Abo Bibliothek: Guest
International Journal of Medicinal Mushrooms

Erscheint 12 Ausgaben pro Jahr

ISSN Druckformat: 1521-9437

ISSN Online: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Bioactive Components and Possible Activities of Medicinal Mushrooms in Alleviating the Pathogenesis of Nonalcoholic Fatty Liver Disease (Review)

Volumen 23, Ausgabe 3, 2021, pp. 29-41
DOI: 10.1615/IntJMedMushrooms.2021037945
Get accessGet access

ABSTRAKT

Nonalcoholic fatty liver disease (NAFLD) is a global disease that is closely associated with obesity, type 2 diabetes mellitus, and cardiovascular disease. Excessive fat accumulation, fatty degeneration, and chronic inflammation of the liver activate the progression of NAFLD from simple steatosis to nonalcoholic steatohepatitis and further to liver fibrosis, cirrhosis, and hepatocellular carcinoma. The underlying mechanism for the development and progression of NAFLD is complex and a multiple-hit hypothesis including dietary, environmental, genetic, and epigenetic factors has been raised. Increased de novo lipogenesis, decreased lipolysis, and insulin resistance are associated with the development of NAFLD. Currently, no effective drug therapies are approved for the treatment of NAFLD. Several medicinal mushrooms have been found to have significant weight control and gut microbe modulation activities and antihypertriglyceridemic, antihyperglycemic, antioxidant, and anti-inflammatory effects, which may be useful to prevent and attenuate the development and progression of NAFLD. These beneficial effects are associated with mushrooms' bioactive components, such as polysaccharides, dietary fibers, antioxidants, and other compounds derived from fruiting bodies, cultured mycelium, and/or broth of medicinal mushrooms. This article presents an overview of multiple aspects of NAFLD, including the epidemiology, pathogenesis, management, and treatment. The bioactive components and possible activities of medicinal mushrooms in alleviating the pathogenesis of NAFLD are also reviewed.

REFERENZEN
  1. Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020;111S:154170.

  2. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease: Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73-84.

  3. Cui Y, Wang Q, Chang R, Zhou X, Xu C. Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota. J Agric Food Chem. 2019;67:2754-62.

  4. Panera N, Barbaro B, Della Corte C, Mosca A, Nobili V, Alisi A. A review of the pathogenic and therapeutic role of nutrition in pediatric nonalcoholic fatty liver disease. Nutr Res. 2018;58:1-16.

  5. Cicero AFG, Colletti A, Bellentani S. Nutraceutical approach to non-alcoholic fatty liver disease (NAFLD): The available clinical evidence. Nutrients. 2018;10:1153.

  6. Al-Dayyat HM, Rayyan YM, Tayyem RF. Non-alcoholic fatty liver disease and associated dietary and lifestyle risk factors. Diabetes Metab Syndr. 2018;12:569-75.

  7. Hernandez-Rodas MC, Valenzuela R, Videla LA. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. Int J Mol Sci. 2015;16:25168-98.

  8. Del Ben M, Polimeni L, Baratta F, Pastori D, Angelico F. The role of nutraceuticals for the treatment of non-alcoholic fatty liver disease. Br J Clin Pharmacol. 2017;83:88-95.

  9. Takahashi Y, Sugimoto K, Inui H, Fukusato T. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2015;21:3777-85.

  10. Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76:99-128.

  11. Dongiovanni P, Lanti C, Riso P, Valenti L. Nutritional therapy for nonalcoholic fatty liver disease. J Nutr Biochem. 2016;29:1-11.

  12. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313-27.

  13. Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From "two hit theory" to "multiple hit model." World J Gastroenterol. 2018;24:2974-83.

  14. Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, Kohjima M, Kotoh K, Nakamuta M, Takayanagi R, Enjoji M. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res. 2008;38(11):1122-9.

  15. Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B, Lefebvre P, Taskinen MR, Van Hul W, Mertens I, Hubens G, Van Marck E, Michielsen P, Van Gaal L, Staels B. PPARa gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J Hepatol. 2015;63:164-73.

  16. Zhang XQ, Xu CF, Yu CH, Chen WX, Li YM. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:1768-76.

  17. Ashraf NU, Altaf M. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. Mutat Res. 2018;778:1-12.

  18. Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: Role of AMPK. Am J Physiol Endocrinol Metab. 2016;311:E730-40.

  19. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038-48.

  20. Yu J, Marsh S, Hu J, Feng W, Wu C. The pathogenesis of nonalcoholic fatty liver disease: Interplay between diet, gut micro-biota, and genetic background. Gastroenterol Res Pract. 2016;2016:2862173.

  21. Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG, Verheij J, Nieuwdorp M, Clement K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol. 2020;17:279-97.

  22. Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, Tran A, Gual P, Mallat A, Lotersztajn S, Pavoine C. M2 Kupffer cells promote Ml Kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 2014;59:130-42.

  23. Fontes A, Alemany-Pages M, Oliveira PJ, Ramalho-Santos J, Zischka H, Azul AM. Antioxidant pro-apoptotic effects of mushroom-enriched diets on mitochondria in liver disease. Int J Mol Sci. 2019;20:3987.

  24. Lebeaupin C, Vallee D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69:927-47.

  25. Liu W, Baker SS, Baker RD, Zhu L. Antioxidant mechanisms in nonalcoholic fatty liver disease. Curr Drug Targets. 2015;16:1301-14.

  26. Bettaieb A, Jiang JX, Sasaki Y, Chao TI, Kiss Z, Chen X, Tian J, Katsuyama M, Yabe-Nishimura C, Xi Y, Szyndralewiez C, Schroder K, Shah A, Brandes RP, Haj FG, Torok NJ. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology. 2015;149:468-80.

  27. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ; American Gastroenterological Association; American Association for the Study of Liver Diseases; American College of Gastroenterology. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American gastroenterological association, American association for the study of liver diseases, and American college of gastroenterology. Gastroenterology. 2012;142: 1592-609.

  28. Alkhouri N, Poordad F, Lawitz E. Management of nonalcoholic fatty liver disease: Lessons learned from type 2 diabetes. Hepatol Commun. 2018;2:778-85.

  29. Jeznach-Steinhagen A, Ostrowska J, Czerwonogrodzka-Senczyna A, Boniecka I, Shahnazaryan U, Kurylowicz A. Dietary and pharmacological treatment of nonalcoholic fatty liver disease. Medicina. 2019;55:166.

  30. Lo HC, Wasser SP. Medicinal mushrooms for glycemic control in diabetes mellitus: History, current status, future perspectives, and unsolved problems (review). Int J Med Mushrooms. 2011;13:401-26.

  31. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrovic P, Niksic M, Vrvic MM, van Griensven L. Antioxidants of edible mushrooms. Molecules. 2015;20:19489-525.

  32. Segawa H, Kukita Y, Kato K. HLA genotyping by next-generation sequencing of complementary DNA. BMC Genomics. 2017;18:914.

  33. Pickett-Blakely O, Young K, Carr RM. Micronutrients in nonalcoholic fatty liver disease pathogenesis. Cell Mol Gastroenterol Hepatol. 2018;6:451-62.

  34. Shiota G. Loss of function of retinoic acid in liver leads to steatohepatitis and liver tumor: A NASH animal model. Hepatol Res. 2005;33:155-60.

  35. Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2003;98:2485-90.

  36. Grangeia C, Heleno SA, Barros L, Martins A, Ferreira ICFR. Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Res Int. 2011;44:1029-35.

  37. Atri N, Sharma SK, Joshi R, Gulati A, Gulati A. Nutritional and nutraceutical composition of five wild culinary-medicinal species of genus Pleurotus (higher Basidiomycetes) from northwest India. Int J Med Mushrooms. 2013;15:49-56.

  38. Donadio V. Skin nerve alpha-synuclein deposits in Parkinson's disease and other synucleinopathies: A review. Clin Auton Res. 2019;29:577-85.

  39. Lou HW, Guo XY, Zhang XC, Guo LQ, Lin JF. Optimization of cultivation conditions of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes) for the highest antioxidant activity and antioxidant content. Int J Med Mushrooms. 2019;21:353-66.

  40. Drori A, Rotnemer-Golinkin D, Avni S, Drori A, Danay O, Levanon D, Tam J, Zolotarev L, Ilan Y. Attenuating the rate of total body fat accumulation and alleviating liver damage by oral administration of vitamin D-enriched edible mushrooms in a diet-induced obesity murine model is mediated by an anti-inflammatory paradigm shift. BMC Gastroenterol. 2017;17:130.

  41. Ito T, Ishigami M, Ishizu Y, Kuzuya T, Honda T, Ishikawa T, Toyoda H, Kumada T, Fujishiro M. Correlation of serum zinc levels with pathological and laboratory findings in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2020;32:748-53.

  42. Kang X, Zhong W, Liu J, Song Z, McClain CJ, Kang YJ, Zhou Z. Zinc supplementation reverses alcohol-induced steatosis in mice through reactivating hepatocyte nuclear factor-4alpha and peroxisome proliferator-activated receptor-alpha. Hepatology. 2009;50:1241-50.

  43. Al-Othman AA, Rosenstein F, Lei KY. Copper deficiency increases in vivo hepatic synthesis of fatty acids, triacylglycerols, and phospholipids in rats. Proc Soc Exp Biol Med. 1993;204:97-103.

  44. Nobili V, Siotto M, Bedogni G, Rava L, Pietrobattista A, Panera N, Alisi A, Squitti R. Levels of serum ceruloplasmin associate with pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2013;56:370-5.

  45. Singh R, Kaur N, Shri R, Singh AP, Dhingra GS. Proximate composition and element contents of selected species of Ganoderma with reference to dietary intakes. Environ Monit Assess. 2020;192:270.

  46. Xia Y, Zhang S, Zhang Q, Liu L, Meng G, Wu H, Bao X, Gu Y, Sun S, Wang X, Zhou M, Jia Q, Song K, Wu Q, Niu K, Zhao Y. Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: A large population-based cross-sectional study. Nutr Metab. 2020;17:4.

  47. Sun Y. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. Int J Biol Macromol. 2014;68:131-4.

  48. Xiao C, Wu Q, Xie Y, Zhang J, Tan J. Hypoglycemic effects of Grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats. Food Funct. 2015;6:3567-75.

  49. Ren D, Zhao Y, Nie Y, Lu X, Sun Y, Yang X. Chemical composition of Pleurotus eryngii polysaccharides and their inhibitory effects on high-fructose diet-induced insulin resistance and oxidative stress in mice. Food Funct. 2014;5:2609-20.

  50. Yang S, Qu Y, Zhang H, Xue Z, Liu T, Yang L, Sun L, Zhou Y, Fan Y. Hypoglycemic effects of polysaccharides from Gomphidiaceae rutilus fruiting bodies and their mechanisms. Food Funct. 2020;11:424-34.

  51. Zhao S, Zhang S, Zhang W, Gao Y, Rong C, Wang H, Liu Y, Wong JH, Ng T. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved. Sci Rep. 2019;9:13725.

  52. Zheng L, Zhai G, Zhang J, Wang L, Ma Z, Jia M, Jia L. Antihyperlipidemic and hepatoprotective activities of mycelia zinc polysaccharide from Pholiota nameko SW-02. Int J Biol Macromol. 2014;70:523-9.

  53. Salomone F, Godos J, Zelber-Sagi S. Natural antioxidants for non-alcoholic fatty liver disease: Molecular targets and clinical perspectives. Liver Int. 2016;36:5-20.

  54. Butkhup L, Samappito W, Jorjong S. Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci Biotechnol. 2018;27:193-202.

  55. Huang Y, Lang H, Chen K, Zhang Y, Gao Y, Ran L, Yi L, Mi M, Zhang Q. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARalpha pathway. Appl Physiol Nutr Metab. 2020;45:227-39.

  56. Teng W, Zhao L, Yang S, Zhang C, Liu M, Luo J, Jin J, Zhang M, Bao C, Li D, Xiong W, Li Y, Ren F. The hepatic-targeted, resveratrol loaded nanoparticles for relief of high fat diet-induced nonalcoholic fatty liver disease. J Control Release. 2019;307:139-49.

  57. Theodotou M, Fokianos K, Moniatis D, Kadlenic R, Chrysikou A, Aristotelous A, Mouzouridou A, Diakides J, Stavrou E. Effect of resveratrol on non-alcoholic fatty liver disease. Exp Ther Med. 2019;18:559-65.

  58. Yang MH, Lin YJ, Kuo CH, Ku KL. Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses. J Agric Food Chem. 2010;58:9518-22.

  59. Kang LZ, Zeng XL, Ye ZW, Lin JF, Guo LQ. Compositional analysis of the fruiting body of transgenic Flammulina velutipes producing resveratrol. Food Chem. 2014;164:211-8.

  60. Xiao ML, Chen GD, Zeng FF, Qiu R, Shi WQ, Lin JS, Cao Y, Li HB, Ling WH, Chen YM. Higher serum carotenoids associated with improvement of non-alcoholic fatty liver disease in adults: A prospective study. Eur J Nutr. 2019;58:721-30.

  61. Seif El-Din SH, El-Lakkany NM, El-Naggar AA, Hammam OA, Abd El-Latif HA, Ain-Shoka AA, Ebeid FA. Effects of rosuvastatin and/or beta-carotene on non-alcoholic fatty liver in rats. Res Pharm Sci. 2015;10:275-87.

  62. Ni Y, Nagashimada M, Zhan L, Nagata N, Kobori M, Sugiura M, Ogawa K, Kaneko S, Ota T. Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, beta-cryptoxanthin. Endocrinology. 2015;156:987-99.

  63. Ikeuchi M, Koyama T, Takahashi J, Yazawa K. Effects of astaxanthin in obese mice fed a high-fat diet. Biosci Biotechnol Biochem. 2007;71:893-9.

  64. Zheng Q, Wei T, Lin Y, Ye Z, Lin J, Guo L, Yun F, Kang L. Developing a novel two-stage process for carotenoid production by Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2019;21:47-57.

  65. Zheng X, Zhao MG, Jiang CH, Sheng XP, Yang HM, Liu Y, Yao XM, Zhang J, Yin ZQ. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3b pathway. Phytomedicine. 2020;66:153130.

  66. Kuo YH, Lin CH, Shih CC. Dehydroeburicoic acid from Antrodia camphorata prevents the diabetic and dyslipidemic state via modulation of glucose transporter 4, peroxisome proliferator-activated receptor alpha expression and AMP-activated protein kinase phosphorylation in high-fat-fed mice. Int J Mol Sci. 2016;17:872.

  67. Li L, Guo WL, Zhang W, Xu JX, Qian M, Bai WD, Zhang YY, Rao PF, Ni L, Lv XC. Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats. Food Funct. 2019;10:2560-72.

  68. Li X, Zeng F, Huang Y, Liu B. The positive effects of Grifola frondosa heteropolysaccharide on NAFLD and regulation of the gut microbiota. Int J Mol Sci. 2019;20:5302.

  69. Nakahara D, Nan C, Mori K, Hanayama M, Kikuchi H, Hirai S, Egashira Y. Effect of mushroom polysaccharides from Pleu- rotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. Eur J Nutr. 2019;59:3231-44.

REFERENZIERT VON
  1. Shaffique Shifa, Kang Sang-Mo, Kim Ah-Yeong, Imran Muhammad, Aaqil Khan Muhammad, Lee In-Jung, Current Knowledge of Medicinal Mushrooms Related to Anti-Oxidant Properties, Sustainability, 13, 14, 2021. Crossref

  2. Bös Dorothee, Mykotherapie bei Fettstoffwechselstörungen – wertvoller Beitrag von Vitalpilzen, Erfahrungsheilkunde, 70, 05, 2021. Crossref

  3. López‐Hortas Lucía, Flórez‐Fernández Noelia, Torres María D., Domínguez Herminia, Update on potential of edible mushrooms: high‐value compounds, extraction strategies and bioactive properties, International Journal of Food Science & Technology, 57, 3, 2022. Crossref

  4. Wu Wen-Tzu, Hsu Tai-Hao, Chen Woan-Ling, Yang Chueh-Ko, Lo Hui-Chen, Polysaccharides of Grifola frondosa ameliorate oxidative stress and hypercholesterolaemia in hamsters fed a high-fat, high-cholesterol diet, Journal of Pharmacy and Pharmacology, 74, 9, 2022. Crossref

  5. Yuan Bao-Zhong, Sun Jie , Visualization Analysis of Medicinal Mushrooms Research Topic Based on Web of Science , International Journal of Medicinal Mushrooms, 25, 1, 2023. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain