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In complex physical process characterization, such as the measurement of the regression rate for solid hybrid rocket
fuels, where both the observation data and the model used have uncertainties originating from multiple sources, com-
bining these in a systematic way for quantities of interest (QoI) remains a challenge. In this paper, we present a forward
propagation uncertainty quantification (UQ) process to produce a probabilistic distribution for the observed regression
rate ṙ. We characterized two input data uncertainty sources from the experiment (the distortion from the camera Uc

and the non-zero-angle fuel placement Uγ), the prediction and model form uncertainty from the deep neural network
(Um), as well as the variability from the manually segmented images used for training it (Us). We conducted seven
case studies on combinations of these uncertainty sources with the model form uncertainty. The main contribution of
this paper is the investigation and inclusion of the experimental image data uncertainties involved, and how to include
them in a workflow when the QoI is the result of multiple sequential processes.

KEY WORDS: uncertainty characterization, deep learning model uncertainty, image data uncertainty,
combustion experiments, regression rate density estimation

1. INTRODUCTION

When analyzing a physical system, we use the “input data” (knowledge we have) to run the “model” and evaluate its
outputs (knowledge we want to obtain). All of the components involved in the process carry their own assumptions,
limitations, and uncertainties. When the outputs are part of a larger computational framework or are used in decision
making, reporting the associated uncertainty is required, because the modeling process and the model evaluations
are approximations of the underlying true physical process. Probability models are common representations of such
uncertainty in both the inputs and outputs. Forward-propagation of the uncertainty of input data and estimation of
the probability distribution of the simulation output via sampling-based Monte Carlo methods or functional approx-
imations is abundant in the literature with recent applications in many fields (e.g., see [1–3]). Similarly, observation
data-driven calibration procedures using Markov chain Monte Carlo or variants are common [4].

However, in cases where the “input data” are results of a complex physical process that is inherently variable
(e.g., from a complex experiment), and the “modeling” includes multiple sequential models and dependencies, prop-
agating and combining all uncertainty sources in a systematic way for a required quantity of interest (QoI) remains
a challenge [5]. This is especially true when using operations like image segmentation models [6] for identification
of surfaces and interfaces which implicitly and explicitly use modeling and calibration. In particular, we focus here
on the characterization of the “input data” uncertainty when it is acquired in a complex experiment and used within a
model-based interpretation that transforms the raw observation into a QoI.
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In hybrid rocket motor combustion, one QoI is the rate at which the fuel surface recedes during the burn, defined
as the regression ratėr. The regression rate has a direct impact on the geometrical design of the rocket motor and
its performance ([7,8]). Due to the high cost of building a full-scale hybrid motor, it is common practice to estimate
the regression ratea priori via a smaller-scale experiment of a slab burner [9]. Tracking the surface of the fuel from
experimental images during the burn with time data is one way to estimateṙ [10]. In this case, “inputs” are all of
the assumptions and limitations of the experiment, the equipment, and any processing to get the fuel surface images.
“Modeling” is the process of translating the images to the regression rate, which is practically a sequence of multiple
models: a deep learning convolutional network model to segment the fuel masks of an entire experiment (e.g., Monte
Carlo dropout (MCD) U-net from [11]), a process to detect the boundaries of the segmented fuel masks, and a process
to estimatėr from the changing boundaries with time data (Fig. 1).

The regression rate and its measure of uncertainty are necessary to either validate multiscale computational mod-
els (e.g., simulations of turbulent combustion chemistry coupled with flow dynamics [12]), or for decision making on
the rocket motor design and performance. In these coupled systems, there is the additional requirement that the un-
certainty information of the QoI be expressed in a simple way (e.g., as a probability distribution) because simulations
can be sequential: the distribution of the regression rate represented by an ensemble is an input to another simulation
(e.g., see [13] for an application of sequential uncertainty quantification in combustion systems).

Reports in the literature has focused on separating the different types of uncertainty within a model as aleatoric
(AU) or epistemic uncertainty (EU) and how to measure them in physical models such as hypersonic flows [14],
in machine learning [15], in Bayesian convolutional networks [16], and in safety decision making [17,18] among
others. In the context of a complex “input data” and “modeling” process as in the regression rate case (Fig. 1),
these two distinct uncertainty definitions are often challenging to separate or measure. For example, the inherent
camera structure and how it represents an image captured in the experimental environment and whether the researcher
misplaced the fuel specimen by a few degrees include some inherent randomness, but we have the capability to
estimatesomeparts of that experimental randomness by analyzing the setup and the optical errors. Therefore, in this
work, we do not classify uncertainty as aleatoric or epistemic, but rather characterize and quantify the individual
uncertainty measures based on their source (i.e., experiment or modeling).

In this paper, we present an uncertainty quantification (UQ) process to produce a probabilistic distribution for the
regression ratėr from the input experimental images, by combining the input data uncertainty with inference model
uncertainty. We characterize the input data uncertainties from the experimentUdata = {Uc, Uγ}, the model form
uncertainty from the MCD U-net (Um), and the variance in the model prediction from the variability of manually
tracing the masks used to train the MCD U-net (Us). The process is shown in Fig. 1(a) we introduce the input data
uncertaintyUdata to create sequenced ensembles of experimental images, Fig. 1(b) pass the ensembles through the
U-net to get an estimate of the mean predicted masksµmask and corresponding uncertainty mapsUmask which carry
both the data and model uncertainties, and lastly Fig. 1(c) process each sequenced ensemble of predicted fuel masks
and uncertainty maps to get an estimate for the regression rateṙ and its bounds.

The sources of input data uncertainty are most relevant for this problem because optical distortion from the
camera (Uc) or non-zero-angle placement of the fuel (Uγ) may misrepresent the fuel boundaries in the images that
are tracked to accurately measure the regression rate. The model form uncertainty (Um) is computed as the entropy
of the probability prediction vector of the MCD U-net. The possible variation in the manually segmented masks used
for training the MCD U-net is added as a prediction varianceUs directly to the final resulting uncertainty mapUmask.

FIG. 1: Overview of the workflow and uncertainties at each step to estimate the fuel regression rateṙ from a slab burner experi-
ment. Hybrid rocket image (left) is NASA’s Peregrine rocket motor.
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The paper is organized as follows. Section 2 includes details about the experimental setup and the characteriza-
tion for each of the studied uncertainty measures. Section 3 presents a series of cases that investigate how the different
types of uncertainties impact the overall flow of uncertainty measure in the forward-propagation process (i.e., how
the input data uncertainties individually and together combine with the model form uncertainty and the manual seg-
mentation variance to form the output uncertainty map used in the measuringṙ). Section 4 is an application of the
entire workflow shown in Fig. 1, and includes the resulting distribution forṙ via forward-propagation after including
all the uncertainty sources in sequence. Section 5 summarizes the conclusions of the paper with directions on future
work.

2. FORMULATION OF UNCERTAINTY SOURCES AND REGRESSION RATE MEASUREMENT

In this section, we describe the experimental setup and equipment used, the characterization of the input data uncer-
taintiesUdata = {Uc, Uγ}, and how they are introduced to the experimental images.Uc corresponds to error from
optical distortion that is inherent to the camera placement in respect to the fuel specimen.Uγ corresponds to the
non-zero-angle fuel placement error, which may result from the researcher not perfectly placing the fuel orthogonal
to the camera axis, thus having the camera misrepresent the distance between the fuel boundaries correctly. We also
show the formulation for the model form uncertaintyUm and the manual segmentation varianceUs, as well as how
the model outputsµmask, Umask are used to measure the regression rateṙ and its bounds.

2.1 Experimental Setup and Its Uncertainties

The experimental setup follows closely the one developed by Dunn et al. [19] and can be seen in Fig. 2. The fuel
specimen is placed in a chamber consisting of two stainless steel plates on the top and bottom and high temperature
borosilicate glasses on the side of the experiment for optical access. The chamber is 15.24 cm long, 2.54 cm tall, and
2.54 cm wide, with an oxidizer inlet pipe 1.83 cm in length and 2.54 cm in diameter. Based on the entrance length, the
inlet flow is assumed to be fully developed as it enters the chamber. We used lab-grade paraffin wax from the Carolina
Biological Company as the fuel during the experiments and it was cast in a stainless steel mold. The temperature of
the mold was monitored during the solidification process to avoid impurities in the samples. The average dimensions
for the fuel specimens used in the experiments were 9.4 mm in width, 80.7 mm in length, and 11.2 mm in height. Each
sample had a 45◦ slant in the front to guide the flow. The oxidizer used for the experiment was 100% gaseous oxygen
which was regulated with solenoids and measured with an Omega FMA 1744a mass flow meter. The measurement
range of the flowmeter was 5–500 SLMs with± 1.5% accuracy.

To obtain the image dataset used in this paper, we conducted two experiments with measured oxidizer mass
fluxes ofG1 = 6.96 kg/m2s andG2 = 10.96 kg/m2s, respectively. During the automated experimental sequence the
oxidizer was first introduced and the slab ignited using a Bosch diesel glow plug which was lowered to make contact
with the slab and later retracted using a stepper motor. The experiment continued until the flame was extinguished.
The experiment was recorded with a Chronos 2.1 high speed camera during the experimental runs, with a frame rate
of 1000 frames per second. The lens used was a NIKON AF Nikkor 50 mm lens with apertures ranging from 1.8 to
8 with an exposure of 1µs. The full burn of the specimen took 8–12 s. Some example images from the experiment
with oxidizer fluxG2 = 10.96kg/m2s at different times can be seen in Fig. 3.

FIG. 2: Slab burner test chamber with paraffin wax sample
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FIG. 3: Example images from the experiment with oxidizer fluxG2 = 10.96kg/m2s at early (a), middle (b), and later (c) stages

2.1.1 Optical Distortion Error Uc

The image data from the experiment are not exactly accurate representations of the real phenomena during the burn.
One reason is that despite best efforts to set the camera correctly for best image quality, the fuel surface moves with
respect to the camera during the experiment, adding a possibility of optical distortions. To account for the possible
camera distortions as part of the input data uncertainty, we followed a calibration process by using checkerboard
patterns. Assuming the pinhole model for the camera, i.e., the real points of the captured space are imaged by rays
that pass through a single origin of the camera lens [20], we estimated the intrinsic and extrinsic parameters of the
camera and the distortion coefficients as outlined in [21].

Given the global coordinate system(x, y, z) and the camera coordinate system(i, j, k), a point in the real world
is represented by the position vectorp = [px, py, pz]T . The same point in the camera coordinate system is represented
by the position vectorq = [qi, qj , qk]T = RT (p − τ), whereR is the rotation matrix andτ the translation vector
(extrinsic parameters). The point represented in the camera coordinates asq is then mapped into the image plane

using the intrinsic parameters matrixK and represented asr = Kq =




fx 0 0
s fy 0
cx cy 1


[qi, qj , qk]T , wherefx, fy are

the focal lengths,s is the skew coefficient, andcx, cy are the coordinates of the optical center. The rotation matrix
R, the translation vectorτ, and the intrinsic matrixK are all estimated during the camera calibration process. In
addition, we also estimate the camera distortion coefficientsk1, k2 that characterize radial distortion in the image
coordinates [22]:rx,distorted = (rx/fx)(1 + k1d

2 + k2d
4) andry,distorted = (ry/fy)(1 + k1d

2 + k2d
4), where

d = (rx/fx)2 + (ry/fy)2.

To calibrate the camera, we took ten images of a square checkerboard pattern with a side of 2 cm under dif-
ferent angles (Fig. 4), and processed them using MATLAB’s camera calibrator app [23]. The resulting estimated
parameters and camera resolution are shown in Table 1. The rotation matrices and translation vectors are not shown
because they are different for each calibration image. During the calibration process, the true locations of the checker-
board pattern are detected and compared with their locations on the reconstructed images from the camera model.
The reconstruction error is thenei,j = si,j − ŝi,j , wheresi,j are the true detected points on the calibration pat-
terns and̂si,j the reconstructed points. To arrive at a measure of distortion uncertainty from the camera that can
be used to introduce uncertainty to the slab burner images, we count how many of the calibration points have a
total error that is greater than 1 pixel in distance, for each of the calibration images. The threshold is set at 1
pixel because when we represent the experimental images as tensors for the deep learning model, an error greater
than 1 pixel means the image point is distorted enough to not populate that field in the tensor anymore. The to-
tal number of distorted pixels from each calibration image is expressed as a percentage of the total pixels in the
image. The result of this process is shown in Fig. 5: the expected maximum number of distorted points with an
error greater than 1 pixel corresponds to 0.7% of the image, and the minimum number to 0.133% of the image.
Therefore, based on the calibration results, we expect that an experimental image taken with our camera has a
number of distorted pixelsUc ∼ U(0.133, 0.7)[%], expressed as a percentage of the image. Since there are only
two options for the pixels, distorted or not, for a given experimental imageXk of resolution 512× 64, there
is a corresponding distortion mapDmap,k. The distortion map follows the binomial distributionDmap,k ∼ B
(n = 64× 512, p = Uc). The pixels inXk that have a success trial on the distortion mapDmap,k, are distorted,
and therefore have their intensity reduced to zero when we introduce distortion uncertaintyUc to the original image
(Algorithm 1).
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FIG. 4: Relative positioning between the camera and ten 2-cm-side checkboard calibration images

TABLE 1: Camera resolution and parameter estimation from calibration

Camera Parameter
Resolution 1920× 1080 [pix]

fx 4386.76± 27.41 [pix]
fy 4374.34± 26.68 [pix]
s 0.0 (perpendicular axes)
cx 971.65± 1.25 [pix]
cy 503.64± 1.22 [pix]
k1 4.30± 0.24 [—]
k2 28.74± 13.40 [—]

Algorithm 1: Add distortion uncertaintyUc to experimental images

Given experimental imageXk : Pi,j =→ [0, 255]3 with i = [0; 512] andj = [0; 64]

Step 1. Draw a sample for the percentage of distorted pixelsUc ∼ U(0.133, 0.7)[%]
Step 2. Create the corresponding distortion mapDmap,k ∼ B (n = 64× 512, p = Uc)

Step 3. Create the uncertain image copỹXk =

{
0 for Dmap,k = 1

Xk otherwise

2.1.2 Non-Zero-Angle Fuel Placement Error Uγ

Under ideal circumstances, the slab burner is positioned perfectly orthogonal to the axis of the camera. However, the
researcher who places the fuel specimen may not always do so with precision, and place the fuel at a small offset angle
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FIG. 5: For each of the calibration images, we expect between 0.133% and 0.7% of the image to be distorted for a distance greater
than 1 pixel. From this result, we assume a random experimental image from our camera to have a number of distorted pixels
Uc ∼ U(0.133, 0.7)[%].

γ 6= 0, which then adds uncertainty to the experimental images via over- or underestimating the distances between
borders for the specimen [24]. The relative border location is important in accurate estimation of the regression rate,
since we track the border changes to measure it. The schematic in Fig. 6 shows the geometry of this phenomenon.
Given the true length of the fuel specimeny = 8.069 cm, the length of the specimen to the camera isL = 37.46
cm, the angle of the camera to the end of the specimen if placed correctly isβ = tan−1y/2L = 6.147◦, and solving
the geometry, we get an estimate for the perceived specimen length ofym = y(cosγ + tan β sinγ). We express the
error in the perceived fuel length, caused by the non-zero-angle placement of the specimen, asUγ = (ym − y)/y[%].
The extreme values forUγ are directly related to the extreme values for the angleγ. We assume that−5◦ ≤ γ ≤ 5◦,
because a placement by a larger angle would likely be visually noticed by the researcher and corrected before the
experiment, which corresponds to−1.319 ≤ Uγ[%] ≤ 0.558 as shown in Fig. 7. Given that we have no prior
knowledge about the distribution of the error, we assume the non-zero-angle placement uncertainty to be uniform
Uγ ∼ U(−1.319, 0.558)[%].

To introduceUγ to a given experimental imageXk, we first estimate the pixel density for the fuel specimenρk.
Given the area of the fuel surface (which can be taken from the manually segmented or predicted mask) and the length

FIG. 6: If the fuel specimen is not placed orthogonally to the camera, but with an offset small angleγ, the distance between the
fuel boundaries is misrepresented (ym 6= y)
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FIG. 7: Change of non-zero-angle placement errorUγ for different placement anglesγ. For this analysis, we choose−5◦ ≤ γ ≤
5◦ to be a possible range of angle values, which corresponds to−1.319≤ Uγ[%] ≤ 0.558.

of the slab, we estimate the densityρk = fuel length in pixels/y [pix/cm] for that image. We then translateUγ into
[cm] unitsUγ,cm = Uγ/100×y, expressing the uncertainty as the lengthwise error between the boundaries. Then the
quantityUγ,cm× ρk provides the number of pixels that the right fuel boundary has to shift to introduce the sampled
value ofUγ. If Uγ > 0 then the right boundary is shifted to the right, and ifUγ < 0 then the right boundary is shifted
to the left. The process of shifting includes either removing a vertical strip in the middle of the image and stitching
the remaining image together adding background pixels to the right (Uγ < 0), or duplicating the vertical strip in
the middle of the image and removing some of the preexisting background on the right (Uγ > 0). The manipulation
happens in the horizontal middle (at 256 pixels) since the right and left boundaries are far away from that location.
The reader is referred to Algorithm 2 for the process of introducingUγ to the images and two visual examples of the
extreme cases in Fig. 8.

2.2 Monte Carlo Dropout (MCD) U-Net for Segmentation

2.2.1 Model Form Uncertainty Um

We created the U-net architecture using the Keras library [25]. Figure 9 shows a schematic of the U-net architecture
with five dropout layers. The U-net has an encoding path that initially extracts the most important features from the
image as resolution decreases and depth increases, followed by a decoding path to return to higher resolutions by

Algorithm 2: Add non-zero-angle placement uncertaintyUγ to experimental images

Given experimental imageXk : Pi,j =→ [0, 255]3 with i = [0; 512] andj = [0; 64]

Step 1. Draw a sample for the non-zero-angle uncertaintyUγ ∼ U(−1.319, 0.558)[%]
Step 2. Translate to lengthwise units and find pixel densityUγ,cm = Uγy/100andρk = fuel length in pixels/y

Step 3. If Uγ > 0:





Loc1 = floor(256− Uγ,cmρk/2)
Loc2 = floor(256+ Uγ,cmρk/2)
Added slice Sk = Xk[loc1 : loc2]
X̃k = append([Xk[: 256], Sk, Xk[256 : 512− size(Sk)])

If Uγ < 0:





Loc1 = floor(256− Uγ,cmρk/2)
Loc2 = floor(256+ Uγ,cmρk/2)
X̃k = append([Xk[: loc1], Xk[loc2 : 512], [0]loc2-loc1)
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FIG. 8: Different versions of the same experimental image at extreme values: (a)Uγ = 0.558%, (b) Uγ = 0, and (c)Uγ =
−1.319%. The red (vertical) line is a reference point on the edge of the right boundary in the image with no uncertainty to aid the
visualization of the difference in the cases with uncertainty present.

FIG. 9: The U-net neural network architecture with dropout in the intermediate layers. Given an input experimental image, the
U-net outputs the predicted fuel segmentation mask.

reconstructing the image using up-sampling [26]. The encoding path consists of four sequences of the following:
two 3× 3 convolutions, batch normalization, ReLU activation, and max pooling. The decoding path consists of four
sequences of 3× 3 up-convolutions with a concatenation of the feature map from the corresponding level in the
encoding path, two 3× 3 convolutions, batch normalization, and lastly a ReLU activation. Finally, the U-net includes
a 1× 1 convolution operation to output the segmented fuel mask. The total number of trainable parameters in the
network is 492,609. The parameters of a convolution layer are equal toout × [in × (3× 3) + 1], whereout is the
number of features after the convolution,in is the number of features before the convolution, the nine parameters
of the 3× 3 filter, and one parameter at each node for the bias term. For example, the first convolution layer takes
the original image (64× 512× 3), which after the convolution becomes (64× 512× 8); therefore that layer has 8
× [3 × (3 × 3) + 1] = 224 parameters. Each of the batch normalization layers adds four additional parameters per
feature of the previous layer [27]. For example, since the output after the first convolution layer has eight features, the
corresponding batch normalization layer will have 32 parameters (16 of which are nontrainable).

To estimate the prediction model form uncertaintyUm, we implemented Monte Carlo dropout (MCD), a Bayesian
approximation in deep learning models [28]. The dropout process randomly silences neurons with a probability
of pD in the intermediate layers of the U-net. Then, at inference, the model is sampled with dropout which is an
approximation to sampling from the posterior weight distribution of a fully Bayesian network [29]. Given a new
test imageXk, and the training set(Xtrain, Ytrain), the resulting mean segmented mask can be approximated using
Monte Carlo integration as

p̂(y = c|Xk,test, Xtrain, Ytrain) ≈ 1
T

T∑

t=1

σ(fŴt(Xk)), (1)
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wherep̂(y) corresponds to the predicted probability that a pixel in the test imageXk is classified asc = {Fuel}, T
is the number samples for the weights set to 20 [30],σ(·) is the softmax function, andf is the model output given
the weightsŴt ∼ qθ(Wt), sampled from the dropout approximating variational distributionqθ(Wt) [16], which is
defined for every layert:

Wt = wt · diag([zt,m]Kt

m=1]), (2)

zt,m

{
∼ Bernoulli(pD) for layers t = 7, 10, 13, 15, 18 and m = 1, ..., Kt−1

= 1 otherwise
, (3)

wherewt are the weights of the trained network. The diag(·) operator maps vectors to diagonal matrices whose
diagonals are the elements of the vectors [31]. The variablezt,m = 0 corresponds to nodem in layer t − 1 to be
dropped out as an input to the next layer, whereaszt,m = 1 corresponds to the trained weightswt to be used as
is, which is also the case for layers without dropout,pD = 0.5 is the dropout probability, andKt is the number of
nodes/units within layert. We note that the dropout probability is non-zero only in the intermediate blocks of the
U-net, which corresponds to layers 7, 10, 13, 15, and 18 of the network.

The model form uncertainty for the predicted probabilityp̂ can be expressed as the corresponding map of the
cross-entropy of the two class dimensions [16,32,33]:

Um = −
2∑

c=1

p̂c log(p̂c) = −[p̂fuel log(p̂fuel) + p̂background log(p̂background)], (4)

whereUm is the model form uncertainty map,p̂fuel is the predicted probability that a given pixel corresponds to fuel,
andp̂background is the predicted probability that a given pixel corresponds to noise/background.

The U-net was trained for 79 epochs with 179 images from the early, mid, and late phases from the first ex-
periment with oxidizer fluxG1 = 6.96 kg/m2s, accompanied with their manually segmented fuel masks that were
traced using VGG [34]. Figure 10 shows the loss progression during training. Observing the results from the testing
set (Fig. 11), the U-net predicts the segmentation masks correctly, even for highly saturated images and without in-
cluding any other components of the chamber as part of the mask (e.g., the glow plug). The uncertainty maps show
the largest level of uncertainty to be around the fuel boundary geometries. The model form uncertainty further inside
and outside of the identified fuel boundary is very small.

2.2.2 Manual Segmentation Uncertainty Us

In the process of training the U-net, we inherently make the assumption that the manually segmented fuel masks
are ground truth. However, there is expected to be some variability between individuals that segment the fuel masks,
and repeating the process multiple times to investigate the level of this variability is beyond the research scope of

FIG. 10: Binary cross-entropy loss during the training of the U-net used for this work. Some abrupt changes in the loss are due to
dropout effects. The training stops once the validation loss has not improved after 20 consecutive epochs.
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FIG. 11: Results from the baseline U-net model without any data uncertainty introduced to the images. The U-net performs well
on all images, including low, medium, and high saturation levels during the phases of the experiment.

this paper. There have been studies to quantify the effect of improperly segmented fuel masks to the U-net outputs
(e.g., see [35,36]), which found that the error in the segmentation accuracy for the MNIST [37] and MSLesion [38]
dataset is 0.83% and 0.56%, respectively. The MNIST dataset consists of gray-scale images of digits from 0 to 9,
and the MSLesion dataset consists of 21 medical scans. Given that the fuel segmentation masks are simple with
only two labels, and without any prior knowledge, we assume the manual segmentation prediction uncertainty to be
similar to those datasets and uniformUs ∼ U(0.56, 0.83)%, expressed as a percentage variance of the corresponding
segmentation probabilitŷpfuel. Therefore, the complete resulting uncertainty map for the mean predictionµmask of
the U-net after considering all the uncertainty sources is

Umask = Um|(Uc, Uγ) + p̂fuelUs, (5)

whereUmask is the complete resulting uncertainty map after all sources of uncertainty are included,Um is the
model form uncertainty,Uc is the distortion uncertainty,Uγ is the non-zero-angle placement uncertainty,p̂fuel is the
corresponding segmentation probability for the fuel class, andUs is the manual segmentation prediction uncertainty.

2.3 Fuel Surface Detection to Measure ṙ

To approximate the regression rate from the binary fuel masks, we follow the approach described in [10]. For a given
sequence of fuel masksµmask,k representing the fuel profile between time intervals∆t, we track the height of the
top surface of the fuel profile through calibration points. At each point, the localized regression rate is

˙rl,k =
h(tk+1)− h(tk)

∆t
, (6)

whereh(·) is the fuel height for a given time measured from the bottom of the fuel mask and∆t is the time difference
between two frames. The total regression rate for the experiment is then the average localized regression rate from all
points:

ṙ =
∑M

k=1 ˙rl,k

M
. (7)

Given that each of the predicted fuel masksµmask,k also has an accompanying uncertainty mapUmask,k after the
inclusion of all uncertainties, we calculate two extreme values for the total regression rate estimateṙ. The upper bound
is found by adding the uncertainty mapsUmask,k to the corresponding fuel masksµmask,k, flipping the class from
“background” to “fuel” for any pixels that now havêpfuel ≥ 0.5 with the added uncertainty, and then recalculating a
total regression rate estimateṙ+. The lower bound comes from the opposite process: subtracting the uncertainty maps
Umask,k from the corresponding fuel masksµmask,k, flipping the class from “fuel” to “background” for any pixels
that now havêpfuel < 0.5 after the subtracted uncertainty, and recalculating a total regression rate estimateṙ−. From
this entire process, for a given sequence of experimental images (with or without added data uncertaintiesUc, Uγ)
and using the U-net (with or without the manual segmentation uncertaintyUs), we calculate a mean estimate for the
total regression rate from the experimentṙ with its bounds(ṙ−, ṙ+).
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3. COMBINATION AND FORWARD-PROPAGATION OF UNCERTAINTY SOURCES

In this section, we study all possible combinations of how each of the individual data uncertainty sources shown in
Fig. 1 impacts the overall uncertainty propagation process. For each of the three uncertainty sourcesUc, Uγ, Us, we
consider two scenarios: either they do not contribute (i.e., are zero) or do contribute (i.e., are uniformly distributed as
described in the previous section). All possible cases are shown in the Table 2.

First, we observe how the error from the camera distortionUc and the non-zero-angle placement errorUγ impact
the U-net model form uncertainty mapUm separately and together (Cases 1, 2, and 3). Secondly, we observe how the
manual segmentation errorUs changes the complete uncertainty mapUmask individually and together withUc, Uγ

(Cases 4, 5, and 6). Lastly, we showcase an example where all three uncertainties are included (Case 7), which is
representative of the approach followed in the calculation of the full probability distribution of the regression rate
in the next section, which is the end goal of the paper. For these studies, we used three representative experimental
images from the testing set of the U-net that correspond to three different image saturation levels in the experiment:
“low,” “mid,” and “high,” as shown in Fig. 12. The histograms are the model form uncertainty near the boundary
for each image. Observing the model form uncertaintynear the fuel boundary, we identify three different modes
depending on the saturation level in the experimental images. Images with low saturation [Fig. 12(a)], show an
approximately uniform profile across all uncertainty ranges. Images of medium saturation [Fig. 12(b)] show a bi-
modal behavior forUm with a uniform profile in between the peaks. Lastly, images with high saturation [Fig. 12(c)]
have again a bimodal profile similar to the medium saturation images, but the intermediate levels of uncertainty are
higher, which is attributed to the higher saturation from the more violent burn.

We follow a standard forward-propagation uncertainty approach: ifUc andUγ are present, we create an ensemble
of perturbed/uncertain copies of a given image by following the process in Algorithm 1 or Algorithm 2, respectively,
and pass these uncertain copies through the U-net to get the model form uncertainty mapUm. If Us is present, that is
added to the model form uncertainty mapUm proportionally to the predicted probability of each pixel [Eq. (5)]. For
each of these cases, we sampled the corresponding uniform distributionsN = 10,000times and show the resulting
uncertainty distribution compared to the baseline case where no uncertainties are present.

TABLE 2: Studied cases of uncertainty sources

Case # Distortion Uc Non-zero-angleUγ Manual segmentationUs

Baseline 0 0 0
1 U(0.133, 0.7)% 0 0
2 0 U(−1.319, 0.558)% 0
3 U(0.133, 0.7)% U(−1.319, 0.558)% 0
4 0 0 U(0.56, 0.83)%
5 U(0.133, 0.7)% 0 U(0.56, 0.83)%
6 0 U(−1.319, 0.558)% U(0.56, 0.83)%
7 U(0.133, 0.7)% U(−1.319, 0.558)% U(0.56, 0.83)%

FIG. 12: Example images from the experiment with different saturation levels at low (a), medium (b), and high (c) with their
corresponding model form uncertainty histograms. We used these representative images to account for different image qualities,
since the uncertainty distribution has a different profile for each of them.
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For Case 1, where only the uncertainty from the distorted pixelsUc is present, we find that distortion adds some
variability to theUm probability distribution, but still follows the overall pattern of the distribution without distortion
in the low and medium saturated images. The small variability is expected since the distortion is added uniformly
to the entire image. However, in the highly saturated case, distortion appears to be a moderating factor to the large
peaks of small uncertainty in the original image. The explanation for this irregularity is justified in Fig. 13. When
distortion is present in the highly saturated experimental image, the uncertainty around distorted points with high
density is much larger compared to the image without distortion. The distorted points outside the fuel boundary do
not contribute to the uncertainty since they were already part of the background. However, the distorted pixels that
are present within the fuel boundary add additional uncertainty, which changes the bimodal profile for the probability
density present in the baseline case to a more uniform profile for the lower uncertainty values.

For Case 2, where only the non-zero-angle fuel placement uncertaintyUγ is present, we find that some variability
is added, but the overall pattern of the distribution of uncertainty compared to the baseline case is maintained for all
saturation levels (Fig. 14). Case 3, which includes both data uncertaintiesUc, Uγ, also appears to maintain the overall

FIG. 13: Case 1: Impact of the distorted pixel uncertaintyUc on the model form uncertaintyUm for three levels of saturation for
the experimental images: low (a), medium (b), and high (c). For the image with high saturation, distortion changes the uncertainty
profile for the lower uncertainty values.

FIG. 14: Case 2: Impact of the non-zero-angle fuel placement uncertaintyUγ on the model form uncertaintyUm for three levels
of saturation for the experimental images: low (a), medium (b), and high (c). The overall distribution of uncertainty is maintained.
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profile, but the non-zero-angle effects appear to negate some of the variability caused by distortion, likely due to the
removal or addition of parts of the same image (Fig. 15).

Cases 4–6 show the effects of the manual segmentation uncertaintyUs individually and together with the other
uncertainty sources.Us has an added effect based on the predicted probability of a given pixel; therefore the additive
effects are present for those pixels with high fuel probability (i.e., within and on the fuel boundary). The result appears
as a right-shift to the uncertainty distribution profile (Figs. 16–18).

FIG. 15: Case 3: Impact of the non-zero-angle fuel placement uncertaintyUγ and distorted pixel uncertaintyUc on the model
form uncertaintyUm for three levels of saturation for the experimental images: low (a), medium (b), and high (c). Compared to
Case 1, the presence of non-zero-angle uncertaintyUγ negates some of the variability caused by the distortion uncertaintyUc.

FIG. 16: Case 4: Impact of the manual segmentation uncertaintyUs on the overall uncertainty mapUmask for three levels of
saturation for the experimental images: low (a), medium (b), and high (c). The added effect of this uncertainty appears as a
right-shift to the uncertainty distribution profile.

FIG. 17: Case 5: Impact of the distorted pixel uncertaintyUc and the manual segmentation uncertaintyUs to the overall uncertainty
mapUmask for three levels of saturation for the experimental images: low (a), medium (b), and high (c)
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FIG. 18: Case 6: Impact of the non-zero-angle fuel placement uncertaintyUγ and the manual segmentation uncertaintyUs to the
overall uncertainty mapUmask for three levels of saturation for the experimental images: low (a), medium (b), and high (c)

Case 7 shows the combined effects of the studied uncertainties, which appear to be mixed: a right-shift caused
by the manual segmentation uncertaintyUs, a moderating effect caused by removing or replicating parts of these
images fromUγ, and added variability (and profile change for the highly saturated images) due to more areas with
uncertainty fromUc (Fig. 19).

4. ESTIMATION OF THE DISTRIBUTION OF ṙ

The goal of this section is to implement the framework shown in Fig. 1 for the experiment with oxidizer mass flux
G2 = 10.96 kg/m2s, and find the probability distribution of the QoI: the total regression rateṙ. To begin, we first
capture a sequence of images from the experiment at fixed frame intervals (Fig. 20).

FIG. 19: Case 7: Impact of the distorted pixel uncertaintyUc, the non-zero-angle fuel placement uncertaintyUγ, and the manual
segmentation uncertaintyUs to the overall uncertainty mapUmask for three levels of saturation for the experimental images: low
(a), medium (b), and high (c)

FIG. 20: Images from experiment 2 with with oxidizer mass fluxG2 = 10.96 kg/m2s. The frames shown are taken at a fixed
interval of 0.32 s. The sequence of the burn starts from the top left and ends at the bottom right. The goal is to measure the
probability distribution of the average regression rate, the quantity that describes how fast the fuel recedes during the burn.
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Then, we follow a forward-propagation Monte Carlo approach: the data uncertaintiesUc, Uγ are uniformly sam-
pled and added to the sequence of images from experiment 2 (Fig. 20), the images are passed through the U-net to
get the segmented fuel masksµmask,k, and the manual segmentation uncertaintyUs is uniformly sampled and added
to the model form uncertaintyUm [Eq. (5)] to get the overall uncertainty mapsUmask,k for all the experimental
images (see Fig. 21 for one example of an ensemble of fuel masks with profile tracking). From one sequenced en-
semble ofµmask,k andUmask,k, one point measurement of the total regression rateṙ is computed together with its
bounds (̇r+, ṙ−). The process is repeated until the variance of the final probability distribution of the regression rate
σ2

ṙ converges to a tolerance ofe−6 (Algorithm 3).
The distribution of the regression rate is shown in Fig. 22. We compare two instances: a probability distribution

if we consider the uncertainty mapsUmask that provide the bounds for the regression rate with each ensemble or
if we do not. The probability distribution considering only the mean masksµmask from the ensembles resembles
a Gaussian distribution with a mean regression rateµ ˙rµ = 0.759954mm/s. Considering the uncertainty maps that
provide the bounds for the regression rate from each ensemble adds variability to both tail ends of the distribution with
a shift of the mean toµ ˙rU

= 0.740032mm/s. In previous work where we only considered the model form uncertainty
Um, we found the regression rate for an experiment withG = 9.58kg/m2s to be 0.74± 0.09 mm/s. We note that when
the uncertainty maps are included in the calculation, a significant amount of density is shifted towards the smaller

FIG. 21: One ensemble of predicted fuel masks from experiment 2 with with oxidizer mass fluxG2 = 10.96kg/m2s, with visible
fuel tracing. The process of calibration points ensures that in cases where the U-net misclassifies some part of the picture as fuel,
which is likely in the later parts of the experiment, the algorithm approximates the boundary correctly for the regression rate
calculation.

Algorithm 3: Estimation of the distribution of the regression rateṙ

Given a sequence of experimental imagesXk : Pi,j =→ [0, 255]3 with i = [0; 512] andj = [0; 64]
While σ

2,new
ṙ − σ

2,old
ṙ > e−6 do:

Step 1. Draw a sample for the non-zero-angle uncertaintyUγ ∼ U(−1.319, 0.558)[%]
Step 2. Draw a sample for the distortion uncertaintyUc ∼ U(0.133, 0.7)[%]
Step 3. IntroduceUc, Uγ to the ensembleXk (Algorithms 1 and 2)
Step 4. Pass the ensemble through U-net to get the mean predicted fuel masksµmask,k and the mean

model form uncertainty mapsUm,k

Step 5. Draw a sample for the manual segmentation uncertaintyUs ∼ U(0.56, 0.83)[%]
Step 6. Compute overall uncertainty map for the ensembleUmask,k = Um,k|(Uc, Uγ) + p̂fuel,kUs

Step 7. Compute point estimate for regression rateṙ and boundṡr+, ṙ− from µmask,k andUmask,k

Step 8. Append probability distributionp(ṙ) =+ {ṙ, ṙ+, ṙ−} and update varianceσ2,new
ṙ

End While
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FIG. 22: The probability distribution of the regression rate for the experiment with oxidizer mass fluxG2 = 10.96 kg/m2s. The
gray (higher) curve only considers the mean fuel masksµmask for the calculation (i.e., does not include the regression rate bounds
usingUmask), whereas the blue (lower) curve includes the information from the uncertainty maps. The mean of the probability
distribution from the mean masks only isµṙµ = 0.759954mm/s (higher curve) and considering the uncertainty maps as well is
µ ˙rU = 0.740032mm/s. The uncertainty maps translate to signficant variability to both tail ends of the distribution.

regression rate values, because of how the surface tracking algorithm works. The surface tracking algorithm accounts
for a physical constraint: it does not allow for the fuel surface to increase in size during the burn, which would be a
violation of combustion laws. Some images in the later stages of the experiment ensembles can often result in larger
fuel surface than previous time steps when we add the uncertainty masks, and that effect is neglected. Uncertainty
masks tend to have higher values as the burn proceeds (images are more saturated). In the subtracting case, the
equivalent scenario does not happen; the higher uncertainty maps in the later stages of the burn will be considered
normally. Therefore, the process penalizes the higher regression rates when uncertainties are added, resulting in a
more significant density shift to lower values. The contributions of this paper agree with trends from previous reports
in the literature, but add the additional step of characterization and quantification of data uncertainty which translates
to more accurate representation of the distribution of the regression rate when measured from images.

5. CONCLUSIONS AND FUTURE WORK

In this work, we presented a full forward-propagation framework for uncertainty quantification of the regression rate
from experimental images. We characterized uncertainty sources that are pertinent to this case: distortion uncertainty
Uc from the camera, non-zero-angle placement of the fuelUγ, manual segmentation training uncertaintyUs, and
model form uncertainty from the Monte Carlo dropout U-netUm. The image data generated for this work came from
two slab burner experiments with measured oxidizer mass fluxes ofG1 = 6.96 kg/m2s andG2 = 10.96 kg/m2s. We
conducted seven case studies of all possible combinations between the three uncertainty sources and found that their
effects combine: a right-shift in the model form uncertainty distribution caused by the additive effect of the manual
segmentation uncertaintyUs, a moderating effect fromUγ caused by the effect of placing the fuel under a small angle,
and the overall added variability throughout the model form uncertainty distribution (and profile change for the highly
saturated images) due to more areas with uncertainty caused from the distortion uncertaintyUc. We completed our
study by using the images from the experiment with oxidizer fluxG2 = 10.96 kg/m2s, generating a large ensemble
of their uncertain copies by sampling the three uncertainty sources, and tracking the fuel profiles in each case to
estimate the full regression rate probability distribution. The probability distribution considering only the mean masks
µmask from the ensembles resembles a Gaussian distribution with a mean regression rateµ ˙rµ = 0.759954mm/s.
Considering the uncertainty maps that provide the bounds for the regression rate from each ensemble adds variability
to both tail ends of the distribution with a shift of the mean toµ ˙rU

= 0.740032mm/s.
In future work, we will use the resulting probability distribution of the regression rate from experimental data

shown in this work, together with experiments on other oxidizer fluxes, to validate an equivalent estimate for the
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regression rate from coupled flow and chemistry simulations for the slab burner combustion phenomena using our
open-source software framework ABLATE (https://ablate.dev/).
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