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We propose a new machine learning framework for uncertainty quantification (UQ) and param-
eter estimation in partial differential equation (PDE) models using sparse noisy measurements of
the parameter field. In our approach, the Gaussian process regression (GPR) is used to estimate the
distribution of the unknown parameter «, including mean and variance, conditioned on its mea-
surements. Then, the conditional Karhunen-Loeéve (KL) expansion of « and generalized polynomial
chaos (gPC) expansion of the state variable u are constructed in terms of the parameter’s conditional
mean and the eigenfunctions and eigenvalues of the parameter’s conditional covariance function. In
the forward UQ application, the conditional gPC surrogate is used to estimate the mean and vari-
ance of u. Our results show that conditioning reduces the u variance and that the variance decreases
with decreasing measurement noise. In the inverse solution, we use the conditional KL and gPC
expansions to find a realization of conditional « distribution that satisfies an appropriate maximum
a posteriori minimization problem. We find that the error in the estimated k decreases with the de-
creasing observation error.

KEY WORDS: Guassian process regression, conditional Karhunen-Loéve expansion,
conditioning on noisy measurements, uncertainty quantification, inverse modeling

1. INTRODUCTION

Conditional forward uncertainty quantification (UQ) in pardifferential equation (PDE) mod-
els with sparsely measured parameter fields by means of tiditiomal Monte Carlo (MC)
and moment equation methods dates back to the 1990s (ewgnaye 1993; Tartakovsky and
Neuman, 1998). However, MC has a low convergence rate/{\L;, whereN, is the number of
samples) and the moment approach is limited to the smakwegis (less than 1) of parameter
fields. As a result, generalized polynomial chaos (gPC) ouibased on the Karhunen-Loeve
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(KL) representation of the unknown parameter fields havergeteas a method of choice in
forward UQ (Xiu and Karniadakis, 2003). However, very liedtresearch exists on condition-
ing KL-gPC models on the measurements of the parameterstated\ariables [see Li and
Tartakovsky (2020) and references therein]. Furthernmbeegxisting work on forward UQ with
conditional KL-gPC expansions is limited to conditioningrmiseless measurements (Tipireddy
et al., 2020). In this work, we propose a method for conditigrKL-gPC expansions on noisy
measurements.

Unconditional KL expansions were used in Marzouk et al. $J@0r conditioning a KL-gPC
model on state measurements. In Li and Tartakovsky (202@)néditional KL-gPC model was
used for conditioning the estimation of parameters aneéstah both the parameter and state
measurements. The work on conditional KL expansion reddalat conditioning reduces para-
metric uncertainty and, for the same order of expansioeseases the accuracy of the KL-gPC
methods (Tipireddy et al., 2020). In the case of noiselesssomements, the latter is because the
conditioning on the parameter measurements reduces trendiomality of the KL representa-
tion of the parameter space and the variance of the paraspeee (Li and Tartakovsky, 2020).
Both these factors reduce the number of terms in the gPC siqraof the state variable that are
required to achieve the desired accuracy.

Here, we extend the work of Tipireddy et al. (2020) for ford/&Q and of Li and Tar-
takovsky (2020) for inverse modeling using KL and gPC exjarss conditioned on noise-
less measurements for conditioning on noisy measurememitsis important because in most
sustainability-related research, the measurements gidremeters of natural systems are prone
to measurement errors. We accomplish this by proposingensetior conditioning KL expan-
sions on noisy measurements.

2. PROBLEM SETUP
Consider a physical system with the unknown parametey and described by the PDE,
L(x,u(x),k(x)) =0, for xe€ D, 1)

with known differential operato and appropriate boundary conditioiéx)sp = 0. In the
probabilistic framework, the forward uncertainty proptgain this PDE problem consists of
estimating the statistical distribution afx) given a prior distribution ok(x), i.e., the distri-
bution of k given some measurements wfand/or expert knowledge of the properties of the
physical system expressed bix). The inverse UQ problem is to estimate the posteriori distri
bution ofk given its prior distribution and the observationa.0fOne might be only interested in
the most probable realization of the posteriodistribution, i.e., the maximum (most probable
point) of the posteriori distribution, that can be found ahution of a deterministic maximum
a posteriori (MAP) inverse problem (Li and Tartakovsky, @0Zartakovsky et al., 2021). The
first step in both forward and inverse problems is the constm of the prior model ok(x).

In this work, we assume that the true fields a realization of a Gaussian procesg, w) with

a known covariance function (kernel) that is determinednftbe noisy observations &f{x),
k== (k,..., k"), located atx, := (x%,...,x¥x). Furthermore, we consider the diffusion
operatorL(x, u(x), k(x)) = V - exp(k(x))Vu(x). In this form, among other problems, Eq. (1)
describes steady-state saturated flow in a heterogeneousspoedium, where(x) is the log
conductivity of the said porous medium. We are interestethses where no measurements of
u are available (a forward UQ problem) and where some measunsnofu are available (an
inverse problem).
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The basis of our approach—and its main novelty—is the trigat&L representation of
k(x) that is conditioned on the noisy measurementsg(af). The conditional KL expansion is
used to obtain the (conditional emmeasurements) gPC approximatioruofn the forward UQ
problem, the gPC surrogate is used to compute the mean aiadeaofu. In the inverse prob-
lem, the conditional KL expansion is used to model the unkmparameter field as a realization
of the random spatially correlated field with known mean aowhciance functions, and a gPC
surrogate is used to solve the MAP minimization problem.

3. KARHUNEN-LOE VE (KL) EXPANSION OF UNCONDITIONAL GAUSSIAN FIELD

A square integrable continuous stochastic proeg€ss w)xcp with the covariance function
C(x,y) = E[x(x, w)k(y, w)], x,y € D can be exactly represented by an infinite KL expan-
sion,

K(x, w) = Blk(x, )] + Y VAn&n(w)en(x), in LA(Q), )
n=1

where E[-] denotes the expectation operatdy, are positive eigenvalues,,(x) are mutually
orthogonal eigenfunctions such thjéE; en(x)e;(x)dx = 6,5, andd,, ; is the Kronecker delta.
The eigenfunctions are found as the solution to the Fredliiegral equation of the second
kind:

Ae(x) = /D Cre(x,y)e(y)dy. 3)

The random variable§,, are mutually uncorrelated and have zero mean and unit \@ian
If k(x,w) is a Gaussian process, thepare i.i.d. standard normal random variables. To use the
KL expansion for solving a forward UQ or an inverse problem, &) has to be truncated as

N
K, (%, @) = E[k(x, @) + Y VAnen(x)En(w), (4)
n=1

where the eigenvalues, are arranged in decreasing order. In the remainder of thgerpae
usek(x) to denote the expectatidi|k(x, w)].

4. CONDITIONAL GAUSSIAN FIELD AND ITS KL EXPANSION

We assume that the measurements .ok := («*,..., V) are available at locations, :=
(x2 x'*) with i.i.d. Gaussian noisgq’ ~ N(0,03) for i = 1,...,N,. The Gaussian

K?*® ") K

process regression (GPR) model (Rasmussen, 2003) defenesuariance function of the con-
ditional field x¢(x, w) [i.e., the fieldk(x, w) conditioned on th& measurements] as

Cu(x,y) = Cu(x,y) = R(x)(S + o5 In, xn,) T R(y), (5)
while the mean ok‘(x, w) follows:
Ke(x) = K(x) + R(x)(Z + 03Iy, xn,) 'K, (6)

whereR(s) = [Ck(s,x%), Ck(s,x2),...,Ck(s,x<)]” foranys € D, ¥ isthe N, x N, matrix
with (i, j)th entryX,; ; = Ci (x4, x%), andK = [k! —&(x1), k2 —K(x2),..., kN —x(x)T.
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After computing the eigenpaifs\$, ¢} of the covariance functio@'¢, the truncated condi-

VR

tional KL expansion ok (i.e., the truncated KL expansion f) takes the form

N
KE(x, W) ~ RE(X) + ) Aef(x)E5(w). (7)
i=1

Below we proof a theorem stating that conditioning<adn its noisy measurements reduces
the variance ok. Our numerical results in Section 7 show that the reductforadgance in the
uncertain parameter field leads to the reduction of unggytéan the forward UQ problems and
improves the accuracy of parameter estimation.

Theorem 1. If k(x, w) is a stationary Gaussian process with the covariance fondfi, (-, -),

k is the vector of noisy measurements at pokitsi = 1, ..., N, with i.i.d. noise~ N(0, crf]),
and N,, grid points fully resolve the correlation function (i.ehgtgrid size is much smaller than
the correlation length), then the ratipof the total variance of the conditionalfield w.r.t. that
of the original field at all grid points satisfies

N
PR o (7 .C5) ©
N, D =1 (A + O'TZ])O'ZK

where{A;, Vi}ﬁv;l are the eigenpairs oF, o2 is the variance at each grid point, and, is the
set of all grid points.

Proof. From Eq. (5), the conditional variance oft each poink is
02(x) = Cy(x,x) — R(x)' (£ + 031y, xn,) 'R(x). )

Then, the total conditional variance ofs

Varg = /D 0% (x)dx =~ Z Ax(Cy(x,%x) = R(x)' (S + 05In, xn,) "R(x)),

x€Dx (10)
Ny / 2
= Z Ax CK(X’X)_ZM
x€ Dy i At oy

while the total variance of the unconditionafield has the form

Var, ::/ o?(x)dx ~ Z Ax(Cy(x,x)) = AxN,,02.
D x€Dx

Therefore, Eq. (8) is satisfied. O

According to this theoreny increases as the noise variamx%eincreases and the maximum
reduction in the total variance due to conditioning is av:dan'iawhencyfl = 0. It is important
to note that the conditioning on the noise-free measuresmeduces the dimensionality of the
unconditional field by the number of its measurements (Li d3adakovsky, 2020). The same
result cannot be proved for conditioning on noisy measurgsne
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5. gPC APPROACH FOR THE FORWARD PROBLEM

Given the conditional stochastic representation (7) of the sparsely sampled parameter field
the governing equation (1) becomes stochastic with the random state varfabl) and can

be solved using the gPC Galerkin method or stochastic collocation method. Here, we briefly
introduce the gPC collocation method that we later use for constructing the surrogate model of
u(x, &). The gPC method for Eq. (1) is based on an orthogonal polynomial approximation of
u(x, &). Leti = (i1,...,in) € (N)g be amulti-index withi| = i1 +- - -+ andP > 0 being

an integer. Then, th€th-degree gPC expansion of functiafx, &) is defined as

b
u(x, &) = i(x,£) = Y ci(x)®(E), (11)

where

are the coefficients of the expansidn{ &) are the basis functions
(&) = diy(&1) .- din(En), O<[i[ <P

andg = (&3,..., &) is anN-dimensional random vector with the probability density function
p(&). Here,d; (&) is thejth-degree one-dimensional orthogonal polynomial inheirection
that satisfies

For i.i.d. Gaussian random variabl€§; } ¥ ;, ®;(&) are products of Hermite polynomials.
The number ofb;(&) is
N+ P
(Y27)

(Xiu, 2009; Xiu and Karniadakis, 2002). The gPC approximation (11) converg@$xoe,)

in L2-norm as the degre® increases whefi(x, &) is square integratable with respect to the
probability measure (Xiu, 2007; Xiu and Hesthaven, 2005). The expansion coefficiéx}s
can be approximated as

M
a(x) ~ a(x) = Y i(x, £y (E™)w™, (12)
m=1
Where{f,(””b)}%:1 is a set of quadrature points and™, m = 1,..., M are the corresponding

weights in the stochastic collocation method. For each collocation gihtu(x, £%) is ob-
tained by solving Eq. (1) witlk(x, &) replaced byk(x, a(l)). Then, the mean and variance of
u(x, &) can be approximated as

Efu(x, &)] =~ Elic(x, §)] = ¢o(x), (13)
and

P
Eli(x, &) - Ela(x, &)]* ~ Elic(x, &) - Elic(x, £)]]F = Y &(x)% (14)
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Various quadrature rules can be employed to estimatecluding tensor product quadrature
rules for low-dimensionak, and sparse grid methods for moderately dimensién@lakeman
and Roberts, 2013; Ma and Zabaras, 2009; Nobile et al., 2008; Xiu and Hesthaven, 2005). The
compressive sensing (Hampton and Doostan, 2015; Yan et al., 2012; Yang and Karniadakis,
2013) or the low-rank decomposition methods (Chevreuil et al., 2015; Doostan et al., 2013,
Gorodetsky and Jakeman, 2018) are used to further reduce the computational cost to estimate
the coefficientg; whenever the solution has a sparse representation or has a low-rank structure,
respectively. We note that given the conditional representation («))tbe gPC expansion (11),
gives the approximation of the random state variabt®nditioned on the measuremenrts

6. INVERSE PROBLEM FOR ESTIMATING PARAMETER FIELD

In this section, we use the conditional KL representatitix, &) of k and the conditional gPC
representationi(x, &) of u, whereg, is a vector of unknown parameters (as opposed to a vector of
random variables in the forward UQ problem), to solve the inverse parameter estimation problem
related to the deterministic equation (1) with the unknown parametendigld We assume that

in addition to the noisy measurememtswe have{uj}jy:“l noise-free observations af Then,

the estimation ok(x) reduces to the estimation of tié-dimensional parameter vectér The

latter can be done by solving the MAP optimization problem (Li and Tartakovsky, 2020),

g = argmin v C(&; x5, ..., x V", &%), (15)
where
N‘u. . .
C(Ext . xNE0) =) ) —de (¥, E)P +AlE - &%), (16)
j=1

is the cost function. Tha| & — £°||? term is added to regularize the solution of the optimization
problem, where&?® := (£2,...,&y) € RY and) are the regularization parameters. We use the
trust region method (Shultz et al., 1985) and its implementation in the Matlab software MATLAB
(2018) to solve the optimization problem (15) and (16). We set the regularization parameters to
£° = 0 andA in the range of M00%¥-0.000%. In this work, we choose the value afto
minimize the error with respect to a known reference solution. When a reference solution is not
known,A can be chosen using a cross-validation method. Most of the deterministic optimization
methods, including the trust region method, require derivatives of the cost fufiatiith respect

to the optimization parameters. With the gPC surrogatex, &), the gradient of can be easily
evaluated as

N,
T C(Ext XV E) = Y200 e £) e, £) + & — ), ()
7 J:l 7
where

o N

6_51-“0(’{’ ) = Uz_:ocj(x)a—&q)j(a)
P 5 N (18)

= ZéJ( )85 71 (&) H‘b] (&s) H d‘)jt(at)'

[j|=0 t=i+1
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We note that the uncertainty in the solution in the estimatedn be quantified by comput-
ing the posterior distribution df [and, therefore©(x, &)] using the Bayes rule and the Markov
chain Monte Carlo method, as described in Li and Tartako{®R20) for noise-fre& measure-
ments.

7. NUMERICAL EXAMPLES

To illustrate the proposed method, we consider the diffusiquation with a partially known
(i.e., sparsely sampled) parameter fie(ct),

V- (eX®)Vu(x)) = 0, (19)

subject to the appropriate deterministic boundary coowiiti Among various physical problems,
this equation describes heat transport in solid bodies amdifi porous media with heteroge-
neous log conductivitk. In the case of flow in geological porous media, many studas&h
shown that the statistical propertiesidfk) can be well described by a Gaussian model learned
from available observations (Boschan and Ncetinger, 204&aRovsky et al., 2003). In the
remainder of this section, we consider one- and two-dinoeragiforms of Eg. (19), and we as-
sume that the prior Gaussian modeka$ available. In the forward UQ problem, we assume that
some noisy measurementsroére available and we compute the conditional mean and warian
of u(x). In the inverse problem, we use noisy measurementsamid noise-free measurements
of u to estimatex(x).

7.1 One-Dimensional Diffusion Equation with Unknown Diffu sion Coefficient

Here, we consider the one-dimensional steady-state difflejuation
0 ou(x)
T @) T2
p [e o ] 0, z€(0,1),
w(0) = vy, u(l) =wu,,

(20)

whereu; = 0 andu,. = 2. The sparsely measuredz) is treated as random variabi¢zx, &)
with the known meai = 1.4979 and covariance function

C(z1,72) = crie*l“*mz‘z/nz, x1,22 € [0, 1], (22)

with the correlation lengtly = 0.5 and standard deviatiom, = 0.4724. Our objective is to
estimate the mean and variancewtonditioned on noisy measurementskofin this case,
the N = 7-term KL expansion retains more than 99.99% of the totabwae. The reference
parameter fieldk(z) is obtained as a realization &fz, &). We assume that three equidistant
observations ok are available with values drawn from the refererdeld. To study the effect
of the measurement noise, in Case 1 we add random noise teférencex field values with
the standard deviation, = 0.5, in Case 2 we add noise with), = 0.1, and in Case 3 we add
the noise witho, = 0.01. The reference field, its noisy measurements, the conditional mean
of thek field, and the 97.5% confidence interval are shown in Fig. tHethree noise levels. It
can be seen that the uncertainty (i.e., the conditionatwuag ofk) decreases as the variance of
the noise decreases. The percentage of the total variantdhe variance of the unconditional
Kk is presented in Table 1.
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FIG. 1: Noisy measurements (open circles), conditional meatf (denoted by blue line)ts £+ 1.960%
(green lines), and several realizations of the conditiafiat, &) for the noise variance (a), = 0.5, (b)
on = 0.1, and (c)oy, = 0.01. Black line denotes the referencéield.

TABLE 1: Percentage of the total variance of the one-dimensionalitional k w.r.t. that of
the one-dimensional unconditionafield

— Unconditional | o, = 05| 0, = 0.1| 0;,; = 0.01
total variance w.r.t. unconditional fielJd  100% 18.82% | 2.54% 1.55%

7.1.1 One-Dimensional Forward UQ Problem

We employ the stochastic collocation method with the levaind seven-dimensional sparse
grids (Xiu and Hesthaven, 2005) to construct the order 4 glttbgate ofu that we use to
estimate its mean and variance. The referemgg, the mean fieldi(x), andu(x) £+ o, are
presented in Fig. 2 for Cases 1-3. The referem@e field is obtained by numerically solving
the deterministic governing equation witiz) given by the reference field on a mesh with 257
nodes using the finite element method.

Figure 3 displays the variances wfandv conditioned on the noisy measurementxdbr
the three different noise levels. For comparison, we alssvghe unconditional variances ef
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FIG. 2: (a) Unconditional mean and standard deviation.ofb)—(d) Mean and standard deviationwof
conditioned on the noisy measurementxafith the measurement noise standard deviations= 0.5,
0.1, and 0.01, respectively. All plots also show the refegenfield.

andu. For the largest considered measurement noise, the varédras reduced by more than
66% and the variance af is reduced by more than 75% compared to the unconditional cas
The reduction in the variances ofandw increases as the measurement noise decreases.

7.1.2 One-Dimensional Inverse Problem

Here, we use the KL expansionofind gPC surrogate afconditioned on noisy measurements
to estimate a realization of thethat solves the inverse problem (15). We assume that the ob-
servations ofu are noise-free, and we draw eightmeasurements from the referencdield,
which is generated as described in Section 7.1. For a givetbauof measurements, the solu-
tions of the inverse problems depend on the measuremetidiosdLi and Tartakovsky, 2020).
Here, we assume that all local maxima of theariance curve are sampled with the rest of the
measurements uniformly spread through the domain. Thédtirmsmeasurement locations are
shown in Fig. 4 for the three considered levels of thmeasurement noise.
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FIG. 3: (a) Unconditional and conditional varianceskoénd (b) unconditional and conditional variances
of u as functions oft. The conditional variances are given for theneasurement noise with the standard
deviationso, = 0.5, 0.1, and 0.01.
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FIG. 4: Locations of theu measurements and the conditional variance curve fof the noisy measure-
ments ofk with the measurement noise standard deviatiowfaj= 0.5, (b) o, = 0.1, and (c)o, = 0.01
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The optimization problem is solved using the Matlab optetizn toolbox with the “fmin-
unc/gradients” option. The relative errors in the estirdatdor the three levels of the mea-
surement noise are displayed in Fig. 5 as functions.dfhe maximum relative errors are ap-
proximately 13% for the measurement noise with= 0.5, 2.3% foro,, = 0.1, and less than
0.3% foro,, = 0.01.

7.2 Two-Dimensional Diffusion Equation with Unknown Diffu sion Coefficient

In this section, we consider the two-dimensional diffusguation with the partially observed
coefficientk(x),
V- (e®Vu(x)) =0, x = (z1,22) € D, (22)

subject to the boundary conditions
u(022) =2, u(2a2) =0, —n- (IVu)|g0 =0 (“Vu)|(4 =0, (23)
whereD = [0,240 x [0,60] andn = (0, 1).

. . 0023
0.1235 |
pe] ©
[} [0}
© ©
g ¢ 0.0225 |
£ £
Y— Y—
S 0123 | 5
o o
5 5 0022t
(] (]
2 2
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0 05 1 0 05 1
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(@ (b)
x10°

w
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N

relative error of inversed «

o

0.2 0.4 0.6 0.8 1
X

(©)

FIG. 5: Relative error of the estimatedversusr for the standard deviation of themeasurement noise:
(a)on = 0.5, (b)oy, = 0.1, and (c)or, = 0.01

o
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We assume that the sparsely sampled reference«ialilis a realization of the Gaussian
field with meanu,, = 0.8349, standard deviatiorn, = 0.7262, and the covariance function

C((z1, 22), (y1, y2)) = O-ZKe_‘1‘1—yllz/n§_‘z2—92|2/n§’ (24)

wheren,; = 120 andn, = 100.
We approximate this Gaussian field with te= 7-term truncated KL expansion,

N
K%, E) = e + 0 Y Ve ()&, (25)
i=1

which retains 99.67% of the total variance of the infinitexdnsional KL expansion. As in the
one-dimensional example, we consider conditioningcomeasurements with three levels of
measurement noise characterized by standard deviatjprs0.5 (Case 1)p;, = 0.1 (Case 2),
ando,, = 0.01 (Case 3). Four equidistant measurements afe drawn from the reference
field, which is generated as a realization of the Gaussiad &1). Then, the i.i.d. Gaussian
noise is added to simulate noisy measurements. Fig. 6(a&)sstiee reference field and the
locations of the measurements. We present the variance abtiditionalk field for each noise

0.25
0.2
0.15
0.1
0.2
0.15 i 0.15
Y
0.1 NS 0.1
SR
R
0.05 0 0.05
200
X 00 _
2 x,, o =0.01

FIG. 6: (a) Two-dimensional referenaefield and measurement locations. (b)—(d) Variance abndi-
tioned on noisy measurements with the noise standard éewat, = 0.5, 0.1, and 0.01, respectively.
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level in Figs. 6(b)-6(d). The percentage of the total coadél variance ok w.r.t. the variance
of unconditionak is presented in Table 2. As in the one-dimensional case itiomnitig reduces
the variance ok, with the variance reduction increasing with the decrepsioise level. The
gPC collocation method with level 7 sparse grids is used il blve surrogate model af for
each level ofk measurement noise. To solve the equatiormuféor each collocation point, we
use the finite volume method with 1600 elements.

7.2.1 Two-Dimensional Forward UQ Problem

Here, we use the gPC surrogate to estimate the mean andosadanconditioned on the noisy
measurements of. The conditional variance af as a function of ther; andx, coordinates
is shown in Figs. 7(b)-7(d) for the three noise levels. Fangarison, Fig. 7(a) depicts the
unconditional variance aof. As in the one-dimensional problem, conditioning on thesyai
measurements reduces thevariance and the reduction in variance increases with dsitrg
noise level.

7.2.2 Two-Dimensional Inverse Problem

As in the one-dimensional case, we assume that the obsersaif v are noise-free and are
drawn from the referencefield that is found by solving the governing equation with khféeeld
given by the reference field. We use ten observations @f The relative errors ik estimated
from thek measurements with the three noise levels (@ambiseless measurements) are given
in Fig. 8. The relative errors decrease with the noise levith the maximum relative error of
15% foro,, = 0.5, 1.6% foro,, = 0.1, and 1.3% fow,, = 0.01).

TABLE 2: Percentage of the total variance of the conditional twoetigionalk w.r.t. that of
the unconditional two-dimensionalfield

— Unconditional | o, = 05| 0, = 0.1| 0, = 0.01
total variance w.r.t. unconditional field  100% 22.13% 9.8% 8.76%

" X _
X5 Xy unconditional & 2 X4 an—0.5

@) (b)
FIG.7.
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FIG. 7: (a) Unconditional variance af as a function of the:; andz, coordinates. (b)—(d) Variance of
conditioned ork measurements with the noise levels= 0.5, 0.1, andr,, = 0.01, respectively.
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8. CONCLUSION

We proposed a new form of KL and gPC expansions conditionew@y measurements. We use
these expansions for forward UQ and inverse problems in PDéets with unknown sparsely
sampled parameter fields. In the proposed approach, GPRdstasstimate the distribution
of the unknown parameter conditioned on its noisy measune&an&hen, the corresponding KL
and gPC expansions are constructed in terms of the eigaidna@nd eigenvalues of the con-
ditional covariance function of the parameter obtainediftbe GPR model. In the forward UQ
application, the conditional gPC surrogate was used tonasti the mean and variance of the
state variable conditioned on the noisy measurements glatteameter. We found that condition-
ing reduces the state variable variance, with the variaeceedsing as the measurement noise
decreases. In the inverse solution, we formulated a MAP migation problem and used the
conditional KL and gPC expansions to find a realization ofdbeditional parameter field that
satisfies the minimization problem. We found that errorshim ¢stimated parameter field with
respect to the reference parameter field decrease with tmeatng measurement errors.

ACKNOWLEDGMENTS

The material presented here is based upon work supportedebepartment of Energy Ad-
vanced Scientific Computing Research program as part oflineértainty Quantification For
Complex Systems Described by Stochastic Partial DiffémeRtjuations” project. Pacific North-
west National Laboratory is operated by Battelle for the &&pent of Energy under Contract
DE-ACO05-76RL01830.

REFERENCES
Boschan, A. and Neetinger, B., Scale Dependence of Effeldiyazaulic Conductivity Distributions in 3D
Heterogeneous Media: A Numerical Studyansp. Porous Mediavol. 94, no. 1, pp. 101-121, 2012.

Chevreuil, M., Lebrun, R., Nouy, A., and Rai, P., A Least-8as Method for Sparse Low Rank Approxi-
mation of Multivariate FunctionsSIAM/ASA J. Uncert. Quantifvol. 3, no. 1, pp. 897-921, 2015.

Doostan, A., Validi, A., and laccarino, G., Non-Intrusive\i-Rank Separated Approximation of High-
Dimensional Stochastic Model§pomput. Methods Appl. Mech. Engol. 263, pp. 42-55, 2013.

Gorodetsky, A.A. and Jakeman, J.D., Gradient-Based Optitioin for Regression in the Functional
Tensor-Train Format]. Comput. Physvol. 374, pp. 1219-1238, 2018.

Hampton, J. and Doostan, A., Compressive Sampling of PaljadChaos Expansions: Convergence Anal-
ysis and Sampling Strategiek,Comput. Physvol. 280, pp. 363—386, 2015.

Jakeman, J.D. and Roberts, S.G., Local and Dimension Adaftiochastic Collocation for Uncertainty
Quantification, inSparse Grids and ApplicationBerlin, Germany: Springer, pp. 181-203, 2013.

Li, J. and Tartakovsky, A.M., Gaussian Process RegressidrCanditional Polynomial Chaos for Param-
eter EstimationJ. Comput. Physvol. 416, p. 109520, 2020.

Ma, X. and Zabaras, N., An Adaptive Hierarchical Sparse Guatlocation Algorithm for the Solution of
Stochastic Differential Equation3, Comput. Physvol. 228, no. 8, pp. 3084-3113, 2009.

Marzouk, Y.M., Najm, H.N., and Rahn, L.A., Stochastic Spald/lethods for Efficient Bayesian Solution
of Inverse Problemsl. Comput. Physvol. 224, no. 2, pp. 560-586, 2007.

MATLAB, 9.7.0.1190202 (R2019b)he MathWorks Inc., Natick, MA, 2018.
Neuman, S.P., Eulerian—Lagrangian Theory of Transportpacg-Time Nonstationary Velocity Fields:

Volume 3, I'ssue 2, 2022



86 Li & Tartakovsky

Exact Nonlocal Formalism by Conditional Moments and Weakrgimation Water Res. Resvol. 29,
no. 3, pp. 633-645, 1993.

Nobile, F., Tempone, R., and Webster, C.G., A Sparse GridHaitic Collocation Method for Partial
Differential Equations with Random Input DatalAM J. Numer. Analvol. 46, no. 5, pp. 2309-2345,
2008.

Rasmussen, C.E., Gaussian Processes in Machine LeamiSginmmer School on Machine Learnjng
Berlin, Germany: Springer, pp. 63—71, 2003.

Shultz, G.A., Schnabel, R.B., and Byrd, R.H., A Family of §iriRegion-Based Algorithms for Uncon-
strained Minimization with Strong Global Convergence Rmies,SIAM J. Numer. Analvol. 22, no. 1,
pp. 47-67,1985. DOI: 10.1137/0722003

Tartakovsky, A., Barajas-Solano, D., and He, Q., Physiésrined Machine Learning with Conditional
Karhunen-Loeve Expansionk,Comput. Physvol. 426, p. 109904, 2021.

Tartakovsky, D.M., Lu, Z., Guadagnini, A., and TartakovskyM., Unsaturated Flow in Heterogeneous
Soils with Spatially Distributed Uncertain Hydraulic Pareters,J. Hydrol, vol. 275, no. 3, pp. 182—
193, 2003.

Tartakovsky, D.M. and Neuman, S.P., Transient Flow in BashRandomly Heterogeneous Domains: 1.
Exact Conditional Moment Equations and Recursive Appragtioms,Water Res. Resvol. 34, no. 1,
pp. 1-12,1998.

Tipireddy, R., Barajas-Solano, D.A., and Tartakovsky, A.®onditional Karhunen—Loéve Expansion for
Uncertainty Quantification and Active Learning in Partiafférential Equation Models). Comput.
Phys, vol. 418, p. 109604, 2020.

Xiu, D., Efficient Collocational Approach for Parametric témtainty AnalysisCommun. Comput. Phys.
vol. 2, no. 2, pp. 293-309, 2007.

Xiu, D., Fast Numerical Methods for Stochastic ComputatignReview,Commun. Comput. Physol. 5,
pp. 242-272, 2009.

Xiu, D. and Hesthaven, J., High-Order Collocation MethaaisDifferential Equations with Random In-
puts,SIAM J. Sci. Computvol. 27, no. 3, pp. 1118-1139, 2005.

Xiu, D. and Karniadakis, G., The Wiener-Askey PolynomiabGh for Stochastic Differential Equations,
SIAM J. Sci. Computvol. 24, no. 2, pp. 619-644, 2002.

Xiu, D. and Karniadakis, G.E., Modeling Uncertainty in FI&imulations via Generalized Polynomial
Chaos,J. Comput. Physvol. 187, no. 1, pp. 137-167, 2003.

Yan, L., Guo, L., and Xiu, D., Stochastic Collocation Algbrns UsingLl Minimization, Int. J. Uncert.
Quantif, vol. 2, pp. 279-293, 2012.

Yang, X. and Karniadakis, G.E., Reweight&d Minimization Method for Stochastic Elliptic Differential
Equations,). Comput. Physvol. 248, pp. 87-108, 2013.

Journal of Machine Learning for Modeling and Computing



