Abo Bibliothek: Guest
Journal of Machine Learning for Modeling and Computing

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 2689-3967

ISSN Online: 2689-3975

Indexed in

DATA-DRIVEN FAILURE PREDICTION IN BRITTLE MATERIALS: A PHASE FIELD-BASED MACHINE LEARNING FRAMEWORK

Volumen 2, Ausgabe 1, 2021, pp. 65-89
DOI: 10.1615/JMachLearnModelComput.2021034062
Get accessDownload

ABSTRAKT

Failure in brittle materials led by the evolution of micro- to macro-cracks under repetitive or increasing loads is often catastrophic with no significant plasticity to advert the onset of fracture. Early failure detection with respective location are utterly important features in any practical application, both of which can be effectively addressed using artificial intelligence. In this paper, we develop a supervised machine learning (ML) framework to predict failure in an isothermal, linear elastic and isotropic phase-field model for damage and fatigue of brittle materials. Time-series data of the phase-field model is extracted from virtual sensing nodes at different locations of the geometry. A pattern recognition scheme is introduced to represent time-series data/sensor node responses as a pattern with a corresponding label, integrated with ML algorithms, used for damage classification with identified patterns. We perform an uncertainty analysis by superposing random noise to the time-series data to assess the robustness of the framework with noise-polluted data. Results indicate that the proposed framework is capable of predicting failure with acceptable accuracy even in the presence of high noise levels. The findings demonstrate satisfactory performance of the supervised ML framework and the applicability of artificial intelligence and ML to a practical engineering problem, i.e., data-driven failure prediction in brittle materials.

REFERENZEN
  1. Al Azzawi, D., Moncayo, H., Perhinschi, M.G., Perez, A., and Togayev, A., Comparison of Immunity-Based Schemes for Aircraft Failure Detection and Identification, Eng. Appl. Artif. Intel., vol. 52, pp. 181-193,2016.

  2. Allen, S.M. and Cahn, J.W., A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening, Acta Metal., vol. 27, no. 6, pp. 1085-1095,1979.

  3. Ambati, M., Gerasimov, T., and De Lorenzis, L., Phase-Field Modeling of Ductile Fracture, Comput. Mech, vol. 55, no. 5, pp. 1017-1040,2015.

  4. Ambati, M., Kruse, R., and De Lorenzis, L., A Phase-Field Model for Ductile Fracture at Finite Strains and Its Experimental Verification, Comput. Mech, vol. 57, no. 1, pp. 149-167,2016.

  5. Amendola, G., Fabrizio, M., and Golden, J.M., Thermomechanics of Damage and Fatigue by a Phase Field Model, J. Therm. Stress, vol. 39, no. 5, pp. 487-499,2016.

  6. Barros de Moraes, E.A., Zayernouri, M., and Meerschaert, M.M., An Integrated Sensitivity-Uncertainty Quantification Framework for Stochastic Phase-Field Modeling of Material Damage, Int. J. Numer. Methods Eng., 2020. (in press).

  7. Boldrini, J., Barros de Moraes, E., Chiarelli, L., Fumes, F., and Bittencourt, M., A Non-Isothermal Thermo-dynamically Consistent Phase Field Framework for Structural Damage and Fatigue, Comput. Methods Appl. Mech. Eng., vol. 312, pp. 395-427,2016.

  8. Borden, M.J., Hughes, T.J., Landis, C.M., and Verhoosel, C.V., A Higher-Order Phase-Field Model for Brittle Fracture: Formulation and Analysis within the Isogeometric Analysis Framework, Comput. Methods Appl. Mech. Eng., vol. 273, pp. 100-118,2014.

  9. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., and Landis, C.M., A Phase-Field Description of Dynamic Brittle Fracture, Comput. Methods Appl. Mech. Eng., vols. 217-220, pp. 77-95,2012.

  10. Cahn, J.W. and Hilliard, J.E., Free Energy of a Nonuniform System. I. Interfacial Free Energy, J. Chem. Phys, vol. 28, no. 2, pp. 258-267,1958.

  11. Caputo, M. and Fabrizio, M., Damage and Fatigue Described by a Fractional Derivative Model, J. Comput. Phys.., vol. 293, pp. 400-408,2015.

  12. Carrara, P., Ambati, M., Alessi, R., and De Lorenzis, L., A Framework to Model the Fatigue Behavior of Brittle Materials Based on a Variational Phase-Field Approach, Comput. Methods Appl. Mech. Eng., p. 112731,2019.

  13. Chiarelli, L., Fumes, F., Barros de Moraes, E., Haveroth, G., Boldrini, J.L., and Bittencourt, M.L., Comparison of High Order Finite Element and Discontinuous Galerkin Methods for Phase Field Equations: Application to Structural Damage, Comput. Math. Appl., vol. 74, no. 7, pp. 1542-1564,2017.

  14. Friedman, J., Hastie, T., and Tibshirani, R., The Elements of Statistical Learning, vol. 1, New York, NY: Springer, 2001.

  15. Geman, S., Bienenstock, E., and Doursat, R., Neural Networks and the Bias/Variance Dilemma, Neural Comput, vol. 4, no. 1, pp. 1-58,1992.

  16. Griffith, A.A., VI. The Phenomena of Rupture and Flow in Solids, Philos. Transact. Royal Soc. A, vol. 221, nos. 582-593, pp. 163-198,1921.

  17. Hassoun, M.H., Fundamentals of Artificial Neural Networks, Cambridge, MA: MIT Press, 1995.

  18. Haveroth, G.A., Barros de Moraes, E.A., Boldrini, J.L., and Bittencourt, M.L., Comparison of Semi and Fully-Implicit Time Integration Schemes Applied to a Damage and Fatigue Phase Field Model, Lat. Am. J. Solids Struct., vol. 15, no. 5, 2018.

  19. Hofacker, M. and Miehe, C., A Phase Field Model of Dynamic Fracture: Robust Field Updates for the Analysis of Complex Crack Patterns: A Phase Field Model of Dynamic Fracture, Int. J. Numer. Methods Eng., vol. 93, no. 3, pp. 276-301,2013.

  20. Hunter, A., Moore, B.A., Mudunuru, M., Chau, V., Tchoua, R., Nyshadham, C., Karra, S., O'Malley, D., Rougier, E., Viswanathan, H., and Srinivasan, G., Reduced-Order Modeling through Machine Learning and Graph-Theoretic Approaches for Brittle Fracture Applications, Comput. Mater. Sci., vol. 157, pp. 87-98,2019.

  21. Keller, J.M., Gray, M.R., and Givens, J.A., A Fuzzy K-Nearest Neighbor Algorithm, IEEE Transact. Sys, Man, Cybernet, no. 4, pp. 580-585, 1985.

  22. Lemaitre, J. and Desmorat, R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures, New York, NY: Springer Science & Business Media, 2005.

  23. Lim, H.J. and Sohn, H., Online Fatigue Crack Quantification and Prognosis Using Nonlinear Ultrasonic Modulation and Artificial Neural Network, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, vol. 10598, Denver, CO, March 5-8,2018.

  24. Lim, H.J., Sohn, H., and Kim, Y., Data-Driven Fatigue Crack Quantification and Prognosis Using Nonlinear Ultrasonic Modulation, Mech. Sys. SignalProc., vol. 109, pp. 185-195,2018.

  25. Lima, E.A.B.F., Oden, J.T., and Almeida, R.C., A Hybrid Ten-Species Phase-Field Model of Tumor Growth, Math. Models Methods Appl. Sci., vol. 24, no. 13, pp. 2569-2599,2014.

  26. Liu, Y.Y., Ju, Y.F., Duan, C.D., and Zhao, X.F., Structure Damage Diagnosis Using Neural Network and Feature Fusion, Eng. Appl. Artif. Intel., vol. 24, no. 1, pp. 87-92,2011.

  27. Miehe, C., Hofacker, M., and Welschinger, F., A Phase Field Model for Rate-Independent Crack Propagation: Robust Algorithmic Implementation Based on Operator Splits, Comput. Methods Appl. Mech. Eng., vol. 199, nos. 45-48, pp. 2765-2778,2010a.

  28. Miehe, C., Welschinger, F., and Hofacker, M., Thermodynamically Consistent Phase-Field Models of Fracture: Variational Principles and Multi-Field FE Implementations, Int. J. Numer. Methods Eng., vol. 83, no. 10, pp. 1273-1311,2010b.

  29. Moore, B.A., Rougier, E., O'Malley, D., Srinivasan, G., Hunter, A., and Viswanathan, H., Predictive Modeling of Dynamic Fracture Growth in Brittle Materials with Machine Learning, Comput. Mater. Sci., vol. 148, pp. 46-53,2018.

  30. Papanikolaou, S., Tzimas, M., Reid, A.C., and Langer, S.A., Spatial Strain Correlations, Machine Learning, and Deformation History in Crystal Plasticity, Phys. Rev. E, vol. 99, no. 5, p. 053003,2019.

  31. Rovinelli, A., Sangid, M.D., Proudhon, H., and Ludwig, W., Using Machine Learning and a Data-Driven Approach to Identify the Small Fatigue Crack Driving Force in Polycrystalline Materials, NPJ Comput. Mater-, vol. 4, no. 1,p. 35,2018.

  32. Saeidpour, A., Chorzepa, M.G., Christian, J., and Durham, S., Parameterized Fragility Assessment of Bridges Subjected to Hurricane Events Using Metamodels and Multiple Environmental Parameters, J. Infrastruct. Sys., vol. 24, no. 4, p. 04018031,2018.

  33. Salehi, H. and Burgueno, R., Emerging Artificial Intelligence Methods in Structural Engineering, Eng. Struct., vol. 171, pp. 170-189,2018.

  34. Salehi, H., Das, S., Chakrabartty, S., Biswas, S., andBurguefio,R., Damage Identification in Aircraft Structures with Self-Powered Sensing Technology: A Machine Learning Approach, Struct. Control Health Monitor., vol. 25, no. 12, p. e2262,2018a.

  35. Salehi, H., Das, S., Chakrabartty, S., Biswas, S., andBurguefio,R., Structural Damage Identification Using Image-Based Pattern Recognition on Event-Based Binary Data Generated from Self-Powered Sensor Networks, Struct. Control Health Monitor., vol. 25, no. 4, p. e2135,2018b.

  36. Salehi, H., Biswas, S., and Burguefio, R., Data Interpretation Framework Integrating Machine Learning and Pattern Recognition for Self-Powered Data-Driven Damage Identification with Harvested Energy Variations, Eng. Appl. Artif Intel., vol. 86, pp. 136-153,2019a.

  37. Salehi, H., Das, S., Chakrabartty, S., Biswas, S., and Burguefio, R., An Algorithmic Framework for Reconstruction of Time-Delayed and Incomplete Binary Signals from an Energy-Lean Structural Health Monitoring System, Eng. Struct., vol. 180, pp. 603-620,2019b.

  38. Santos, A., Figueiredo, E., Silva, M., Sales, C., and Costa, J., Machine Learning Algorithms for Damage Detection: Kernel-Based Approaches, J. Sound Vibrat., vol. 363, pp. 584-599,2016.

  39. Schwarzer, M., Rogan, B., Ruan, Y., Song, Z., Lee, D.Y., Percus, A.G., Chau, V.T., Moore, B.A., Rougier, E., Viswanathan, H., and Srinivasan, G., Learning to Fail: Predicting Fracture Evolution in Brittle Material Models Using Recurrent Graph Convolutional Neural Networks, Comput. Mater. Sci., vol. 162, pp. 322-332,2019.

  40. Seiler, M., Linse, T., Hantschke, P., and Kastner, M., An Efficient Phase-Field Model for Fatigue Fracture in Ductile Materials, 2019. arXiv: 1903.06465.

  41. Shen, Z.H., Wang, J.J., Jiang, J.Y., Huang, S.X., Lin, Y.H., Nan, C.W., Chen, L.Q., and Shen, Y., Phase-Field Modeling and Machine Learning of Electric-Thermal-Mechanical Breakdown of Polymer-Based Dielectrics, Nat. Commun, vol. 10, no. 1,p. 1843,2019.

  42. Silva, M., Santos, A., Figueiredo, E., Santos, R., Sales, C., and Costa, J.C., A Novel Unsupervised Approach Based on a Genetic Algorithm for Structural Damage Detection in Bridges, Eng. Appl. Artif. Intel., vol. 52, pp. 168-180,2016.

  43. Sun, P., Xu, J., and Zhang, L., Full Eulerian Finite Element Method of a Phase Field Model for Fluid-Structure Interaction Problem, Comput. Fluids, vol. 90, pp. 1-8,2014.

  44. Suzuki, J. and Murnz-Rojas, P., Transient Analysis of Geometrically Non-Linear Trusses Considering Coupled Plasticity and Damage, Tenth World Congress on Computational Mechanics, vol. 1, p. 98, Sanya, China, December 5-7, 2014.

  45. Suzuki, J., Zayernouri, M., Bittencourt, M., and Karniadakis, G., Fractional-Order Uniaxial Visco-Elasto-Plastic Models for Structural Analysis, Comput. Methods Appl. Mech. Eng., vol. 308, pp. 443-467, 2016.

  46. Teichert, G., Natarajan, A., Van der Ven, A., and Garikipati, K., Machine Learning Materials Physics: Integrable Deep Neural Networks Enable Scale Bridging by Learning Free Energy Functions, Comput. Methods Appl. Mech. Eng., vol. 353, pp. 201-216,2019.

  47. Varghaei, P., Kharazmi, E., Suzuki, J.L., and Zayernouri, M., Vibration Analysis of Geometrically Nonlinear and Fractional Viscoelastic Cantilever Beams, 2019. arXiv: 1909.02142.

  48. Weinberger, K.Q. and Saul, L.K., Distance Metric Learning for Large Margin Nearest Neighbor Classification, J. Machine Learn. Res., vol. 10, pp. 207-244,2009.

  49. Wootton, A.J., Butcher, J.B., Kyriacou, T., Day, C.R., and Haycock, P.W., Structural Health Monitoring of a Footbridge Using Echo State Networks and NARMAX, Eng. Appl. Artif. Intel., vol. 64, pp. 152-163, 2017.

  50. Yabansu, Y.C., Steinmetz, P., Hotzer, J., Kalidindi, S.R., and Nestler, B., Extraction of Reduced-Order Process-Structure Linkages from Phase-Field Simulations, Acta Mater, vol. 124, pp. 182-194,2017.

  51. Yue, P., Feng, J.J., Liu, C., and Shen, J., A Diffuse-Interface Method for Simulating Two-Phase Flows of Complex Fluids, J. Fluid Mech, vol. 515, p. 293-317,2004.

  52. Zhang, G., Patuwo, B.E., and Hu, M.Y., Forecasting with Artificial Neural Networks: The State of the Art, Int. J. Forecast, vol. 14, no. 1, pp. 35-62,1998.

  53. Zhou, Y., Suzuki, J.L., Zhang, C., and Zayernouri, M., Fast Imex Time Integration of Nonlinear Stiff Fractional Differential Equations, 2019. arXiv: 1909.04132.

REFERENZIERT VON
  1. References, in Artificial Intelligence and Data Analytics for Energy Exploration and Production, 2022. Crossref

1342 Artikelansichten 2370 Artikel-Downloads Metriken
1342 ANSICHTEN 2370 HERUNTERLADEN 1 Crossref ZITATE Google
Scholar
ZITATE

Artikel mit ähnlichem Inhalt:

ON TRANSFER LEARNING OF NEURAL NETWORKS USING BI-FIDELITY DATA FOR UNCERTAINTY PROPAGATION International Journal for Uncertainty Quantification, Vol.10, 2020, issue 6
Ryan Skinner, Subhayan De, Matthew Reynolds, Jolene Britton, Kenneth Jansen, Alireza Doostan
EFFICIENT SEGMENTATION MODEL USING MRI IMAGES AND DEEP LEARNING TECHNIQUES FOR MULTIPLE SCLEROSIS CLASSIFICATION International Journal for Multiscale Computational Engineering, Vol.22, 2024, issue 5
Beiji Zou, Xiaoyan Kui, Gilbert Langat, Kevin Njagi
UNCERTAINTY QUANTIFICATION OF WATERFLOODING IN OIL RESERVOIRS COMPUTATIONAL SIMULATIONS USING A PROBABILISTIC LEARNING APPROACH International Journal for Uncertainty Quantification, Vol.13, 2023, issue 4
Fernando Alves Rochinha, Jeferson Osmar Almeida
COMPUTATIONAL FRAMEWORK FOR PREDICTION OF CARDIAC DISORDERS BY ANALYZING ECG SIGNALS USING MACHINE LEARNING TECHNIQUE International Journal for Multiscale Computational Engineering, Vol.22, 2024, issue 5
S. P. Manikandan, M. Ashokkumar, K. Ramesh, A. N. Duraivel, S. Lekashri
Predicting Interfacial Heat Transfer Coefficient in CO2-Mould Sand Casting of Steel Using Machine Learning Algorithms Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India, Vol.0, 2021, issue
Dhanapal Kamble, Akshay Jadhav, Vishal B. Bhagwat, P. R. Chitragar
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain