Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

EXTENSIONS OF THE TWO-SCALE GENERALIZED FINITE ELEMENT METHOD TO NONLINEAR FRACTURE PROBLEMS

Volumen 11, Ausgabe 6, 2013, pp. 581-596
DOI: 10.1615/IntJMultCompEng.2013005685
Get accessGet access

ABSTRAKT

This paper presents an extension of a two-scale generalized finite element method (GFEM) to three-dimensional fracture problems involving confined plasticity. This two-scale procedure, also known as the generalized finite element method with global-local enrichments (GFEMgl), involves the solution of a fine-scale boundary value problem defined around a region undergoing plastic deformations and the enrichment of the coarse-scale solution space with the resulting nonlinear fine-scale solution through the partition-of-unity framework. The approach provides accurate nonlinear solutions with reduced computational costs compared to standard finite element methods, since the nonlinear iterations are performed on much smaller problems. The efficacy of the method is demonstrated with the help of numerical examples, which are three-dimensional fracture problems with nonlinear material properties and considering small-strain, rate-independent J2 plasticity.

REFERENZEN
  1. Babuška, I., Banerjee, U., and Osborn, J., Generalized finite element methods—Main ideas, results and perspective. DOI: 10.1142/S0219876204000083

  2. Babuška, I., Caloz, G., and Osborn, J., Special finite element methods for a class of second order elliptic problems with rough coefficients. DOI: 10.1137/0731051

  3. Babu&#353;ka, I. and Melenk, J., The partition of unity method. DOI: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

  4. Barros, F., Proenca, S., and Barcellos, C., Generalized finite element method in structural nonlinear analysis: A <i>p</i>-adaptive strategy. DOI: 10.1007/s00466-003-0503-7

  5. Belytschko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  6. Belytschko, T., Mo&#235;s, N., Usui, S., and Parimi, C., Arbitrary discontinuities in finite elements. DOI: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

  7. Bordas, S., Rabczuk, T., and Zi, G., Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. DOI: 10.1016/j.engfracmech.2007.05.010

  8. de Souza Neto, E. A., Peric, D., and Owen, D. R. J., Computational Methods for Plasticity: Theory and Applications.

  9. Duarte, C., Babu&#353;ka, I., and Oden, J., Generalized finite element methods for three dimensional structural mechanics problems. DOI: 10.1016/S0045-7949(99)00211-4

  10. Duarte, C. and Kim, D.-J., Analysis and applications of a generalized finite element method with global-local enrichment functions. DOI: 10.1016/j.cma.2007.08.017

  11. Duarte, C. and Oden, J., An <i>h-p</i> adaptive method using clouds. DOI: 10.1016/S0045-7825(96)01085-7

  12. D&#252;ster, A. and Rank, E., A <i>p</i>-version finite element approach for two- and three-dimensional problems of the <i>j</i><sub>2</sub> flow theory with non-linear isotropic hardening. DOI: 10.1002/nme.391

  13. Elguedj, T., Gravouil, A., and Combescure, A., Appropriate extended functions for the X-FEM simulation of plastic fracture mechanics. DOI: 10.1016/j.cma.2005.02.007

  14. Elguedj, T., Gravouil, A., and Combescure, A., A mixed augmented lagrangian-extended finite element method for modelling elastic-plastic fatigue crack growth with unilateral contact. DOI: 10.1002/nme.2002

  15. Fan, R. and Fish, J., The <i>rs</i>-method for material failure simulations. DOI: 10.1002/nme.2134

  16. Galland, F., Gravouil, A., Malvesin, E., and Rochette, M., A global model reduction approach for 3d fatigue crack growth with confined plasticity. DOI: 10.1016/j.cma.2010.08.018

  17. Gendre, L., Allix, O., and Gosselet, P., A two-scale approximation of the Schur complement and its use for non-intrusive coupling. DOI: 10.1002/nme.3142

  18. Gupta, V., Kim, D.-J., and Duarte, C., Analysis and improvements of global-local enrichments for the generalized finite element method. DOI: 10.1016/j.cma.2012.06.021

  19. Hutchinson, J., Singular behaviour at the end of a tensile crack in a hardening material. DOI: 10.1016/0022-5096(68)90014-8

  20. Kim, D.-J., Duarte, C., and Proenca, S., Generalized finite element method with global-local enrichments for nonlinear fracture analysis.

  21. Kim, D.-J., Duarte, C., and Proenca, S., A generalized finite element method with global-local enrichment functions for confined plasticity problems. DOI: 10.1007/s00466-012-0689-7

  22. Kim, D.-J., Pereira, J., and Duarte, C., Analysis of three-dimensional fracture mechanics problems: A two-scale approach using coarse generalized FEM meshes. DOI: 10.1002/nme.2690

  23. Legrain, G., Mo&#235;s, N., and Verron, E., Stress analysis around crack tips in finite strain problems using the extended finite element method. DOI: 10.1002/nme.1291

  24. Lubliner, J., Plasticity Theory.

  25. Melenk, J. and Babu&#353;ka, I., The partition of unity finite element method: Basic theory and applications. DOI: 10.1016/S0045-7825(96)01087-0

  26. Mo&#235;s, N., Dolbow, J., and Belytschko, T., A finite element method for crack growth without remeshing. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

  27. Oden, J. and Duarte, C., Chapter: Clouds, Cracks and FEM&#8216;s.

  28. Oden, J., Duarte, C., and Zienkiewicz, O., A new cloud-based <i>hp</i> finite element method. DOI: 10.1016/S0045-7825(97)00039-X

  29. O&#8216;Hara, P., Duarte, C., and Eason, T., Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients.

  30. Oskay, C. and Fish, J., On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. DOI: 10.1007/s00466-007-0197-3

  31. Pereira, J., Duarte, C., Guoy, D., and Jiao, X., <i>Hp</i>-Generalized FEM and crack surface representation for non-planar 3-D cracks. DOI: 10.1002/nme.2419

  32. Pereira, J., Kim, D.-J., and Duarte, C., A two-scale approach for the analysis of propagating three-dimensional fractures. DOI: 10.1007/s00466-011-0631-4

  33. Prabel, B., Combescure, A., Gravouil, A., and Marie, S., Level set X-FEM non-matching meshes: Application to dynamic crack propagation in elastic-plastic media. DOI: 10.1002/nme.1819

  34. Rabczuk, T., Areias, P. M. A., and Belytschko, T., A meshfree thin shell method for non-linear dynamic fracture. DOI: 10.1002/nme.2013

  35. Rahman, S. and Kim, J., Probabilistic fracture mechanics for nonlinear structures. DOI: 10.1016/S0308-0161(01)00006-0

  36. Rao, B. and Rahman, S., An enriched meshless method for non-linear fracture mechanics. DOI: 10.1002/nme.868

  37. Rice, J., McMeeking, R., Parks, D., and Sorensen, E., Recent finite element studies in plasticity and fracture mechanics. DOI: 10.1016/0045-7825(79)90026-4

  38. Rice, J. and Rosengren, G., Plane strain deformation near a crack tip in a power-law hardening material. DOI: 10.1016/0022-5096(68)90013-6

  39. Simo, J. and Hughes, T., Computational Inelasticity. DOI: 10.1007/b98904

  40. Simo, J. and Taylor, R., Consistent tangent operators for rate-independent elastoplasticity. DOI: 10.1016/0045-7825(85)90070-2

  41. Strouboulis, T., Babu&#353;ka, I., and Copps, K., The design and analysis of the generalized finite element method. DOI: 10.1016/S0045-7825(99)00072-9

  42. Strouboulis, T., Copps, K., and Babu&#353;ka, I., The generalized finite element method. DOI: 10.1016/S0045-7825(01)00188-8

  43. Sukumar, N., Mo&#235;s, N., Moran, B., and Belytschko, T., Extended finite element method for three-dimensional crack modelling. DOI: 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A

  44. Szabo, B. and Babu&#353;ka, I., Finite Element Analysis.

  45. Torres, I. and Proenca, S., Generalized finite element method in nonlinear three-dimensional analysis. DOI: 10.1142/S0219876208001388

  46. Waisman, H., Fish, J., Tuminaro, R., and Shadid, J., Acceleration of the generalized global basis (ggb) method for nonlinear problems. DOI: 10.1016/j.jcp.2005.04.016

REFERENZIERT VON
  1. Plews J.A., Duarte C.A., Bridging multiple structural scales with a generalized finite element method, International Journal for Numerical Methods in Engineering, 102, 3-4, 2015. Crossref

  2. Kim J., Duarte C. A., A new generalized finite element method for two-scale simulations of propagating cohesive fractures in 3-D, International Journal for Numerical Methods in Engineering, 104, 13, 2015. Crossref

  3. Kim J., Simone A., Duarte C. A., Mesh refinement strategies without mapping of nonlinear solutions for the generalized and standard FEM analysis of 3‐D cohesive fractures, International Journal for Numerical Methods in Engineering, 109, 2, 2017. Crossref

  4. O’Hara P., Duarte C.A., Eason T., A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces, Engineering Fracture Mechanics, 163, 2016. Crossref

  5. Plews J. A., Duarte C. A., A two-scale generalized finite element approach for modeling localized thermoplasticity, International Journal for Numerical Methods in Engineering, 108, 10, 2016. Crossref

  6. Malekan Mohammad, Barros Felício B., Pitangueira Roque L. S., Alves Phillipe D., An Object-Oriented Class Organization for Global-Local Generalized Finite Element Method, Latin American Journal of Solids and Structures, 13, 13, 2016. Crossref

  7. Malekan Mohammad, Barros Felício, Pitangueira Roque Luiz da Silva, Alves Phillipe Daniel, Penna Samuel Silva, A computational framework for a two-scale generalized/extended finite element method, Engineering Computations, 34, 3, 2017. Crossref

  8. Wang X. Q., O’Hara P. J., Mignolet M. P., Hollkamp J. J., Reduced Order Modeling with Local Enrichment for the Nonlinear Geometric Response of a Cracked Panel, AIAA Journal, 57, 1, 2019. Crossref

  9. Zhang Yiming, Zhuang Xiaoying, Cracking elements: A self-propagating Strong Discontinuity embedded Approach for quasi-brittle fracture, Finite Elements in Analysis and Design, 144, 2018. Crossref

  10. Kim Dae-Jin, Son Hong-Jun, Yi Yousun, Hong Sung-Gul, Generalized finite element formulation for efficient first-order plastic hinge analysis, Advances in Mechanical Engineering, 11, 3, 2019. Crossref

  11. O’Hara P., Hollkamp J., Duarte C. A., Eason T., A two-scale generalized finite element method for fatigue crack propagation simulations utilizing a fixed, coarse hexahedral mesh, Computational Mechanics, 57, 1, 2016. Crossref

  12. Firoozfar Alireza, Ansari Bahman, A time domain finite element approach based on time series estimation, European Journal of Mechanics - A/Solids, 80, 2020. Crossref

  13. Evangelista Francisco, Alves Gelson de Sousa, Moreira José Fabiano Araújo, Paiva Guilherme Oliveira Ferraz de, A global–local strategy with the generalized finite element framework for continuum damage models, Computer Methods in Applied Mechanics and Engineering, 363, 2020. Crossref

  14. Monteiro H.A.S., Novelli L., Fonseca G.M., Pitangueira R.L.S., Barros F.B., A new approach for physically nonlinear analysis of continuum damage mechanics problems using the generalized/extended finite element method with global-local enrichment, Engineering Analysis with Boundary Elements, 113, 2020. Crossref

  15. Novelli Larissa, Oliveira Thaianne Simonetti de, Monteiro Humberto Alves da Silveira, Fonseca Gabriela Marinho, Pitangueira Roque Luiz da Silva, Barros Felício Bruzzi, Stable Generalized/eXtended Finite Element Method with global–local enrichment for material nonlinear analysis, Computer Methods in Applied Mechanics and Engineering, 372, 2020. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain