Abo Bibliothek: Guest
International Journal for Multiscale Computational Engineering

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Coarse Implicit Time Integration of a Cellular Scale Particle Model for Plant Tissue Deformation

Volumen 8, Ausgabe 4, 2010, pp. 411-422
DOI: 10.1615/IntJMultCompEng.v8.i4.50
Get accessGet access

ABSTRAKT

We describe a multiscale method to simulate the deformation of plant tissue. At the cellular scale we use a combination of smoothed particle hydrodynamics and discrete elements to model the geometrical structure and basic properties of individual plant cells. At the coarse level, the material is described by the standard continuum approach without explicitly constructing a constitutive equation. Instead, the coarse scale finite element model uses simulations with the fine (cellular) scale model in small subdomains, called representative volume elements (RVEs), to determine the necessary coarse scale variables, such as stress and the elasticity and viscosity tensors. We present an implicit time integration scheme for the coarse finite element model, allowing much larger time steps than possible with explicit methods. Computation of the Cauchy stress from an RVE is straightforward by volume averaging over the RVE. In this work, we use forward finite differencing of the objective Truesdell stress rate to estimate both the fourth-order elasticity and viscosity tensors. These tensors are then used to construct the coarse scale stiffness and damping matrices required for implicit integration.

REFERENZEN
  1. Bangerth, W., Hartmann, R., and Kanschat, G., Deal II A general-purpose object-oriented finite element library. DOI: 10.1145/1268776.1268779

  2. Bonet, J. and Lok, T. S. L., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. DOI: 10.1016/S0045-7825(99)00051-1

  3. Bonet, J. and Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis.

  4. Chen, W. and Fish, J., A mathematical homogenization perspective of virial stress. DOI: 10.1002/nme.1622

  5. Conn, A. R., Gould, N. I. M., and Toint, P. L., Trust-region methods. DOI: 10.1137/1.9780898719857

  6. Cundall, P. A. and Strack, O. D. L., A discrete numerical model for granular assemblies. DOI: 10.1680/geot.1979.29.1.47

  7. Curtis, A. R., Powell, M. J. D., and Reid, J. K., On the estimation of sparse Jacobian matrices. DOI: 10.1093/imamat/13.1.117

  8. Feyel, F. and Chaboche, J. L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. DOI: 10.1016/S0045-7825(99)00224-8

  9. Fish, J., Chen, W., and Li, R., Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions. DOI: 10.1016/j.cma.2006.08.001

  10. Ghysels, P., Samaey, G., Tijskens, E., Van Liedekerke, P., Ramon, H., and Roose, D., Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics. DOI: 10.1088/1478-3975/6/1/016009

  11. Ghysels, P., Samaey, G., Van Liedekerke, P., Tijskens, E., Ramon, H., and Roose, D., Multiscale modeling of viscoelastic plant tissue. DOI: 10.1615/IntJMultCompEng.v8.i4.30

  12. Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems. DOI: 10.1007/978-3-540-78862-1

  13. Hairer, E., Nørsett, S. P., and Wanner, G., Solving ordinary differential equations II: Stiff and Differential-Algebraic Poblems. DOI: 10.1007/978-3-642-05221-7

  14. Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward, C. S., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. DOI: 10.1145/1089014.1089020

  15. Kelley, C. T., Solving Nonlinear Equations with Newtons Method, Fundamentals of Algorithms. DOI: 10.1137/1.9780898718898

  16. Kelley, C. T. and Keyes, D. E., Convergence analysis of pseudo-transient continuation. DOI: 10.1137/S0036142996304796

  17. Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, F. P. T., An approach to micro–macro modeling of heterogeneous materials. DOI: 10.1007/s004660000212

  18. Liu, M. B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method.

  19. Malkus, D. S. and Hughes, T. J. R., Mixed finite element methods–Reduced and selective integration techniques–A unification of concepts. DOI: 10.1016/0045-7825(78)90005-1

  20. Miehe, C., Numerical computation of algorithmic (consistent) tangent moduli in largestrain computational inelasticity. DOI: 10.1016/0045-7825(96)01019-5

  21. Miehe, C., Schroder, J., and Schotte, J., Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. DOI: 10.1016/S0045-7825(98)00218-7

  22. Monaghan, J. J., Smoothed particle hydrodynamics. DOI: 10.1146/annurev.aa.30.090192.002551

  23. Morris, J. P., Fox, P. J., and Zhu, Y., Modeling low Reynolds number incompressible flows using SPH. DOI: 10.1006/jcph.1997.5776

  24. Simo, J. C. and Hughes, T. J. R., Computational Inelasticity. DOI: 10.1007/b98904

  25. Van Liedekerke, P., Tijskens, E., Ramon, H., Ghysels, P., Samaey, G., and Roose, D., A particle based model to simulate plant cells dynamics.

  26. Zhou, M., A new look at the atomic level virial stress: On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain