. Crossref

  4. Jaiswal Ankush Kumar, Khandekar Sameer, Thermal transport during drop-on-drop impact on a heated superhydrophobic substrate, Numerical Heat Transfer, Part B: Fundamentals, 2022. Crossref

  5. Khandekar Sameer, Jaiswal Ankush Kumar, Sahu Gopinath, , 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain