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We propose a new machine learning framework for uncertainty quantification (UQ) and param-

eter estimation in partial differential equation (PDE) models using sparse noisy measurements of

the parameter field. In our approach, the Gaussian process regression (GPR) is used to estimate the

distribution of the unknown parameter κ, including mean and variance, conditioned on its mea-

surements. Then, the conditional Karhunen-Loève (KL) expansion of κ and generalized polynomial

chaos (gPC) expansion of the state variable u are constructed in terms of the parameter’s conditional

mean and the eigenfunctions and eigenvalues of the parameter’s conditional covariance function. In

the forward UQ application, the conditional gPC surrogate is used to estimate the mean and vari-

ance of u. Our results show that conditioning reduces the u variance and that the variance decreases

with decreasing measurement noise. In the inverse solution, we use the conditional KL and gPC

expansions to find a realization of conditional κ distribution that satisfies an appropriate maximum

a posteriori minimization problem. We find that the error in the estimated κ decreases with the de-

creasing observation error.

KEY WORDS: Guassian process regression, conditional Karhunen-Loève expansion,
conditioning on noisy measurements, uncertainty quantification, inverse modeling

1. INTRODUCTION

Conditional forward uncertainty quantification (UQ) in partial differential equation (PDE) mod-
els with sparsely measured parameter fields by means of the conditional Monte Carlo (MC)
and moment equation methods dates back to the 1990s (e.g., Neuman, 1993; Tartakovsky and
Neuman, 1998). However, MC has a low convergence rate (1/

√
Ns, whereNs is the number of

samples) and the moment approach is limited to the small variances (less than 1) of parameter
fields. As a result, generalized polynomial chaos (gPC) methods based on the Karhunen-Loève
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(KL) representation of the unknown parameter fields have emerged as a method of choice in
forward UQ (Xiu and Karniadakis, 2003). However, very limited research exists on condition-
ing KL-gPC models on the measurements of the parameters and state variables [see Li and
Tartakovsky (2020) and references therein]. Furthermore,the existing work on forward UQ with
conditional KL-gPC expansions is limited to conditioning on noiseless measurements (Tipireddy
et al., 2020). In this work, we propose a method for conditioning KL-gPC expansions on noisy
measurements.

Unconditional KL expansions were used in Marzouk et al. (2007) for conditioning a KL-gPC
model on state measurements. In Li and Tartakovsky (2020), aconditional KL-gPC model was
used for conditioning the estimation of parameters and states on both the parameter and state
measurements. The work on conditional KL expansion revealed that conditioning reduces para-
metric uncertainty and, for the same order of expansions, increases the accuracy of the KL-gPC
methods (Tipireddy et al., 2020). In the case of noiseless measurements, the latter is because the
conditioning on the parameter measurements reduces the dimensionality of the KL representa-
tion of the parameter space and the variance of the parameterspace (Li and Tartakovsky, 2020).
Both these factors reduce the number of terms in the gPC expansion of the state variable that are
required to achieve the desired accuracy.

Here, we extend the work of Tipireddy et al. (2020) for forward UQ and of Li and Tar-
takovsky (2020) for inverse modeling using KL and gPC expansions conditioned on noise-
less measurements for conditioning on noisy measurements.This is important because in most
sustainability-related research, the measurements of theparameters of natural systems are prone
to measurement errors. We accomplish this by proposing a scheme for conditioning KL expan-
sions on noisy measurements.

2. PROBLEM SETUP

Consider a physical system with the unknown parameterκ(x) and described by the PDE,

L(x, u(x), κ(x)) = 0, for x ∈ D, (1)

with known differential operatorL and appropriate boundary conditionsB(x)∂D = 0. In the
probabilistic framework, the forward uncertainty propagation in this PDE problem consists of
estimating the statistical distribution ofu(x) given a prior distribution ofκ(x), i.e., the distri-
bution of κ given some measurements ofκ and/or expert knowledge of the properties of the
physical system expressed byκ(x). The inverse UQ problem is to estimate the posteriori distri-
bution ofκ given its prior distribution and the observations ofu. One might be only interested in
the most probable realization of the posterioriκ distribution, i.e., the maximum (most probable
point) of the posteriori distribution, that can be found as asolution of a deterministic maximum
a posteriori (MAP) inverse problem (Li and Tartakovsky, 2020; Tartakovsky et al., 2021). The
first step in both forward and inverse problems is the construction of the prior model ofκ(x).
In this work, we assume that the true fieldκ is a realization of a Gaussian processκ(x,ω) with
a known covariance function (kernel) that is determined from the noisy observations ofκ(x),
κ :=

(

κ1, . . . , κNκ

)

, located atxκ :=
(

x1
κ
, . . . ,xNκ

κ

)

. Furthermore, we consider the diffusion
operatorL(x, u(x), κ(x)) = ∇ · exp(κ(x))∇u(x). In this form, among other problems, Eq. (1)
describes steady-state saturated flow in a heterogeneous porous medium, whereκ(x) is the log
conductivity of the said porous medium. We are interested incases where no measurements of
u are available (a forward UQ problem) and where some measurements ofu are available (an
inverse problem).
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The basis of our approach—and its main novelty—is the truncated KL representation of
κ(x) that is conditioned on the noisy measurements ofκ(x). The conditional KL expansion is
used to obtain the (conditional onκ measurements) gPC approximation ofu. In the forward UQ
problem, the gPC surrogate is used to compute the mean and variance ofu. In the inverse prob-
lem, the conditional KL expansion is used to model the unknown parameter field as a realization
of the random spatially correlated field with known mean and covariance functions, and a gPC
surrogate is used to solve the MAP minimization problem.

3. KARHUNEN-LOE V́E (KL) EXPANSION OF UNCONDITIONAL GAUSSIAN FIELD

A square integrable continuous stochastic processκ(x,ω)x∈D with the covariance function
Cκ(x,y) := E[κ(x,ω)κ(y,ω)], x,y ∈ D can be exactly represented by an infinite KL expan-
sion,

κ(x,ω) = E[κ(x,ω)] +
∞
∑

n=1

√

λnξn(ω)ǫn(x), in L2(Ω), (2)

whereE[·] denotes the expectation operator,λn are positive eigenvalues,ǫn(x) are mutually
orthogonal eigenfunctions such that

∫

D
ǫn(x)ǫl(x)dx = δn,l, andδn,l is the Kronecker delta.

The eigenfunctions are found as the solution to the Fredholmintegral equation of the second
kind:

λǫ(x) =

∫

D

Cκ(x,y)ǫ(y)dy. (3)

The random variablesξn are mutually uncorrelated and have zero mean and unit variance.
If κ(x,ω) is a Gaussian process, thenξn are i.i.d. standard normal random variables. To use the
KL expansion for solving a forward UQ or an inverse problem, Eq. (2) has to be truncated as

κNκ
(x,ω) := E[κ(x,ω)] +

N
∑

n=1

√

λnǫn(x)ξn(ω), (4)

where the eigenvaluesλn are arranged in decreasing order. In the remainder of this paper, we
useκ(x) to denote the expectationE[κ(x,ω)].

4. CONDITIONAL GAUSSIAN FIELD AND ITS KL EXPANSION

We assume that the measurements ofκ, κ :=
(

κ1, . . . , κNκ

)

are available at locationsxκ :=
(

x1
κ
, . . . ,xNκ

κ

)

with i.i.d. Gaussian noiseηi ∼ N (0,σ2
η
) for i = 1, . . . , Nκ. The Gaussian

process regression (GPR) model (Rasmussen, 2003) defines the covariance function of the con-
ditional fieldκc(x,ω) [i.e., the fieldκ(x,ω) conditioned on theκ measurements] as

Cc
κ
(x,y) = Cκ(x,y)−R(x)(Σ + σ2

η
INκ×Nκ

)−1R(y), (5)

while the mean ofκc(x,ω) follows:

κc(x) = κ(x) +R(x)(Σ + σ2
η
INκ×Nκ

)−1K, (6)

whereR(s) = [Cκ(s,x
1
κ
), Cκ(s,x

2
κ
), . . . , Cκ(s,x

Nκ

κ
)]T for anys ∈ D,Σ is theNκ×Nκ matrix

with (i, j)th entryΣi,j = Cκ(x
i
κ
,xj

κ), andK = [κ1−κ(x1
κ
), κ2−κ(x2

κ
), . . . , κNκ −κ(xNκ

κ
)]T .
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After computing the eigenpairs{λci , ǫci} of the covariance functionCc
κ
, the truncated condi-

tional KL expansion ofκ (i.e., the truncated KL expansion ofκc) takes the form

κc(x,ω) ∼ κc(x) +

N
∑

i=1

λciǫ
c
i (x)ξi(ω). (7)

Below we proof a theorem stating that conditioning ofκ on its noisy measurements reduces
the variance ofκ. Our numerical results in Section 7 show that the reduction of variance in the
uncertain parameter field leads to the reduction of uncertainty in the forward UQ problems and
improves the accuracy of parameter estimation.

Theorem 1. If κ(x,ω) is a stationary Gaussian process with the covariance functionCκ(·, ·),
κ is the vector of noisy measurements at pointsxi

κ
, i = 1, . . . , Nκ with i.i.d. noise∼ N (0,σ2

η
),

andNm grid points fully resolve the correlation function (i.e., the grid size is much smaller than
the correlation length), then the ratioq of the total variance of the conditionalκ field w.r.t. that
of the original field at all grid points satisfies

q ≈ 1− 1
Nm

∑

x∈Dx

Nk
∑

i=1

(V ′
iR(x))2

(λ̃i + σ2
η
)σ2

κ

, (8)

where{λ̃i, Vi}Nκ

i=1 are the eigenpairs ofΣ, σ2
κ

is the variance at each grid point, andDx is the
set of all grid points.

Proof. From Eq. (5), the conditional variance ofκ at each pointx is

σ2
c(x) = Cκ(x,x)− R(x)′(Σ + σ2

η
INκ×Nκ

)−1R(x). (9)

Then, the total conditional variance ofκ is

Varc
κ
:=

∫

D

σ2
c(x)dx ≈

∑

x∈Dx

∆x(Cκ(x,x)−R(x)′(Σ + σ2
η
INκ×Nκ

)−1R(x)),

=
∑

x∈Dx

∆x

[

Cκ(x,x)−
Nκ
∑

i=1

(V ′
i R(x))2

λ̃i + σ2
η

]

,

(10)

while the total variance of the unconditionalκ field has the form

Varκ :=

∫

D

σ2(x)dx ≈
∑

x∈Dx

∆x(Cκ(x,x)) = ∆xNmσ2
κ
.

Therefore, Eq. (8) is satisfied.

According to this theorem,q increases as the noise varianceσ2
η increases and the maximum

reduction in the total variance due to conditioning is achieved whenσ2
η = 0. It is important

to note that the conditioning on the noise-free measurements reduces the dimensionality of the
unconditional field by the number of its measurements (Li andTartakovsky, 2020). The same
result cannot be proved for conditioning on noisy measurements.
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5. gPC APPROACH FOR THE FORWARD PROBLEM

Given the conditional stochastic representation (7) of the sparsely sampled parameter fieldκ,
the governing equation (1) becomes stochastic with the random state variableu(x,ξ) and can
be solved using the gPC Galerkin method or stochastic collocation method. Here, we briefly
introduce the gPC collocation method that we later use for constructing the surrogate model of
u(x,ξ). The gPC method for Eq. (1) is based on an orthogonal polynomial approximation of
u(x,ξ). Let i = (i1, . . . , iN ) ∈ (N)n0 be a multi-index with|i| = i1+ · · ·+ iN andP ≥ 0 being
an integer. Then, theP th-degree gPC expansion of functionu(x,ξ) is defined as

u(x,ξ) ≈ ũ(x,ξ) =
P
∑

|i|=0

ci(x)Φi(ξ), (11)

where

ci(x) = E[ũ(x,ξ)Φi(ξ)] =

∫

ũ(x,ξ)Φi(ξ)ρ(ξ)dξ

are the coefficients of the expansion,Φi(ξ) are the basis functions

Φi(ξ) = φi1(ξ1) . . .φiN (ξN ), 0 ≤ |i| ≤ P,

andξ = (ξ1, . . . , ξN ) is anN -dimensional random vector with the probability density function
ρ(ξ). Here,φj(ξk) is thejth-degree one-dimensional orthogonal polynomial in theξk direction
that satisfies

E[φm(ξk)φn(ξk)] = δm,n, 0 ≤ n,m ≤ P.

For i.i.d. Gaussian random variables{ξi}Ni=1, Φi(ξ) are products of Hermite polynomials.
The number ofΦi(ξ) is

(

N + P
P

)

,

(Xiu, 2009; Xiu and Karniadakis, 2002). The gPC approximation (11) converges toũ(x,ξ)
in L2-norm as the degreeP increases wheñu(x,ξ) is square integratable with respect to the
probability measure (Xiu, 2007; Xiu and Hesthaven, 2005). The expansion coefficientsci(x)
can be approximated as

ci(x) ≈ c̃i(x) =
M
∑

m=1

ũ(x,ξ(m))Φi(ξ
(m))w(m), (12)

where{ξ(m)}Mm=1 is a set of quadrature points andw(m),m = 1, . . . ,M are the corresponding
weights in the stochastic collocation method. For each collocation pointξ

(i), u(x,ξ(i)) is ob-
tained by solving Eq. (1) with̃κ(x,ξ) replaced bỹκ(x,ξ(i)). Then, the mean and variance of
ũ(x,ξ) can be approximated as

E[ũ(x,ξ)] ≈ E[ũC(x,ξ)] = c̃0(x), (13)

and

E[ũ(x,ξ)− E[ũ(x,ξ)]]2 ≈ E[ũC(x,ξ)− E[ũC(x,ξ)]]
2 =

P
∑

|i|=1

c̃i(x)
2. (14)
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Various quadrature rules can be employed to estimateci, including tensor product quadrature
rules for low-dimensionalξ and sparse grid methods for moderately dimensionalξ (Jakeman
and Roberts, 2013; Ma and Zabaras, 2009; Nobile et al., 2008; Xiu and Hesthaven, 2005). The
compressive sensing (Hampton and Doostan, 2015; Yan et al., 2012; Yang and Karniadakis,
2013) or the low-rank decomposition methods (Chevreuil et al., 2015; Doostan et al., 2013;
Gorodetsky and Jakeman, 2018) are used to further reduce the computational cost to estimate
the coefficientsci whenever the solution has a sparse representation or has a low-rank structure,
respectively. We note that given the conditional representation (7) ofκ, the gPC expansion (11),
gives the approximation of the random state variableu conditioned on the measurementsκ.

6. INVERSE PROBLEM FOR ESTIMATING PARAMETER FIELD

In this section, we use the conditional KL representationκc(x,ξ) of κ and the conditional gPC
representatioñu(x,ξ) of u, whereξ is a vector of unknown parameters (as opposed to a vector of
random variables in the forward UQ problem), to solve the inverse parameter estimation problem
related to the deterministic equation (1) with the unknown parameter fieldκ(x). We assume that
in addition to the noisy measurementsκ, we have{uj}Nu

j=1 noise-free observations ofu. Then,
the estimation ofκ(x) reduces to the estimation of theN -dimensional parameter vectorξ. The
latter can be done by solving the MAP optimization problem (Li and Tartakovsky, 2020),

ξ
∗ = argminξ∈RN C(ξ;x1, . . . ,xNu ,ξo), (15)

where

C(ξ;x1, . . . ,xNu ,ξo) :=

Nu
∑

j=1

|uj − ũC(x
j ,ξ)|2 + λ‖ξ− ξ

o‖2 (16)

is the cost function. Theλ‖ξ− ξ
o‖2 term is added to regularize the solution of the optimization

problem, whereξo := (ξo1, . . . , ξN ) ∈ R
N andλ are the regularization parameters. We use the

trust region method (Shultz et al., 1985) and its implementation in the Matlab software MATLAB
(2018) to solve the optimization problem (15) and (16). We set the regularization parameters to
ξ
o = 0 andλ in the range of 0.00012–0.00032. In this work, we choose the value ofλ to

minimize the error with respect to a known reference solution. When a reference solution is not
known,λ can be chosen using a cross-validation method. Most of the deterministic optimization
methods, including the trust region method, require derivatives of the cost functionC with respect
to the optimization parameters. With the gPC surrogateũC(x,ξ), the gradient ofC can be easily
evaluated as

∂

∂ξi
C(ξ;x1, . . . ,xNu ,ξo) =

Nu
∑

j=1

2(uj − ũC(x
j ,ξ))

∂

∂ξi
ũC(x

j ,ξ) + 2λ(ξi − ξoi ), (17)

where

∂

∂ξi
ũC(x,ξ) =

P
∑

|j|=0

c̃j(x)
∂

∂ξi
Φj(ξ)

=
P
∑

|j|=0

c̃j(x)
∂

∂ξi
φji(ξi)

i−1
∏

s=1

φjs(ξs)
N
∏

t=i+1

φjt(ξt).

(18)
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We note that the uncertainty in the solution in the estimatedκ can be quantified by comput-
ing the posterior distribution ofξ [and, thereforeκc(x,ξ)] using the Bayes rule and the Markov
chain Monte Carlo method, as described in Li and Tartakovsky(2020) for noise-freeκ measure-
ments.

7. NUMERICAL EXAMPLES

To illustrate the proposed method, we consider the diffusion equation with a partially known
(i.e., sparsely sampled) parameter fieldκ(x),

∇ · (eκ(x)∇u(x)) = 0, (19)

subject to the appropriate deterministic boundary conditions. Among various physical problems,
this equation describes heat transport in solid bodies and flow in porous media with heteroge-
neous log conductivityκ. In the case of flow in geological porous media, many studies have
shown that the statistical properties ofκ(x) can be well described by a Gaussian model learned
from available observations (Boschan and Nœtinger, 2012; Tartakovsky et al., 2003). In the
remainder of this section, we consider one- and two-dimensional forms of Eq. (19), and we as-
sume that the prior Gaussian model ofκ is available. In the forward UQ problem, we assume that
some noisy measurements ofκ are available and we compute the conditional mean and variance
of u(x). In the inverse problem, we use noisy measurements ofk and noise-free measurements
of u to estimateκ(x).

7.1 One-Dimensional Diffusion Equation with Unknown Diffu sion Coefficient

Here, we consider the one-dimensional steady-state diffusion equation

∂

∂x

[

eκ(x)
∂u(x)

∂x

]

= 0, x ∈ (0, 1),

u(0) = ul, u(1) = ur,

(20)

whereul = 0 andur = 2. The sparsely measuredκ(x) is treated as random variableκ(x,ξ)
with the known meanκ = 1.4979 and covariance function

C(x1, x2) = σ2
κ
e−|x1−x2|

2/η2

, x1, x2 ∈ [0, 1], (21)

with the correlation lengthη = 0.5 and standard deviationσκ = 0.4724. Our objective is to
estimate the mean and variance ofu conditioned on noisy measurements ofκ. In this case,
theN = 7-term KL expansion retains more than 99.99% of the total variance. The reference
parameter fieldκ(x) is obtained as a realization ofκ(x,ξ). We assume that three equidistant
observations ofκ are available with values drawn from the referenceκ field. To study the effect
of the measurement noise, in Case 1 we add random noise to the referenceκ field values with
the standard deviationση = 0.5, in Case 2 we add noise withση = 0.1, and in Case 3 we add
the noise withση = 0.01. The reference fieldκ, its noisy measurements, the conditional mean
of theκ field, and the 97.5% confidence interval are shown in Fig. 1 forthe three noise levels. It
can be seen that the uncertainty (i.e., the conditional variance ofκ) decreases as the variance of
the noise decreases. The percentage of the total variance w.r.t. the variance of the unconditional
κ is presented in Table 1.
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FIG. 1: Noisy measurementsκ (open circles), conditional meanµc

κ (denoted by blue line),µc

κ ± 1.96σc

κ

(green lines), and several realizations of the conditionalκc(x,ξ) for the noise variance (a)ση = 0.5, (b)
ση = 0.1, and (c)ση = 0.01. Black line denotes the referenceκ field.

TABLE 1: Percentage of the total variance of the one-dimensional conditionalκ w.r.t. that of
the one-dimensional unconditionalκ field

— Unconditional ση = 0.5 ση = 0.1 ση = 0.01
total variance w.r.t. unconditional field 100% 18.82% 2.54% 1.55%

7.1.1 One-Dimensional Forward UQ Problem

We employ the stochastic collocation method with the level 7and seven-dimensional sparse
grids (Xiu and Hesthaven, 2005) to construct the order 4 gPC surrogate ofu that we use to
estimate its mean and variance. The referenceu(x), the mean fieldu(x), andu(x) ± σu are
presented in Fig. 2 for Cases 1–3. The referenceu(x) field is obtained by numerically solving
the deterministic governing equation withκ(x) given by the reference field on a mesh with 257
nodes using the finite element method.

Figure 3 displays the variances ofκ andu conditioned on the noisy measurements ofκ for
the three different noise levels. For comparison, we also show the unconditional variances ofκ
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FIG. 2: (a) Unconditional mean and standard deviation ofu. (b)–(d) Mean and standard deviation ofu

conditioned on the noisy measurements ofκ with the measurement noise standard deviationsση = 0.5,
0.1, and 0.01, respectively. All plots also show the referenceu field.

andu. For the largest considered measurement noise, the variance ofκ is reduced by more than
66% and the variance ofu is reduced by more than 75% compared to the unconditional case.
The reduction in the variances ofκ andu increases as the measurement noise decreases.

7.1.2 One-Dimensional Inverse Problem

Here, we use the KL expansion ofκ and gPC surrogate ofu conditioned on noisy measurements
to estimate a realization of theκ that solves the inverse problem (15). We assume that the ob-
servations ofu are noise-free, and we draw eightu measurements from the referenceu field,
which is generated as described in Section 7.1. For a given number of measurements, the solu-
tions of the inverse problems depend on the measurement locations (Li and Tartakovsky, 2020).
Here, we assume that all local maxima of theu variance curve are sampled with the rest of the
measurements uniformly spread through the domain. The resulting measurement locations are
shown in Fig. 4 for the three considered levels of theκ measurement noise.
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FIG. 3: (a) Unconditional and conditional variances ofκ and (b) unconditional and conditional variances
of u as functions ofx. The conditional variances are given for theκ measurement noise with the standard
deviationsση = 0.5, 0.1, and 0.01.
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FIG. 4: Locations of theu measurements and the conditional variance curve ofu for the noisy measure-
ments ofκ with the measurement noise standard deviation (a)ση = 0.5, (b)ση = 0.1, and (c)ση = 0.01
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The optimization problem is solved using the Matlab optimization toolbox with the “fmin-
unc/gradients” option. The relative errors in the estimated κ for the three levels of theκ mea-
surement noise are displayed in Fig. 5 as functions ofx. The maximum relative errors are ap-
proximately 13% for the measurement noise withση = 0.5, 2.3% forση = 0.1, and less than
0.3% forση = 0.01.

7.2 Two-Dimensional Diffusion Equation with Unknown Diffu sion Coefficient

In this section, we consider the two-dimensional diffusionequation with the partially observed
coefficientκ(x),

∇ · (eκ(x)∇u(x)) = 0, x = (x1, x2) ∈ D, (22)

subject to the boundary conditions

u(0, x2) = 2, u(2, x2) = 0, −n · (eκ(x)∇u)|(x1,0) = n · (eκ(x)∇u)|(x1,1) = 0, (23)

whereD = [0, 240]× [0, 60] andn = (0, 1).
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FIG. 5: Relative error of the estimatedκ versusx for the standard deviation of theκ measurement noise:
(a)ση = 0.5, (b)ση = 0.1, and (c)ση = 0.01
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We assume that the sparsely sampled reference fieldκ(x) is a realization of the Gaussian
field with meanµκ = 0.8349, standard deviationσκ = 0.7262, and the covariance function

C((x1, x2), (y1, y2)) = σ2
κ
e−|x1−y1|

2/η2
1−|x2−y2|

2/η2
2, (24)

whereη1 = 120 andη2 = 100.
We approximate this Gaussian field with theN = 7-term truncated KL expansion,

κ(x,ξ) = µκ + σκ

N
∑

i=1

√

λiǫi(x)ξi, (25)

which retains 99.67% of the total variance of the infinite-dimensional KL expansion. As in the
one-dimensional example, we consider conditioning onκ measurements with three levels of
measurement noise characterized by standard deviationsση = 0.5 (Case 1),ση = 0.1 (Case 2),
andση = 0.01 (Case 3). Four equidistant measurements ofκ are drawn from the referenceκ
field, which is generated as a realization of the Gaussian field (24). Then, the i.i.d. Gaussian
noise is added to simulate noisy measurements. Fig. 6(a) shows the referenceκ field and the
locations of the measurements. We present the variance of the conditionalκ field for each noise

(a) (b)

(c) (d)

FIG. 6: (a) Two-dimensional referenceκ field and measurement locations. (b)–(d) Variance ofκ condi-
tioned on noisy measurements with the noise standard deviationsση = 0.5, 0.1, and 0.01, respectively.
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level in Figs. 6(b)–6(d). The percentage of the total conditional variance ofκ w.r.t. the variance
of unconditionalκ is presented in Table 2. As in the one-dimensional case, conditioning reduces
the variance ofκ, with the variance reduction increasing with the decreasing noise level. The
gPC collocation method with level 7 sparse grids is used to build the surrogate model ofu for
each level ofκ measurement noise. To solve the equation foru for each collocation point, we
use the finite volume method with 1600 elements.

7.2.1 Two-Dimensional Forward UQ Problem

Here, we use the gPC surrogate to estimate the mean and variance ofu conditioned on the noisy
measurements ofκ. The conditional variance ofu as a function of thex1 andx2 coordinates
is shown in Figs. 7(b)–7(d) for the three noise levels. For comparison, Fig. 7(a) depicts the
unconditional variance ofu. As in the one-dimensional problem, conditioning on the noisy κ

measurements reduces theu variance and the reduction in variance increases with decreasing
noise level.

7.2.2 Two-Dimensional Inverse Problem

As in the one-dimensional case, we assume that the observations ofu are noise-free and are
drawn from the referenceu field that is found by solving the governing equation with theκ field
given by the referenceκ field. We use ten observations ofu. The relative errors inκ estimated
from theκ measurements with the three noise levels (andu noiseless measurements) are given
in Fig. 8. The relative errors decrease with the noise level,with the maximum relative error of
15% forση = 0.5, 1.6% forση = 0.1, and 1.3% forση = 0.01).

TABLE 2: Percentage of the total variance of the conditional two-dimensionalκ w.r.t. that of
the unconditional two-dimensionalκ field

— Unconditional ση = 0.5 ση = 0.1 ση = 0.01
total variance w.r.t. unconditional field 100% 22.13% 9.8% 8.76%

(a) (b)

FIG. 7.
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(c) (d)

FIG. 7: (a) Unconditional variance ofu as a function of thex1 andx2 coordinates. (b)–(d) Variance ofu
conditioned onκ measurements with the noise levelsση = 0.5, 0.1, andση = 0.01, respectively.

(a) (b)

(c)

FIG. 8: Relative error of estimatedκ field obtained with noiselessu measurements and noisyκ measure-
ments with the measurement noise standard deviations (a)ση = 0.5, (b)ση = 0.1, and (c)ση = 0.01
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8. CONCLUSION

We proposed a new form of KL and gPC expansions conditioned onnoisy measurements. We use
these expansions for forward UQ and inverse problems in PDE models with unknown sparsely
sampled parameter fields. In the proposed approach, GPR is used to estimate the distribution
of the unknown parameter conditioned on its noisy measurements. Then, the corresponding KL
and gPC expansions are constructed in terms of the eigenfunctions and eigenvalues of the con-
ditional covariance function of the parameter obtained from the GPR model. In the forward UQ
application, the conditional gPC surrogate was used to estimate the mean and variance of the
state variable conditioned on the noisy measurements of theparameter. We found that condition-
ing reduces the state variable variance, with the variance decreasing as the measurement noise
decreases. In the inverse solution, we formulated a MAP minimization problem and used the
conditional KL and gPC expansions to find a realization of theconditional parameter field that
satisfies the minimization problem. We found that errors in the estimated parameter field with
respect to the reference parameter field decrease with the decreasing measurement errors.
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