Abo Bibliothek: Guest
Multiphase Science and Technology

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 0276-1459

ISSN Online: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

BUBBLE FORCES AND DETACHMENT MODELS

Volumen 13, Ausgabe 3&4, 2001, 42 pages
DOI: 10.1615/MultScienTechn.v13.i3-4.20
Get accessGet access

ABSTRAKT

The forces acting on growing and sliding vapor bubbles associated with heterogeneous boiling are identified. Closed form expressions have been suggested which approximate the magnitude of these forces. Beginning with Newton's second law, a rational basis is proposed for predicting vapor bubble detachment diameters and sliding trajectories in heterogeneous boiling. Model closure is achieved without introducing arbitrary constants. The predicted detachment diameters and sliding trajectories are compared with extensive data for pool and flow boiling in both horizontal and vertical orientations. Good agreement is observed for all cases considered.

REFERENZIERT VON
  1. Duhar Géraldine, Colin Catherine, A predictive model for the detachment of bubbles injected in a viscous shear flow with small inertial effects, Physics of Fluids, 16, 5, 2004. Crossref

  2. Lesage Frédéric J., Cotton James S., Robinson Anthony J., Modelling of quasi-static adiabatic bubble formation, growth and detachment for low Bond numbers, Chemical Engineering Science, 104, 2013. Crossref

  3. Kljenak Ivo, Mavko Borut, Simulation of void fraction profile evolution in subcooled nucleate boiling flow in a vertical annulus using a bubble-tracking approach, Heat and Mass Transfer, 42, 6, 2006. Crossref

  4. Duhar Géraldine, Colin Catherine, Dynamics of bubble growth and detachment in a viscous shear flow, Physics of Fluids, 18, 7, 2006. Crossref

  5. Michaelides Efstathios E., Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles, and Drops—The Freeman Scholar Lecture, Journal of Fluids Engineering, 125, 2, 2003. Crossref

  6. Li Shaodan, Tan Sichao, Xu Chao, Gao Puzhen, Visualization study of bubble behavior in a subcooled flow boiling channel under rolling motion, Annals of Nuclear Energy, 76, 2015. Crossref

  7. Lu J.F., Peng X.F., Bubble leaping and slipping during subcooled boiling on thin wires, International Journal of Thermal Sciences, 45, 9, 2006. Crossref

  8. Chen Deqi, Pan Liang-ming, Ren Song, Prediction of bubble detachment diameter in flow boiling based on force analysis, Nuclear Engineering and Design, 243, 2012. Crossref

  9. Okawa Tomio, Hayashi Kosuke, Tomiyama Akio, Numerical verification of a simplified model for vapor bubble lift-off from a hydrophilic heated flat-wall, Nuclear Engineering and Design, 240, 12, 2010. Crossref

  10. Yang Fanghao, Dai Xianming, Peles Yoav, Cheng Ping, Li Chen, Can multiple flow boiling regimes be reduced into a single one in microchannels?, Applied Physics Letters, 103, 4, 2013. Crossref

  11. Hetsroni G., Mosyak A., Pogrebnyak E., Sher I., Segal Z., Bubble growth in saturated pool boiling in water and surfactant solution, International Journal of Multiphase Flow, 32, 2, 2006. Crossref

  12. Yang Fanghao, Dai Xianming, Peles Yoav, Cheng Ping, Khan Jamil, Li Chen, Flow boiling phenomena in a single annular flow regime in microchannels (I): Characterization of flow boiling heat transfer, International Journal of Heat and Mass Transfer, 68, 2014. Crossref

  13. Guan P., Jia L., Yin L., Tan Z., Effect of Bubble Contact Diameter on Bubble Departure Size in Flow Boiling, Experimental Heat Transfer, 29, 1, 2016. Crossref

  14. Bower Jason, Klausner James F., Sathyanarayan Siddartha, High Heat Flux, Gravity-Independent, Two-Phase Heat Exchangers for Spacecraft Thermal Management, SAE Technical Paper Series, 1, 2002. Crossref

  15. Zhang Dongke, Zeng Kai, Distributed Energy Systems Based on Water Electrolysis Driven by Renewable Electricity, in Handbook of Clean Energy Systems, 2015. Crossref

  16. Kousalya Arun S., Singh Kulyash P., Fisher Timothy S., Heterogeneous wetting surfaces with graphitic petal-decorated carbon nanotubes for enhanced flow boiling, International Journal of Heat and Mass Transfer, 87, 2015. Crossref

  17. Di Marco P, Morganti N, Saccone G, Electric field effects on the dynamics of bubble detachment from an inclined surface, Journal of Physics: Conference Series, 655, 2015. Crossref

  18. Ahmadi Rouhollah, Ueno Tatsuya, Okawa Tomio, Bubble dynamics at boiling incipience in subcooled upward flow boiling, International Journal of Heat and Mass Transfer, 55, 1-3, 2012. Crossref

  19. Harada Takahiro, Nagakura Hiroshi, Okawa Tomio, Dependence of bubble behavior in subcooled boiling on surface wettability, Nuclear Engineering and Design, 240, 12, 2010. Crossref

  20. Duhar G., Riboux G., Colin C., Vapour bubble growth and detachment at the wall of shear flow, Heat and Mass Transfer, 45, 7, 2009. Crossref

  21. Yin Liaofei, Jia Li, Confined characteristics of bubble during boiling in microchannel, Experimental Thermal and Fluid Science, 74, 2016. Crossref

  22. Colin Catherine, Kannengieser Olivier, Bergez Wladimir, Lebon Michel, Sebilleau Julien, Sagan Michaël, Tanguy Sébastien, Nucleate pool boiling in microgravity: Recent progress and future prospects, Comptes Rendus Mécanique, 345, 1, 2017. Crossref

  23. Krepper Eckhard, Ding Wei, Review of Subcooled Boiling Flow Models, in Handbook of Multiphase Flow Science and Technology, 2016. Crossref

  24. Huber Grégory, Tanguy Sébastien, Sagan Michael, Colin Catherine, Direct numerical simulation of nucleate pool boiling at large microscopic contact angle and moderate Jakob number, International Journal of Heat and Mass Transfer, 113, 2017. Crossref

  25. Mali Chaitanya R., Vinod V., Patwardhan Ashwin W., Comparison of phase interaction models for high pressure subcooled boiling flow in long vertical tubes, Nuclear Engineering and Design, 324, 2017. Crossref

  26. Nucleate Boiling, in Boiling, 2017. Crossref

  27. Baczyzmalski Dominik, Karnbach Franziska, Mutschke Gerd, Yang Xuegeng, Eckert Kerstin, Uhlemann Margitta, Cierpka Christian, Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow, Physical Review Fluids, 2, 9, 2017. Crossref

  28. Ding Wei, Krepper Eckhard, Hampel Uwe, Evaluation of the microlayer contribution to bubble growth in horizontal pool boiling with a mechanistic model that considers dynamic contact angle and base expansion, International Journal of Heat and Fluid Flow, 72, 2018. Crossref

  29. Lebon M., Sebilleau J., Colin C., Dynamics of growth and detachment of an isolated bubble on an inclined surface, Physical Review Fluids, 3, 7, 2018. Crossref

  30. Giustini Giovanni, Ardron K.H., Walker S.P., Modelling of bubble departure in flow boiling using equilibrium thermodynamics, International Journal of Heat and Mass Transfer, 122, 2018. Crossref

  31. Ding Wei, Krepper Eckhard, Hampel Uwe, The Implementation of an Activated Temperature-Dependent Wall Boiling Model in an Eulerian-Eulerian Computational Fluid Dynamics Approach for Predicting the Wall Boiling Process, Nuclear Technology, 205, 1-2, 2019. Crossref

  32. Jianjun Xu, Tianzhou Xie, Bingde Chen, Wei Bao, Bubble Dynamics in a Narrow Rectangular Channel, in Principles and Applications in Nuclear Engineering - Radiation Effects, Thermal Hydraulics, Radionuclide Migration in the Environment, 2018. Crossref

  33. Huang R.L., Zhao C.Y., Xu Z.G., Investigation of bubble behavior in gradient porous media under pool boiling conditions, International Journal of Multiphase Flow, 103, 2018. Crossref

  34. Sinha Gulshan Kumar, Mahimkar Saylee, Srivastava Atul, Schlieren-based simultaneous mapping of bubble dynamics and temperature gradients in nucleate flow boiling regime: Effect of flow rates and degree of subcooling, Experimental Thermal and Fluid Science, 104, 2019. Crossref

  35. Tiwari Nishant, Moharana Manoj Kumar, Conjugate heat transfer analysis of liquid-vapor two phase flow in a microtube: A numerical investigation, International Journal of Heat and Mass Transfer, 142, 2019. Crossref

  36. Sarker D., Ding W., Schneider C., Hampel U., Single bubble dynamics during nucleate flow boiling on a vertical heater: Experimental and theoretical analysis of the effect of surface wettability, roughness and bulk liquid velocity, International Journal of Heat and Mass Transfer, 142, 2019. Crossref

  37. Ding Wei, Zhang Jinming, Sarker Debasish, Hampel Uwe, The role of microlayer for bubble sliding in nucleate boiling: A new viewpoint for heat transfer enhancement via surface engineering, International Journal of Heat and Mass Transfer, 149, 2020. Crossref

  38. Setoodeh Hamed, Ding Wei, Lucas Dirk, Hampel Uwe, Prediction of Bubble Departure in Forced Convection Boiling with a Mechanistic Model That Considers Dynamic Contact Angle and Base Expansion, Energies, 12, 10, 2019. Crossref

  39. Peng Xiaofeng, Bubble Dynamics on Fine Wires, in Micro Transport Phenomena During Boiling, 2010. Crossref

  40. Boiling in Micro-Channels, in Fluid Flow, Heat Transfer and Boiling in Micro-Channels, 2009. Crossref

  41. Hossain Syed Sahil, Mutschke Gerd, Bashkatov Aleksandr, Eckert Kerstin, The thermocapillary effect on gas bubbles growing on electrodes of different sizes, Electrochimica Acta, 353, 2020. Crossref

  42. Hadikhani Pooria, H. Hashemi S. Mohammad, Psaltis Demetri, The Impact of Surfactants on the Inertial Separation of Bubbles in Microfluidic Electrolyzers, Journal of The Electrochemical Society, 167, 13, 2020. Crossref

  43. Setoodeh Hamed, Ding Wei, Lucas Dirk, Hampel Uwe, Modelling and simulation of flow boiling with an Eulerian-Eulerian approach and integrated models for bubble dynamics and temperature-dependent heat partitioning, International Journal of Thermal Sciences, 161, 2021. Crossref

  44. Wang Haoyuan, Lou Qin, Li Ling, Mesoscale simulations of saturated flow boiling heat transfer in a horizontal microchannel, Numerical Heat Transfer, Part A: Applications, 78, 4, 2020. Crossref

  45. Zhang Dongke, Zeng Kai, Evaluating the Behavior of Electrolytic Gas Bubbles and Their Effect on the Cell Voltage in Alkaline Water Electrolysis, Industrial & Engineering Chemistry Research, 51, 42, 2012. Crossref

  46. Bucci Mattia, Buongiorno Jacopo, Bucci Matteo, The not-so-subtle flaws of the force balance approach to predict the departure of bubbles in boiling heat transfer, Physics of Fluids, 33, 1, 2021. Crossref

  47. Akand Md Abdur Rafiq, Matsumoto Tatsuya, Liu Wei, Morita Koji, Mechanistic critical heat flux prediction for in-vessel retention conditions, Nuclear Engineering and Design, 384, 2021. Crossref

  48. Mondal Kaushik, Bhattacharya Anandaroop, Pool boiling enhancement through induced vibrations in the liquid pool due to moving solid bodies—A numerical study using lattice Boltzmann method (LBM), Physics of Fluids, 33, 9, 2021. Crossref

  49. Mondal Kaushik, Bhattacharya Anandaroop, Numerical modeling of adjacent bubble interactions under the influence of induced vibrations in liquid pool using lattice Boltzmann method (LBM), Journal of Applied Physics, 130, 22, 2021. Crossref

  50. Vejrazka Jiri, Vobecka Lucie, Orvalho Sandra, Zednikova Maria, Tihon Jaroslav, Shape oscillations of a bubble or drop attached to a capillary tip, Chemical Engineering Science, 116, 2014. Crossref

  51. Wang Hongzhao, Yang Yinchuang, Wang Ying, Chao Christopher Y.H., Qiu Huihe, Effects of non-wetting fraction and pitch distance in flow boiling heat transfer in a wettability-patterned microchannel, International Journal of Heat and Mass Transfer, 190, 2022. Crossref

  52. Kim Jonghyun, Cho Jae Yong, Lee Joon Sang, Flow boiling enhancement by bubble mobility on heterogeneous wetting surface in microchannel, International Journal of Heat and Mass Transfer, 153, 2020. Crossref

  53. Hossain Syed Sahil, Bashkatov Aleksandr, Yang Xuegeng, Mutschke Gerd, Eckert Kerstin, Force balance of hydrogen bubbles growing and oscillating on a microelectrode, Physical Review E, 106, 3, 2022. Crossref

  54. Bashkatov Aleksandr, Hossain Syed Sahil, Mutschke Gerd, Yang Xuegeng, Rox Hannes, Weidinger Inez M., Eckert Kerstin, On the growth regimes of hydrogen bubbles at microelectrodes, Physical Chemistry Chemical Physics, 24, 43, 2022. Crossref

  55. Akay Ömer, Bashkatov Aleksandr, Coy Emerson, Eckert Kerstin, Einarsrud Kristian Etienne, Friedrich Andreas, Kimmel Benjamin, Loos Stefan, Mutschke Gerd, Röntzsch Lars, Symes Mark D., Yang Xuegeng, Brinkert Katharina, Electrolysis in reduced gravitational environments: current research perspectives and future applications, npj Microgravity, 8, 1, 2022. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain