Abo Bibliothek: Guest
Plasma Medicine

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 1947-5764

ISSN Online: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Characterization of Cold Atmospheric Pressure Plasma Technology and Its Anticancer Properties

Volumen 11, Ausgabe 4, 2021, pp. 53-62
DOI: 10.1615/PlasmaMed.2021040971
Get accessDownload

ABSTRAKT

The anticancer properties of plasma were studied by treating Dulbecco's modified Eagle's medium (DMEM) with cold atmospheric pressure plasma (CAPP). The CAPP was generated by using high voltage power supply (11.75 kV) at an operating frequency of 50 Hz. The DMEM was treated with cold plasma using argon as the process gas for the different exposure time ranging from 0.5 to 3 minutes. The treated media were transferred to Henrietta Lacks (HeLa) and Human Embryonic Kidneys 293 (HEK 293) cells. The viability of cancer cells was observed using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cold atmospheric pressure plasma discharge has been characterized by electrical and optical methods. The cold plasma treatment selectively killed cancer cells without affecting normal cells in vitro. It has been observed that the percentage viability of the cell lines varies with the plasma treatment time along the best fitted curve of a power function. The curve is steeper for the cancer cells than for the normal cells after plasma treatment. The faster decaying curve signifies the selective killing of the cancer cells compared to the normal cells within the exposure time. This study indicates that the reactive oxygen species in the CAPP activate the apoptosis pathway in the cancer cells. As a novel strategy, using the CAPP stimulated media has become a promising anti-cancer tool.

REFERENZEN
  1. Hong YC, Uhm HS. Microplasma jet at atmospheric pressure. Appl Phys Lett. 2006;89(22):221504.

  2. Baniya HB, Shrestha R, Guragain RP, Kshetri MB, Pandey BP, Subedi DP. Generation and characterization of an atmospheric-pressure plasma jet (APPJ) and its application in the surface modification of polyethylene terephthalate. Int J Polym Sci. 2020;11:1-7. doi: 10.1155/2020/9247642.

  3. Lackmann JW, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. JR Soc Interface. 2013;10(89):20130591.

  4. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim Acta Part B. 2006;61(1):2-30.

  5. Baniya HB, Guragain RP, Baniya B, Subedi DP. Cold atmospheric pressure plasma jet for the improvement of wettability of polypropylene. Int J Polym Sci. 2020:1-9. doi: 10.1155/2020/3860259.

  6. Laroussi M. Low-temperature plasmas for medicine? IEEE T Plasma Sci. 2009;37(6):714-25.

  7. Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett. 2005;87(11):113902.

  8. Kim K, Kim G, Hong YC, Yang SS. A cold micro plasma jet device suitable for bio-medical applications. Microelectron Eng. 2010; 87(5-8):1177-80.

  9. Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys. 2009;11(11):115020.

  10. Izadjoo M, Zack S, Kim H, Skiba J. Medical applications of cold atmospheric plasma: State of the science. J Wound Care. 2018;27(Suppl 9):S4-10.

  11. Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018;9(2):115.

  12. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: Impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298-306.

  13. Baniya HB, Guragain RP, Baniya B, Qin G, Subedi DP. Improvement of hydrophilicity of polyamide using atmospheric pressure plasma jet. Bibechana. 2020;17:133-41.

  14. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105(9):1295-301.

  15. Stockert JC, Blazquez-Castro A, Canete M, Horobin RW, Villanueva A. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem. 2012;114(8):785-96.

  16. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: The MTT assay. Methods Mol Biol. 2011;731:237-45.

  17. Eitan E, Zhang S, Witwer KW, Mattson MP. Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles. 2015;4(1):26373.

  18. Balcon N, Aanesl A, Boswell R. Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon. Plasma Sources Sci. Technol. 2007;16(2):217.

  19. Wong CS, Mongkolnavin R. Plasma diagnostics techniques. Elements of plasma technology. Singapore: Springer; 2016. pp. 49-98.

  20. Tao X, Lu R, Li H. Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source. Plasma Sci. Technol. 2012;14(8):723-7.

  21. Sarani A, Nikiforov A, De Geyter N, Morent R, Leys C. Characterization of an atmospheric pressure plasma jet and its application for treatment of non-woven textiles. Proceedings of 20th International Symposium on Plasma Chemistry (ISPC 20). Ghent University, Department of Applied Physics, Philadelphia, PA, USA; 2011. Available from: https://hdl.handle.net/1854/LU-1339873.

  22. Baniya HB, Guragain RP, Subedi DP. Cold atmospheric pressure plasma technology for modifying polymers to enhance adhesion: A critical review. Rev Adhes Adhes. 2021;9(2):269-307.

  23. Kramida A, Ralchenko Y, Reader J. NIST atomic spectra database (ver. 5.3). 2015;115-56. [2019, March 14] 2018 accessed. Available from: https://physics.nist.gov/asd.

  24. Georgescu N, Lupu AR. Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE T Plasma Sci. 2010;38(8):1949-55.

  25. Semmler ML, Bekeschus S, Schafer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe JB. Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (cap) in cancer treatment. Cancers. 2020;12(2):269.

  26. Cheng X, Murphy W, Recek N, Yan D, Cvelbar U, Vesel A, Mozetic M, Canady J, Keidar M, Sherman JH. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J Phys D Appl Phys. 2014;47(33):335402.

  27. Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, Ravi R, Sidransky D, Keidar M, Trink B. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med. 2014;34(4):941-6.

  28. Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977.

1423 Artikelansichten 499 Artikel-Downloads Metriken
1423 ANSICHTEN 499 HERUNTERLADEN Google
Scholar
ZITATE

Artikel mit ähnlichem Inhalt:

Cold Atmospheric Helium Plasma Induces Apoptosis by Increasing Intracellular Reactive Oxygen and Nitrogen Species Plasma Medicine, Vol.10, 2020, issue 4
Jyh Wei Lee, Chuan Li, Latha Ramireddy, Hui Yu Wu, Jang Hsing Hsieh, Bih Show Low, Chih Ho Lai
Induction of Apoptosis by Cold Atmospheric Pressure Plasma for Oral Squamous Cell Carcinoma Cells Plasma Medicine, Vol.8, 2018, issue 4
Jyh Wei Lee, Chuan Li, Latha Ramireddy, Hui Yu Wu, Jang Hsing Hsieh, Bih Show Low, Chih Ho Lai
Limiting Pseudomonas aeruginosa Biofilm Formation Using Cold Atmospheric Pressure Plasma Plasma Medicine, Vol.8, 2018, issue 3
George T. Williams, Robert D. Short, Amber E. Young, Sarah L. Allinson, Naing T. Thet, Andrew Toby A. Jenkins, Hollie Hathaway, Bethany Lee Patenall, Adam C. Sedgwick
Characterization and Assessment of Cold Plasma for Cancer Treatment Plasma Medicine, Vol.12, 2022, issue 2
Rameshwar Adhikari, Ashok GC, Roshan Gautam, Suman Prakash Pradhan, Niroj Banset, Sagar Regmi, Rajendra Shrestha, Deepak Prasad Subedi, Pusp Raj Joshi, Aavash Shakya, Aakash Paneru, Arun Kumar Shah
Viability and Cell Biology for HeLa and Vero Cells after Exposure to Low-Temperature Air Dielectric Barrier Discharge Plasma Plasma Medicine, Vol.7, 2017, issue 2
Valentin Pohoata, Cosmin Teodor Mihai, Ionut Topala, Lucian Gorgan, Ioana Cristina Gerber, Alexandru Nita, Ilarion Mihaila, Mitica Ciorpac
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain