Abo Bibliothek: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 1093-3611

ISSN Online: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

INFLUENCE OF NICKEL OXIDE AMOUNT ON ELECTRICAL PARAMETERS AND STABILITY OF SUPERCAPACITORS

Volumen 14, Ausgabe 3, 2010, pp. 245-253
DOI: 10.1615/HighTempMatProc.v14.i3.40
Get accessGet access

ABSTRAKT

A carbon/nickel oxide composite capacitors were made using arc plasma jet and magnetron sputtering deposition techniques. Carbon coatings were deposited on stainless steel substrates at atmospheric pressure from argon-acetylene gases mixture by plasma jet chemical vapor deposition. Nickel oxide (NiO2) layer was formed on the carbon coating employing magnetron sputtering deposition. The thickness of the deposited nickel oxide film was verified in the range from 18 to 360 nm. In order to characterize differences between produced capacitors, the specific capacitance (C) and maximum working voltage (U) were measured. It was obtained that the increase of NiO2 film thickness from 18 nm up to 72 nm, increases capacitance from 9 F g−1 up to 15 F g−1. Further increase of the metal oxide thickness decreases the specific capacitance value. Experimental results showed that the supercapacitors with thinner nickel oxide layers work much stable. The stability voltages were 0.58 V and 0.35 V, for the capacitors with NiO2 layer thickness of 18 nmand 360 nm, respectively.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain