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Physics-informed neural networks (PINNs) have recently been applied to a wide range of computa-

tional physical problems. In this paper, we use PINNs to solve an inverse two-phase flow problem in

heterogeneous porous media where only sparse direct and indirect measurements are available. The

forward two-phase flow problem is governed by a coupled system of partial differential equations

(PDEs) with initial and boundary conditions. As for inverse problems, the solutions are assumed

to be known at scattered locations but some coefficients or variable functions in the PDEs are miss-

ing or incomplete. The idea is to train multiple neural networks representing the solutions and the

unknown variable function at the same time such that both the underlying physical laws and the

measurements can be honored. The numerical results show that our proposed method is able to re-

cover the incomplete permeability field in different scenarios. Moreover, we show that the method

can be used to forecast the future dynamics with the same format of loss function formulation. In ad-

dition, we employ a neural network structure inspired by the deep operator networks (DeepONets)

to represent the solutions which can potentially shorten the time of the training process.

KEY WORDS: physics-informed neural networks, two phase flow, inverse problem, dy-
namics prediction

1. INTRODUCTION

Deep learning techniques have recently been developed to solve various computational science
and engineering problems (Berg and Nyström, 2018; Fraces et al., 2020; Goswami et al., 2020;
Haghighat et al., 2020; He et al., 2020; Kharazmi et al., 2020; Raissi, 2018; Tartakovsky et al.,
2018; Tchelepi and Fuks, 2020; Yang et al., 2018; Zhu et al., 2019). More specifically, physics-
informed neural networks (PINNs) have been used to solve engineering problems where the
governing partial differential equations (PDEs) are knownand some of the solutions can be
acquired (Berg and Nyström, 2018; He et al., 2020; Raissi, 2018). The neural networks are de-
fined with several hidden layers followed by user designed nonlinear activation functions such
that they are capable of approximating the complex solutions. PINNs provide an alternative ap-
proach to classical numerical techniques like finite-difference methods (FDMs) in solving PDEs
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given the universal approximation properties of neural networks (Kharazmi et al., 2020; Raissi,
2018). In addition, the PINNs approach is also capable of integrating data or measurements as
prior information seamlessly so that forward and inverse problems can be solved via the same
neural network architecture (He et al., 2020).

Deep learning has been used recently to model flow and transport in subsurface porous me-
dia (Song and Tartakovsky, 2022; Tchelepi and Fuks, 2020; Wang et al., 2021a, 2022; Wang and
Lin, 2020; Yang and Foster, 2021; Zhou et al., 2022). In the paper by Song and Tartakovsky
(2022), the authors proposed to use deep convolutional NN asa surrogate model to predict dy-
namic behaviors. The training was performed on multifidelity data and the trained model was
used for uncertainty quantification which would be very computationally expensive on physical
models directly. In the paper by Zhou et al. (2022), the authors proposed to use a combination
of convolutional adversial autoencoder and a dense convolutional encoder-decoder to construct
a surrogate model which then was used for inversion. The ideais also to replace the expensive
physical model with a more affordable surrogate model; in the meantime, the accuracy is re-
tained. In Wang and Lin (2020), the authors used the deep convolutional auto-encoder to build
an efficient surrogate which predicts the transport of the water saturation in multiphase subsur-
face transport. Their method requires the water saturationdata from the whole domain for the
entire duration of simulation to train the surrogate. Once the model is trained, it can reduce the
time of prediction by orders of magnitude with respect to a traditional numerical solver. In Wang
et al. (2021a), the authors used the theory-guided auto-encoder to learn the dynamics of a scaler
transport in one-phase flow. The training is performed in a data-free fashion which is similar
to the idea of PINNs in that the physical laws are embedded into the loss function so that no
input-output pairs are needed as in traditional machine learning applications. The trained model
can also be used to solve inverse problems, but the accuracy of the model depends on the sam-
pling for training. In Yang and Foster (2021) and Tchelepi and Fuks (2020), the authors used
PINNs directly to solve the forward and inverse two-phase flow problems but the applications
are limited to one-dimensional cases.

In this work, we use PINNs to solve the inverse two-phase flow problems in porous media
in two dimensions. The goal is to solve for the heterogeneouspermeability field with sparse
measurements of water saturation, pressure, and permeability. This is analogous to the history
matching in petroleum engineering reservoir simulation inthat the parameters of forward simu-
lators are “tuned” to fit actual hydrocarbon production datafrom a reservoir. We define multiple
neural networks to represent each variable and use them to formulate the residuals of the bal-
ance laws. Also, given measurements can be satisfied by constructing additional loss terms with
a mean squared error norm. In the Results section, we presentdifferent cases for inversion to
show the flexibility of the approach. Interestingly, this approach can also be used to solve hybrid
problems such that the inversion and forecast can be achieved at the same time. We also pro-
pose to use a neural network structure similar to DeepONets (Wang and Perdikaris, 2021; Wang
et al., 2021b) for time-dependent variables. The architecture is composed of two separate fully
connected networks which process spatial and temporal information. This can potentially reduce
the training time by using fewer evaluation points to formulate the residuals when compared with
finite-difference methods.

2. PHYSICS-INFORMED NEURAL NETWORKS FOR INVERSE PROBLEMS

In the framework of PINNs, we embed the conservation equations, constitutive laws, and other
physical constraints into the loss function. Any availablemeasurements and data can also be
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enforced to satisfy additional loss term with a desired norm(e.g., the mean squared error). The
loss function is then minimized by using optimizers in an iterative fashion and the weights and
bias of the neural network (NN) are updated during the training process. After a tolerance is
reached, the NN can serve as the field solutions or the variable function of interest which satisfies
both the physics laws and any available measurements.

A schematic of a PINN using fully connected networks is shownin Fig. 1. The neural net-
work uNN in Fig. 1 is used to represent the solutionu. In this work, and without loss of gener-
alization, only fully connected neural networks are considered which can be expressed as

uNN (x;W, b) = Tm ◦ Tm−1 ◦ · · · ◦ T 2 ◦ T 1(x), (1)

T j(·) = σj(W j × ·+ bj), j = 1, 2, . . . , n, (2)

whereW j andbj are the weights and bias of layerj; (·) is the output from the previous layer. In
this work, multiple neural networks are defined for different variables and the outputs are used to
construct the loss function in Fig. 1. More details of the loss function formulation are presented
in Section 3.

In this work, we use neural networks with the DeepONets structure to represent the time
dependent variables. A schematic is shown in Fig. 2. We definetwo fully connected neural
networks to embed the spatial and temporal information and each produces multiple outputs.
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∇ · uNN
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FIG. 1: A fully connected neural network schematic with four, N, andone neuron in the input, hidden, and
output layers, respectively. The loss function is constructed with operations applied on the output of the
neural networksuNN .
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FIG. 2: A schematic of neural networks with the DeepONets structure

Then the final output is obtained by computing the product,

uNN (x, y, z, t) =
M
∑

i=1

siNN (x, y, z) · tiNN (t), (3)

whereM is the number of outputs of the space and time neural networkssNN andtNN . This
proposed neural network does not lose the generality in thatit can be used to evaluate the value
at an arbitrary point in the domain. However, it can provide some benefits certain formulations
of the physical law residuals when compared to the conventional fully connected networks in
Fig. 1. For example, if the finite different method is used to discretize PDEs, then we will need
(Nx × Ny × Nz × Nt) points to formulate the residual and the backpropagation will update
the weights and bias for each point. With the proposed neuralnetworks, the space and time
evaluation can be separated so that only(Nx × Ny × Nz + Nt) times forward evaluations are
needed to generate the points to formulate the residual which can greatly reduce the training
time. For more discussion of DeepONets please refer to the papers by Wang et al. (2021b) and
Wang and Perdikaris (2021).

3. TWO-PHASE FLOW MODEL WITH PINNS

3.1 Incompressible Two-Phase Flow Model

In this work, gravity effects and capillary pressure are neglected; hence the flow equations with
Darcy’s law can be written as

u = −λ(Sw)k∇p, (4)

∇ · u = r, (5)

whereu is the total flow velocity,k is the absolute permeability,p is the pressure,r is the total
source/sink, andλ(Sw) is the total mobility which is a function of the water saturation (Sw). u
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andλ(Sw) can be calculated as follows:

u = uw + uo, (6)

ui = −
kri
µi

k∇p, i = w, o, (7)

λ(Sw) =
krw(Sw)

µw

+
kro(Sw)

µo

, (8)

where the subscriptw ando represent the water and oil phase,uw anduo are the respective flow
velocities,µw andµo are the respective viscosities which are considered as constant here and
throughout this work,krw andkro are the respective relative permeabilities which are functions
of Sw. The equation ofSw transport can be written as

∂Sw

∂t
+ u · ∇fw = rw, (9)

whererw is the source/sink of water andfw is the water fractional flow function which can be
calculated as a function ofSw:

fw =
krw/µw

krw/µw + kro/µo

. (10)

In this work, all variables are considered to be dimensionless with normalization and the
constitutive relations for the two-phase flow model are the same for all cases in Section 4. The
ratioµw/µo is constant as 5.0.krw andkro are defined as

krw = S2
w, (11)

kro = (1− Sw)
2, (12)

whereSw is a scalar function between 0 and 1. The functions ofkrw, kro, andfw are shown in
Fig. 3.

3.2 PINNs with a Finite Difference Residual Formulation

Three neural networksNs, Np, andNk are defined forSw, p, andk to construct the overall
loss function for training. Note thatu can be calculated withSw andp; hence we do not need a

FIG. 3: Relative permeability functionskrw andkro, and the water fractional flow functionfw that are
used in this work
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separate neural network foru. The three neural networks can be evaluated on structured space-
time grids,

Sw
i,j,q = Ns(i∆x, j∆y, q∆t), (13)

pi,j,q = Np(i∆x, j∆y, q∆t), (14)

ki,j = Nk(i∆x, j∆y), (15)

wherei = 1, 2, ..., Nx; j = 1, 2, ..., Ny; andq = 1, 2, ..., Nt. Nx, Ny, andNt are the number of
grid points in each dimension.∆x, ∆y, and∆t are the grid size in each dimension. In this work,
we assume to have no source/sink terms for both phases. The residual of (5) can be calculated as

λi,j,q = λ(Sw
i,j,q), (16)

cx =
λi+1,j,qki+1,j + λi,j,qki,j

2
, (17)

cy =
λi,j+1,qki,j+1 + λi,j,qki,j

2
, (18)

wherecx andcy are the average coefficients† between grid points in thex andy dimensions.
Then we have

rx
i,j,q =

cx
i+1,j,q(pi+2,j,q − pi+1,j,q)− cx

i,j,q(pi+1,j,q − pi,j,q)

∆x2 , (19)

ry
i,j,q =

cy
i,j+1,q(pi,j+2,q − pi,j+1,q)− cy

i,j,q(pi,j+1,q − pi,j,q)

∆y2 , (20)

rc
i,j,q = rx

i,j,q + ry
i,j,q, (21)

Rc =
1
Nc

∑

rc
2, (22)

whereNc is the total number ofrc which is (Nx − 2) × (Ny − 2) × Nt. For the transport
equation (9), we use the backward Euler method to discretizethe time dimension and formulate
the residual using in its implicit form

fw
i,j,q = fw(Sw

i,j,q), (23)

rs
i,j,q =

Sw
i,j,q − Sw

i,j,q−1

∆t
− λi,j,qki,j

(

pi+1,j,q − pi−1,j,q

2∆x

)

×

(

fw
i+1,j,q − fw

i−1,j,q

2∆x

)

− λi,j,qki,j
(

pi,j+1,q − pi,j−1,q

2∆y

)

×

(

fw
i,j+1,q − fw

i,j−1,q

2∆y

)

,

(24)

Rs =
1
Ns

∑

rs
2, (25)

†There is no loss of generality in using the algebraic mean here; we could alternatively use the harmonic
mean as is often done in petroleum reservoir simulation.
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whereNs is the total number ofrs which is (Nx − 2) × (Ny − 2) × (Nt − 1). To make the
problem well defined, we also need to include the residuals ofthe boundary conditions (Dirchlet,
Neumann or mixed) and the initial condition in the overall loss function. They can be calculated
in a similar fashion asRc andRs so that we omit the details here. We refer to the general
boundary condition and initial condition asRb andRi.

Finally, we calculate the mean squared error (MSE) ofSw, p, andk from the neural networks
with respect to any available data. This is the key part of theinversion and it guarantees that the
resulting neural networks honor the data where available. In this work, we assume to have sparse
measurements ofSw

d, pd, andkd, so that the MSE can be calculated as

Rms =
1

Nms

Nms
∑

i=0

(

Ns (xi, yi, qi)− Sw
d
i

)2
, (26)

Rmp =
1

Nmp

Nmp
∑

i=0

(

Np (xi, yi, qi)− pdi
)2

, (27)

Rmk =
1

Nmk

Nmk
∑

i=0

(

Nk (xi, yi)− kdi
)2

, (28)

whereNms, Nmp, andNmk are the number of respective measurements. Note that these three
loss terms have the same format as that of the Dirchlet boundary condition residuals. Therefore,
the PINNs framework can be used to solve the forward and inverse problems with the same
structure which makes it possible to integrate various kinds of data in training. The overall loss
functionL can then be defined as

L = w1(Rc +Rs) + w2(Rb + Ri + Rms + Rmp +Rmk), (29)

wherew1 andw2 are the user defined weights (i.e., hyperparameters) for different loss terms.

4. NUMERICAL RESULTS

In this section, we present our numerical simulation results of two schemes. In the first scheme
(Case 1 to Case 4), water is injected from the left side of a unit square domain which is saturated
with oil at the beginning and fluids flow out through the right side. The injection and producing
pressure are fixed. The top and bottom sides are assumed to be impermeable. Therefore, the
boundary conditions and initial conditions are

Sw(x = 0) = 1.0,

Sw(t = 0) = 0.0,

p(x = 0) = 1.0,

p(x = 1) = 0.0,

u(y = 0) = 0.0,

u(y = 1) = 0.0.

TheSw profiles at three different time points are shown in Fig. 4. These serve as the synthetic
Sw data for the first four cases.
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(a) (b)

(c)

FIG. 4: Sw profiles at different times: (a)Sw at t = 2; (b)Sw at t = 4; and (c)Sw at t = 6

In the second scheme (Case 5), we assume to have multiple injection and producing wells in
the domain. All the wells are operated at fixed pressure, so that they can be seen as pointwise
Dirchlet boundary conditions ofp. All four sides are assumed to be impermeable. The boundary
condition and initial condition can be described as follows:

Sw(xi
inj , yi

inj) = 1.0, i = 1, 2, ..., Ninj,

Sw(t = 0) = 0.0,

u(x = 0) = 0.0,

u(x = 1) = 0.0,

u(y = 0) = 0.0,

u(y = 1) = 0.0,

p(xi
inj , yi

inj) = 1.0, i = 1, 2, ...Ninj ,

p(xi
pro, yi

pro) = 0.0, i = 1, 2, ...Npro,

whereNinj andNpro are the number of injection and producing wells. TheSw profiles at three
different times are shown in Fig. 5. This will serve as the synthetic Sw data for Case 5. In
this work, we use synthetic data for training and they come from the finite-element simulations
with FEniCS (Alnæs et al., 2015) using a highly refined mesh. Note that we added a small
diffusion term ofSw in Eq. (8) when running the FEniCS simulations to make the solution
stable. Nevertheless, we can add the same diffusion in the PINNs formulation so that it does
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(a) (b)

(c)

FIG. 5: Sw profiles at different times: (a)Sw at t = 0.2; (b)Sw at t = 0.6; and (c)Sw at t = 1.0

not degrade the generality of our approach. It is common to see the diffusion effects in the
nature due to the capillary pressure. In this work, all the PINNs applications are implemented
with PyTorch (Paszke et al., 2017). An LBFGS optimizer is used to train the neural networks
and the hyperbolic tangent function (tanh) is used as the activation function. The space and
time neural networks forSw andp have the same structure which consists of six hidden layers
and 40 neurons per layer (40 neurons in the output layer). Theneural networks fork has two
hidden layers and 40 neurons per layer (one neuron in the output layer). We use the same neural
networks for all the cases throughout this study.

4.1 Case 1: Measurements on a Regular Grid

In this case, we assume to have direct measurements ofk on a 7× 7 regular grid. Also, we
assume that measurements ofSw andp are available at the same locations during the simulation.
The results are shown in Figs. 6–8. It is shown that we are ableto obtain ak field that is in
agreement with the truek field well at the end of training. Also, we verified the outputsof the
neural networks forSw andp and it shows that the measurements are also in agreement.

4.2 Case 2: Measurements at Random Locations

In this case, we assume to have direct measurements ofk on 49 random locations. Again, we
assume that measurements ofSw andp are available at the same locations for the duration of the
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(a) (b)

(c)

FIG. 6: Comparison of the invertedk field to the truek field. The blue dots indicate the locations of
measurements, the black triangles are the three observation locations where we verify the match ofSw and
p data. (a) Truek field in logarithm, (b) invertedk field in logarithm, and (c) absolute error ofk.

simulation. The results are shown in Figs. 9–11. As in the previous case, we are able to obtain a
k field that matches the truek field well at the end of training.

Figure 9 shows that the invertedk field agrees with the truek field well at the end of training.
In the meantime, thep andSw predictions match the measurements at locations that are not on
regular grids.

(a) (b)

FIG. 7.
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(c)

FIG. 7: Verification of Sw match at three observation locations. (a)Sw comparison at obs 1, (b)Sw

comparison at obs 2, and (c)Sw comparison at obs 3.

(a) (b)

(c)

FIG. 8: Verification ofp match at three observation locations. (a)p comparison at obs 1, (b)p comparison
at obs 2, and (c)p comparison at obs 3.

4.3 Case 3: Using Fewer Direct Measurements of k

In this case, we assume to have fewer direct measurements ofk than in the last two cases. The
measurements ofSw andp remain the same as in the last case. The results are shown in Figs. 12–
14. It is demonstrated that we are still able to obtain ak field in agreement with the true data with
only ten measurements ofk. Again, the measurements ofSw andp are honored closely as well.
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(a) (b)

(c)

FIG. 9: Comparison of the invertedk field to the truek field. The blue dots indicate the locations of
measurements, the black triangles are the three observation locations where we verify the match ofSw and
p data. (a) Truek field in logarithm, (b) invertedk field in logarithm, and (c) absolute error ofk.

4.4 Case 4: Forecasting the Dynamics

In this case, we assume to have measurements ofSw andp for a shorter period of time and solve a
hybrid problem. For time from 0 to 1.2, it is the same inversion problem as the last few cases, and

(a) (b)

FIG. 10.
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(c)

FIG. 10: Verification of Sw match at three observation locations. (a)Sw comparison at obs 1, (b)Sw

comparison at obs 2, and (c)Sw comparison at obs 3.

(a) (b)

(c)

FIG. 11: Verification ofp match at three observation locations. (a)p comparison at obs 1, (b)p comparison
at obs 2, and (c)p comparison at obs 3.

for time from 1.2 to 6, it is actually a forward problem as noSw andpmeasurements are available
except for boundary conditions. With the framework of PINNs, we are able to achieve these two
goals at the same time. It is also worth noting that the forward simulation with FEniCS using a
CPU takes about 3200 sec., while the whole training takes only about 1340 sec. using a GPU.
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(a) (b)

(c)

FIG. 12: Comparison of the invertedk field to the truek field. Measurements ofSw andp are located on
all the markers (blue dots and black crosses); measurementsof k are located on black crosses (10 in total);
black triangles are the three observation locations where we verify the match ofSw andp data. (a) Truek
field in logarithm, (b) invertedk field in logarithm, and (c) absolute error ofk.

The results are shown in Figs. 15–17. Again, the invertedk field matches the truek field
well. Moreover, the dynamics ofSw andp can be forecasted well even for locations where the
measurements are all prior to water breakthrough (e.g., observation 3).

(a) (b)

FIG. 13.
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(c)

FIG. 13: Verification of Sw match at three observation locations. (a)Sw comparison at obs 1, (b)Sw

comparison at obs 2, and (c)Sw comparison at obs 3.

(a) (b)

(c)

FIG. 14: Verification ofp match at three observation locations. (a)p comparison at obs 1, (b)p comparison
at obs 2, and (c)p comparison at obs 3.

4.5 Case 5: Multiple Injection and Producer Wells

In this case, we apply the same algorithm to the multiple-well setting which is more commonly
seen in the petroleum engineering reservoir problems. The results are shown in Fig. 18 and we
are able to obtain a closek field again at the end of training.
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(a) (b)

(c)

FIG. 15: Comparison of the invertedk field to the truek field. The blue dots indicate the locations of
measurements; the black triangles are the three observation locations where we verify the match ofSw and
p data. (a) Truek field in logarithm, (b) invertedk field in logarithm, and (c) absolute error ofk.

5. CONCLUSION AND FUTURE WORK

In this work, we used PINNs to solve the inverse two-phase flowproblem in heterogeneous
media. The results demonstrate that the permeability fieldk in the entire domain can be obtained

(a) (b)

FIG. 16.
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(c)

FIG. 16: Verification of Sw match at three observation locations. (a)Sw comparison at obs 1, (b)Sw

comparison at obs 2, and (c)Sw comparison at obs 3.

(a) (b)

(c)

FIG. 17: Verification ofp match at three observation locations. (a)p comparison at obs 1, (b)p comparison
at obs 2, and (c)p comparison at obs 3.

using sparse measurements ofSw, p, andk. We also tested the method in different scenarios and
it shows that the inversion can be achieved with sparse measurements. In addition, we are able
to forecast the dynamics using the same framework so that theinversion and prediction can be
done at the same time.
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(a) (b)

(c)

FIG. 18: Comparison of the invertedk field to the truek field. The blue dots the injection wells; the
black crosses are the producer wells. (a) Truek field in logarithm, (b) invertedk field in logarithm, and (c)
absolute error ofk.

In the future, we would like to extend the current work and apply the method on measure-
ments with uncertainties, which are ubiquitous in petroleum engineering applications, and is
another important aspect of the inverse problems. We would also like to explore different neu-
ral network architectures than those proposed in this work with the goal of further reducing the
training time of PINNs.
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