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Physics-informed neural networks (PINNs) have recently been applied to a wide range of computa-
tional physical problems. In this paper, we use PINNs to solve an inverse two-phase flow problem in
heterogeneous porous media where only sparse direct and indirect measurements are available. The
forward two-phase flow problem is governed by a coupled system of partial differential equations
(PDEs) with initial and boundary conditions. As for inverse problems, the solutions are assumed
to be known at scattered locations but some coefficients or variable functions in the PDEs are miss-
ing or incomplete. The idea is to train multiple neural networks representing the solutions and the
unknown variable function at the same time such that both the underlying physical laws and the
measurements can be honored. The numerical results show that our proposed method is able to re-
cover the incomplete permeability field in different scenarios. Moreover, we show that the method
can be used to forecast the future dynamics with the same format of loss function formulation. In ad-
dition, we employ a neural network structure inspired by the deep operator networks (DeepONets)
to represent the solutions which can potentially shorten the time of the training process.

KEY WORDS: physics-informed neural networks, two phase flow, inverse problem, dy-
namics prediction

1. INTRODUCTION

Deep learning techniques have recently been developedv® &&rious computational science
and engineering problems (Berg and Nystrom, 2018; Fratcals, 2020; Goswami et al., 2020;
Haghighat et al., 2020; He et al., 2020; Kharazmi et al., 2@20ssi, 2018; Tartakovsky et al.,
2018; Tchelepi and Fuks, 2020; Yang et al., 2018; Zhu et @lL92 More specifically, physics-
informed neural networks (PINNs) have been used to solvéneagng problems where the
governing partial differential equations (PDEs) are knaama some of the solutions can be
acquired (Berg and Nystrom, 2018; He et al., 2020; Rai€sig8®. The neural networks are de-
fined with several hidden layers followed by user designatdinear activation functions such
that they are capable of approximating the complex solsti®fiNNs provide an alternative ap-
proach to classical numerical techniques like finite-défece methods (FDMs) in solving PDEs
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given the universal approximation properties of neurahoeks (Kharazmi et al., 2020; Raissi,
2018). In addition, the PINNs approach is also capable ebjirating data or measurements as
prior information seamlessly so that forward and inversgbjf@ms can be solved via the same
neural network architecture (He et al., 2020).

Deep learning has been used recently to model flow and trarigpgubsurface porous me-
dia (Song and Tartakovsky, 2022; Tchelepi and Fuks, 2020g/aal., 2021a, 2022; Wang and
Lin, 2020; Yang and Foster, 2021; Zhou et al., 2022). In theepdy Song and Tartakovsky
(2022), the authors proposed to use deep convolutional NdNsasrogate model to predict dy-
namic behaviors. The training was performed on multifigedihta and the trained model was
used for uncertainty quantification which would be very comagionally expensive on physical
models directly. In the paper by Zhou et al. (2022), the anstipooposed to use a combination
of convolutional adversial autoencoder and a dense cotionhl encoder-decoder to construct
a surrogate model which then was used for inversion. Theiglakso to replace the expensive
physical model with a more affordable surrogate model; & ieantime, the accuracy is re-
tained. In Wang and Lin (2020), the authors used the deepobational auto-encoder to build
an efficient surrogate which predicts the transport of theemwsaturation in multiphase subsur-
face transport. Their method requires the water saturatida from the whole domain for the
entire duration of simulation to train the surrogate. Oreernodel is trained, it can reduce the
time of prediction by orders of magnitude with respect taditional numerical solver. In Wang
et al. (2021a), the authors used the theory-guided autodento learn the dynamics of a scaler
transport in one-phase flow. The training is performed in @-fl@e fashion which is similar
to the idea of PINNSs in that the physical laws are embeddexth loss function so that no
input-output pairs are needed as in traditional machinmieg applications. The trained model
can also be used to solve inverse problems, but the accufaleg osmodel depends on the sam-
pling for training. In Yang and Foster (2021) and Tchelep &uks (2020), the authors used
PINNSs directly to solve the forward and inverse two-phase fiwoblems but the applications
are limited to one-dimensional cases.

In this work, we use PINNs to solve the inverse two-phase flovbiems in porous media
in two dimensions. The goal is to solve for the heterogengmumeability field with sparse
measurements of water saturation, pressure, and periteaHiis is analogous to the history
matching in petroleum engineering reservoir simulatiothat the parameters of forward simu-
lators are “tuned” to fit actual hydrocarbon production deten a reservoir. We define multiple
neural networks to represent each variable and use themrtaufate the residuals of the bal-
ance laws. Also, given measurements can be satisfied byraotisy additional loss terms with
a mean squared error norm. In the Results section, we prdsfarent cases for inversion to
show the flexibility of the approach. Interestingly, thigpapach can also be used to solve hybrid
problems such that the inversion and forecast can be achatvihe same time. We also pro-
pose to use a neural network structure similar to DeepONéasg and Perdikaris, 2021; Wang
et al., 2021b) for time-dependent variables. The architeas composed of two separate fully
connected networks which process spatial and temporahnation. This can potentially reduce
the training time by using fewer evaluation points to foratalthe residuals when compared with
finite-difference methods.

2. PHYSICS-INFORMED NEURAL NETWORKS FOR INVERSE PROBLEMS

In the framework of PINNs, we embed the conservation eqnaticonstitutive laws, and other
physical constraints into the loss function. Any availableasurements and data can also be
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enforced to satisfy additional loss term with a desired n(erg., the mean squared error). The
loss function is then minimized by using optimizers in amat&e fashion and the weights and
bias of the neural network (NN) are updated during the tn@girprocess. After a tolerance is

reached, the NN can serve as the field solutions or the variabttion of interest which satisfies

both the physics laws and any available measurements.

A schematic of a PINN using fully connected networks is shinvRig. 1. The neural net-
work uy x in Fig. 1 is used to represent the solutienin this work, and without loss of gener-
alization, only fully connected neural networks are coasid which can be expressed as

unn(z; W,b) =T o T™ Yo 0T? 0 THz), (1)
TI() = /(Wi x-+b)), j=12....m, )

whereWW7 andb’ are the weights and bias of laygr(-) is the output from the previous layer. In
this work, multiple neural networks are defined for differeariables and the outputs are used to
construct the loss function in Fig. 1. More details of theslmction formulation are presented
in Section 3.

In this work, we use neural networks with the DeepONets siracto represent the time
dependent variables. A schematic is shown in Fig. 2. We defiefully connected neural
networks to embed the spatial and temporal information auth roduces multiple outputs.

Loss function

Input layer
g
Hidden layer
G N
H Output layer ‘\
Neural networks {

FIG. 1: A fully connected neural network schematic with four, N, am@& neuron in the input, hidden, and
output layers, respectively. The loss function is conséadievith operations applied on the output of the
neural networks:y .

Volume 4, Issue 1, 2023



4 Yang & Foster

@

.’%@/

FIG. 2: A schematic of neural networks with the DeepONets structure

Then the final output is obtained by computing the product,

M
unn (2,9, 2,t) = syn (@, y,2) - tyn(t), 3)

i=1
where M is the number of outputs of the space and time neural netwggksandt . This
proposed neural network does not lose the generality intthah be used to evaluate the value
at an arbitrary point in the domain. However, it can providme benefits certain formulations
of the physical law residuals when compared to the convealifully connected networks in
Fig. 1. For example, if the finite different method is used isxrktize PDES, then we will need
(N; x N, x N, x N;) points to formulate the residual and the backpropagatidnupdate
the weights and bias for each point. With the proposed newetlorks, the space and time
evaluation can be separated so that qi¥y, x N, x N, + NN;) times forward evaluations are
needed to generate the points to formulate the residualhwdda greatly reduce the training
time. For more discussion of DeepONets please refer to therpdy Wang et al. (2021b) and
Wang and Perdikaris (2021).

3. TWO-PHASE FLOW MODEL WITH PINNS

3.1 Incompressible Two-Phase Flow Model

In this work, gravity effects and capillary pressure areleetgd; hence the flow equations with
Darcy’s law can be written as

u = —A(Sy)kVp, 4)
V-u=r, (5)

whereu is the total flow velocityk is the absolute permeability,is the pressure; is the total
source/sink, and(S,,) is the total mobility which is a function of the water satimat(S,,). u
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andA(S,,) can be calculated as follows:

U = Uy + Uo, (6)
U; = _@kvpa i:w,O, (7)
Ky (Sw Ero(Sw
M(siy) = FrelBu) | Ero() @)
Haw Ho

where the subscript ando represent the water and oil phasg, andu,, are the respective flow
velocities, ., and, are the respective viscosities which are considered agaartsere and
throughout this workk,.,, andk,., are the respective relative permeabilities which are fonst

of S,,. The equation of,, transport can be written as

05,
ot

wherer,, is the source/sink of water anf}, is the water fractional flow function which can be
calculated as a function ¢f,,:

tu-Viy=ru, (9)

krw/uw
w p— . 10
f Frw/ WMo + kro/Ho (10)

In this work, all variables are considered to be dimenseml@ith normalization and the
constitutive relations for the two-phase flow model are #mes for all cases in Section 4. The
ratio ., /i, is constant as 5.@:.,, andk,., are defined as

krw = S’E)? (11)
kro = (1 - Sw)27 (12)

whereS,, is a scalar function between 0 and 1. The functions,gf, k..., and f,, are shown in
Fig. 3.

3.2 PINNs with a Finite Difference Residual Formulation

Three neural networkd/;, N, and N, are defined foiS,,, p, andk to construct the overall
loss function for training. Note that can be calculated with,, andp; hence we do not need a

1.0 .
o 10
0.8 1 — Ko 0.8
0.6 1
3 =06
(]
=041
0.4
0.2
50 0.2
00 02 04 06 08 10 00 02 04 06 08 10
SB‘I SW

FIG. 3. Relative permeability functions,., andk.,,, and the water fractional flow functiofi, that are
used in this work
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separate neural network far The three neural networks can be evaluated on structusessp
time grids,

Swi>j>q = Ns (lAfE,]Aya th)’ (13)
pivj7q = Np (ZA(E, jAya th)’ (14)

wherei =1,2,...,N,;j=1,2,.., Ny andg =1,2,..., N;. N, N, and N, are the number of
grid points in each dimensiothx, Ay, andAt are the grid size in each dimension. In this work,
we assume to have no source/sink terms for both phases. Silaakof (5) can be calculated as

ABTE = \(S,, "), (16)
AFLIafi+1d o €\6Jqethd

o= - , (17)
A+ La i i+l \Gd.afid

¢ = — , (18)

wherec, andc, are the average coefficiefitbetween grid points in the andy dimensions.
Then we have

' THIa(pit2da — pitlia) ¢ B (pitlia _ pida)

Tmi’j’q = A 2 ) (19)
x
g _ IR - i) — ¢ (it i)
Ty Ay2 ) (20)
Tci,j,q _ Txi,j,q + ryz}j,q’ (21)
1
R, = E Tc27 (22)

where N, is the total number of. which is (N, — 2) x (N, — 2) x N;. For the transport
equation (9), we use the backward Euler method to discrétzéme dimension and formulate
the residual using in its implicit form

fwi7j7q = fw(Swi’j’q)a (23)
b Swi,j,q _ Swi,j,q—l g pi-l-l,j,q 7pi—17j7q
? At 2Ax
fwi+1,j,q _ fwi_l’j’q S pi,j+l.,q 7pi.,jfl.,q
B
. ( Az 27y (24)
A
. 27y ’
R.= + > ot (25)
S NS S

fThere is no loss of generality in using the algebraic meag;hee could alternatively use the harmonic
mean as is often done in petroleum reservoir simulation.
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whereN; is the total number of which is (V, — 2) x (N, — 2) x (N, — 1). To make the
problem well defined, we also need to include the residudlseaioundary conditions (Dirchlet,
Neumann or mixed) and the initial condition in the overadiddunction. They can be calculated
in a similar fashion ask. and R, so that we omit the details here. We refer to the general
boundary condition and initial condition &, andR;.

Finally, we calculate the mean squared error (MSEJ ©fp, andk from the neural networks
with respect to any available data. This is the key part ofritiersion and it guarantees that the
resulting neural networks honor the data where availablis work, we assume to have sparse
measurements &f,,¢, p¢, andk?, so that the MSE can be calculated as

Nims

1 2
Rms = Nms ; (Ns (‘T“yzaqz) - Sw;i) ) (26)
Nm,p
1
Ry = N Z (Np (2, i i) *P;‘i)zv (27)
P =0
Nmk‘
1
mE =0

whereN,,s, Np,p, andN,,;, are the number of respective measurements. Note that these t
loss terms have the same format as that of the Dirchlet bavrdadition residuals. Therefore,
the PINNs framework can be used to solve the forward and $evproblems with the same
structure which makes it possible to integrate various «iofddata in training. The overall loss
function L can then be defined as

L= wl(Rc + Rs) + wZ(Rb + Ri + Rms + Rmp + Rmk)a (29)

wherew; andw, are the user defined weights (i.e., hyperparameters) fiardift loss terms.

4. NUMERICAL RESULTS

In this section, we present our numerical simulation resofittwo schemes. In the first scheme
(Case 1to Case 4), water is injected from the left side of tagpiare domain which is saturated
with oil at the beginning and fluids flow out through the rigittes The injection and producing

pressure are fixed. The top and bottom sides are assumed topkenieable. Therefore, the
boundary conditions and initial conditions are

Sy (z = 0) = 1.0,
Sy (t =0) = 0.0,
p(z =0) = 1.0,
p(z = 1) = 0.0,
u(y = 0) = 0.0,
u(y = 1) = 0.0.

The S, profiles at three different time points are shown in Fig. 4eSénserve as the synthetic
S,, data for the first four cases.
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0.945 0.975

0.840 0.925

0.735 0.875

0.630 0.825

0.525 0.775

0.420 0.725

0.315 0.675

0.210 0.625

0.105 0.575

0.%.0 02 04 06 08 1.0 0000 0.%.0 02 04 06 08 1.0 0523
X X
(@) (b)
1.0 0.9825
0.8 0.9510
0.9195
0.6 0.8880
> 0.8565
0.4 0.8250
0.7935
0.2 0.7620
0.7305
0.6990

O'%.O 02 04 06 08 1.0
X

(©
FIG. 4: S,, profiles at different times: (8., att = 2; (b) S, att = 4; and (c)Sw att =6

In the second scheme (Case 5), we assume to have multiptamj@nd producing wells in
the domain. All the wells are operated at fixed pressure, aothiey can be seen as pointwise
Dirchlet boundary conditions gf. All four sides are assumed to be impermeable. The boundary
condition and initial condition can be described as follows

Sw (xzznj’ yzlnj) = 107 1= 17 27 eeey NlTLj7

Sy (t = 0) = 0.0,
u(z = 0) = 0.0,
u(z = 1) = 0.0,
u(y =0) = 0.0,
u(y =1) = 0.0,

p(xiinj7 yzlnj) =1 07 1= 17 27 Nln]v
p(xiproa yipro) =00, =12 -'-Nprm

whereN;,; andN,,, are the number of injection and producing wells. Theprofiles at three
different times are shown in Fig. 5. This will serve as thetbgtic S,, data for Case 5. In
this work, we use synthetic data for training and they coromfthe finite-element simulations
with FEnICS (Alnees et al., 2015) using a highly refined meshteNhat we added a small
diffusion term of S, in Eqg. (8) when running the FEnIiCS simulations to make theitsmi
stable. Nevertheless, we can add the same diffusion in tR&l®formulation so that it does
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FIG. 5: Sy profiles at different times: (a)., att = 0.2; (b) S, att = 0.6; and (c)Sw att = 1.0

not degrade the generality of our approach. It is common ¢otlse diffusion effects in the
nature due to the capillary pressure. In this work, all theNA applications are implemented
with PyTorch (Paszke et al., 2017). An LBFGS optimizer isdusetrain the neural networks
and the hyperbolic tangent functiotafh) is used as the activation function. The space and
time neural networks fo6,, andp have the same structure which consists of six hidden layers
and 40 neurons per layer (40 neurons in the output layer).nEloeal networks fok has two
hidden layers and 40 neurons per layer (one neuron in theiblaiyer). We use the same neural
networks for all the cases throughout this study.

4.1 Case 1. Measurements on a Regular Grid

In this case, we assume to have direct measuremeritsoafa 7x 7 regular grid. Also, we
assume that measurementsSgf andp are available at the same locations during the simulation.
The results are shown in Figs. 6-8. It is shown that we are tabddbtain ak field that is in
agreement with the truk field well at the end of training. Also, we verified the outpatghe
neural networks fof,, andp and it shows that the measurements are also in agreement.

4.2 Case 2: Measurements at Random Locations

In this case, we assume to have direct measuremeritonf49 random locations. Again, we
assume that measurementsSgfandp are available at the same locations for the duration of the
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FIG. 6: Comparison of the invertedl field to the truek field. The blue dots indicate the locations of
measurements, the black triangles are the three observatations where we verify the match 8§, and
p data. (a) Trué field in logarithm, (b) inverted: field in logarithm, and (c) absolute error bf

simulation. The results are shown in Figs. 9-11. As in thgiptes case, we are able to obtain a
k field that matches the truefield well at the end of training.

Figure 9 shows that the invertédield agrees with the truefield well at the end of training.
In the meantime, the and .S, predictions match the measurements at locations that a@no
regular grids.

‘ ‘ ‘
— S, data | — S.data et
081 _. pnss, — 081" "‘""ss-'—// |

|
_ | |
0.6 ‘ 06
0.2 , ‘ 0.2 ‘
0.0 ; 0.0 J ;

Su
Su

FIG. 7.
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(©)

FIG. 7: Verification of S,, match at three observation locations. (&) comparison at obs 1, (b§.
comparison at obs 2, and (§), comparison at obs 3.
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== = PINNs p == = PINNs p
0.32 > 0.92
0.30
N ., 0.90
0.28
0.88
0.26
0.24{ 0:56
0 1 2 3 4 5 6 0 1 2 3 4 5 &6
t t
(@) (b)
0.40
— D data
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0.30
0.28
0.26

(©

FIG. 8: Verification ofp match at three observation locations.aomparison at obs 1, (lp)comparison
at obs 2, and (¢ comparison at obs 3.

4.3 Case 3: Using Fewer Direct Measurements of k

In this case, we assume to have fewer direct measuremehtthah in the last two cases. The
measurements ¢f,, andp remain the same as in the last case. The results are showgsirl2i-
14. Itis demonstrated that we are still able to obtairfi@ld in agreement with the true data with
only ten measurements bf Again, the measurements §f, andp are honored closely as well.
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FIG. 9: Comparison of the invertedl field to the truek field. The blue dots indicate the locations of
measurements, the black triangles are the three observatations where we verify the match 8§, and
p data. (a) Trué field in logarithm, (b) inverted: field in logarithm, and (c) absolute error bf

4.4 Case 4: Forecasting the Dynamics

In this case, we assume to have measuremersts ahdp for a shorter period of time and solve a
hybrid problem. For time from 0 t0.2, it is the same inversion problem as the last few cases, and

1.0

I ; |
— S, data [ 08{— S, data /
//-
o

= PINNs S, [ — = PINNs Sw
0.8 ! ‘
/ 0.6 :
0.6 | /
( ‘ @ 0.4 ‘

=

» (4

0.41 ln

0.2 0.2

]
0.0 ] T 0.0 -
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t t
(@) (b)
FIG. 10.
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FIG. 10: Verification of S,, match at three observation locations. &) comparison at obs 1, (.
comparison at obs 2, and (§), comparison at obs 3.
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FIG. 11: Verification ofp match at three observation locations.g@opmparison at obs 1, (lp)comparison
at obs 2, and (¢ comparison at obs 3.

for time from 1.2 to 6, it is actually a forward problem as$ip andp measurements are available
except for boundary conditions. With the framework of PINNe are able to achieve these two
goals at the same time. It is also worth noting that the fodveamulation with FEniCS using a
CPU takes about 3200 sec., while the whole training takesaimyut 1340 sec. using a GPU.

Volume 4, Issue 1, 2023



14 Yang & Foster

1.8

1.5 L 1.890
1.2 1.575
0.9 i 1.260
0.3 = 4
L 0000
-0.3 i
-0.6 0.2 -0.315
-0.9 —-0.630
0.0 —0.945

0.760
0.608
0.456
0.304
0.152
0.000
-0.152
-0.304
—-0.456
—-0.608

FIG. 12: Comparison of the invertekl field to the truek field. Measurements &f,, andp are located on
all the markers (blue dots and black crosses); measuremihisre located on black crosses (10 in total);
black triangles are the three observation locations whergetify the match of,, andp data. (a) True:
field in logarithm, (b) invertea field in logarithm, and (c) absolute error kbf

The results are shown in Figs. 15-17. Again, the invektdgld matches the trug field
well. Moreover, the dynamics d&f,, andp can be forecasted well even for locations where the
measurements are all prior to water breakthrough (e.gereason 3).
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FIG. 13: Verification of S,, match at three observation locations. &) comparison at obs 1, (.
comparison at obs 2, and (§), comparison at obs 3.
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FIG. 14: Verification ofp match at three observation locations.g@pmparison at obs 1, (lp)comparison
at obs 2, and (c) comparison at obs 3.

4.5 Case 5: Multiple Injection and Producer Wells

In this case, we apply the same algorithm to the multipld-setting which is more commonly
seen in the petroleum engineering reservoir problems. éfidts are shown in Fig. 18 and we
are able to obtain a clogefield again at the end of training.
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FIG. 15: Comparison of the inverted field to the truek field. The blue dots indicate the locations of
measurements; the black triangles are the three obsentatiations where we verify the match 8§, and
p data. (a) Trué field in logarithm, (b) inverted: field in logarithm, and (c) absolute error bf

5. CONCLUSION AND FUTURE WORK

In this work, we used PINNs to solve the inverse two-phase flowblem in heterogeneous
media. The results demonstrate that the permeability fighdhe entire domain can be obtained
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FIG. 16: Verification of S,, match at three observation locations. &) comparison at obs 1, (.
comparison at obs 2, and (§), comparison at obs 3.
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FIG. 17: Verification ofp match at three observation locations.i@pmparison at obs 1, (lp)comparison
at obs 2, and (c) comparison at obs 3.

using sparse measurementsSgf, p, andk. We also tested the method in different scenarios and
it shows that the inversion can be achieved with sparse maasuts. In addition, we are able
to forecast the dynamics using the same framework so thahkesion and prediction can be
done at the same time.
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FIG. 18: Comparison of the inverted field to the truek field. The blue dots the injection wells; the
black crosses are the producer wells. (a) Tedield in logarithm, (b) inverted: field in logarithm, and (c)
absolute error of.

In the future, we would like to extend the current work andiapipe method on measure-
ments with uncertainties, which are ubiquitous in petroleengineering applications, and is
another important aspect of the inverse problems. We wdstullé&e to explore different neu-
ral network architectures than those proposed in this wattk the goal of further reducing the
training time of PINNSs.
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