Abo Bibliothek: Guest
Journal of Flow Visualization and Image Processing

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 1065-3090

ISSN Online: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

SHOCK PROFILES AND WAKE STRUCTURES IN GRANULAR FLOW PAST OBSTACLES

Volumen 29, Ausgabe 4, 2022, pp. 63-80
DOI: 10.1615/JFlowVisImageProc.2022040664
Get accessGet access

ABSTRAKT

Granular flows exhibit intriguing features that can draw parallels to continuum flow or the discrete nature of the material as a result of complex interaction between granular particles. In the present work, we explore two features: the bow shock and wake structures formed when a bluff body is submerged in quasi-two-dimensional granular flows. The article discusses how the shape of the obstacle affects these formations. The experiments use circular, square, and triangular cylinders and several flow velocities. Flow visualization is done by shadowgraph technique, and particle-image-velocimetry (PIV) is also used to analyze the flow. In addition, an attempt to formulate mathematical equations to fit the shock profiles is made. Velocity profiles for the flow between the wake and the shock, and wake angles have been presented for a circular obstacle.

REFERENZEN
  1. Amarouchene, Y. and Kellay, H., Dynamic Sand Dunes, Phys. Rev. Lett., vol. 86, no. 19, p. 4286,2001.

  2. Delannay, R., Valance, A., Mangeney, A., Roche, O., and Richard, P., Granular and Particle-Laden Flows: From Laboratory Experiments to Field Observations, J. Phys. D: Appl. Phys., vol. 50, no. 5, p. 053001, 2017.

  3. Garai, P., Verma, S., and Kumar, S., Visualization of Shocks in Granular Media, J. Vis, vol. 29, pp. 729-739, 2019.

  4. Garcia, D., A Fast All-in-One Method for Automated Post-Processing of Piv Data. Experiments in Fluids, Exper. Flow, vol. 2, no. 1, p. 30,2014.

  5. Goldhirsch, I., Rapid Granular Flows, Ann. Rev. FluidMech., vol. 35, no. 1, pp. 267-293,2003.

  6. Gray, J.M.N.T. and Cui, X., Weak, Strong and Detached Oblique Shocks in Gravity-Driven Granular Free-Surface Flows, J. Fluid Mech, vol. 579, pp. 113-136,2007.

  7. Gray, J.M.N.T., Tai, Y.C., and Noelle, S., Shock Waves, Dead Zones and Particle-Free Regions in Rapid Granular Free-Surface Flows, J. Fluid Mech, vol. 491, pp. 161-181,2003.

  8. Guo, Y. and Curtis, J.S., Discrete Element Method Simulations for Complex Granular Flows, Ann. Rev. Fluid Mech, vol. 47, no. 1,pp. 21-46,2015.

  9. Heil, P., Rericha, E.C., Goldman, D.I., and Swinney, H.L., Mach Cone in a Shallow Granular Fluid, Phys. Rev. E, vol. 70, p. 060301,2004.

  10. Jaeger, H.M., Nagel, S.R., and Behringer, R.P., Granular Solids, Liquids, and Gases, Rev. Modern Phys, vol. 68, no. 4, p. 1259,1996.

  11. Karim, M.Y. and Corwin, E.I., Universality in Quasi-Two-Dimensional Granular Shock Fronts above an Intruder, Phys. Rev. E, vol. 95, p. 060901,2017.

  12. Khan, A., Hankare, P., Kumar, S., Kumar, R., Verma, S., and Prakash, S.P., Shocks and Shock Interactions in Granular Flow past Circular Cylinder, AIAA Aviation 2019 Forum, p. 3075, Dallas, TX, USA, June 17-21,2019a.

  13. Khan, A., Hankare, P., Verma, S., Kumar, R., and Kumar, S., Shock Detachment in Granular Flows, Int. Symp. on Shock Waves (ISSW32), Singapore, July 14-19,2019b.

  14. Khan, A., Verma, S., Hankare, P., Kumar, R., and Kumar, S., Shock-Shock Interactions in Granular Flows, J. FluidMech., vol. 884,2020a. DOI: 10.1017/jfm.2019.988. DOI: 10.1017/jfm.2019.988

  15. Khan, A., Verma, S., Jaiswal, Y., Gupta, Y., Kumar, R., and Kumar, S., Shock Wave Interactions in Granular Flows, APS Division of Fluid Dynamics Meeting Abstracts, p. H14-011, November 22-24,2020b.

  16. Khan, A., Sachan, P.B., Mathews, A.K., Verma, S., Hankare, P., Kumar, R., and Kumar, S., Interfacial Waves in Dual Stream Granular Flows, Proceedings of 16th Asian Congress of Fluid Mechanics, Singapore: Springer, pp. 453-458,2021.

  17. Khan, A., Hankare, P., Verma, S., Jaiswal, Y., Kumar, R., and Kumar, S., Detachment of Strong Shocks in Confined Granular Flows, J. Fluid Mech, vol. 936,2022.

  18. Mathews, A., Khan, A., Sharma, B.,, Kumar, S., and Kumar, R., A Numerical Investigation of Granular Shock Waves over a Circular Cylinder Using the Discrete Element Method, J. Fluid Mech., vol. 936, 2022. DOI: 10.1017/jfm.2022.62. DOI: 10.1017/jfm.2022.62

  19. Padgett, D.A., Mazzoleni, A.P., andFaw, S.D., Survey of Shock-Wave Structures of Smooth-Particle Granular Flows, Phys. Rev. E, vol. 92, p. 062209,2015.

  20. Rericha, E.C., Bizon, C., Shattuck, M.D., and Swinney, H.L., Shocks in Supersonic Sand, Phys. Rev. Lett., vol. 88, no. 1, p. 014302,2001.

  21. MathWorks, Curve Fitting Toolbox, Natick, MA, USA, 2020.

  22. Thielicke, W., The Flapping Flight of Birds-Analysis and Application, PhD, Rijksuniversiteit Groningen, Netherlands, 2014.

  23. Thielicke, W. and Sonntag, R., Particle Image Velocimetry for Matlab: Accuracy and Enhanced Algorithms inPIVlab, J. Open Res. Software, vol. 9,no. 1,p. 12,2021.

  24. Thielicke, W. and Stamhuis, E., PIVlab-Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in Matlab, J. Open Res. Software, vol. 2, no. 1, p. 30,2014.

  25. van Dyke, M., An Album of Fluid Motion, Vol. 176, Stanford, CA: Parabolic Press Stanford, 1982.

  26. Vilquin, A., Boudet, J.F., and Kellay, H., Structure of Velocity Distributions in Shock Waves in Granular Gases with Extension to Molecular Gases, Phys. Rev. E, vol. 94, p. 022905,2016.

  27. Vilquin, A., Kellay, H., and Boudet, J.F., Shock Waves Induced by a Planar Obstacle in a Vibrated Granular Gas, J. Fluid Mech., vol. 842, pp. 163-187,2018.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain