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We propose an efficient surrogate modeling technique for uncertainty quantification. The method is based on a well-
known dimension-adaptive collocation scheme. We improve the scheme by enhancing sparse polynomial surrogates
with conformal maps and adjoint error correction. The methodology is applied to Maxwell’s source problem with ran-
dom input data. This setting comprises many applications of current interest from computational nanoplasmonics, such
as grating couplers or optical waveguides. Using a nontrivial benchmark model, we show the benefits and drawbacks
of using enhanced surrogate models through various numerical studies. The proposed strategy allows us to conduct a
thorough uncertainty analysis, taking into account a moderately large number of random parameters.
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1. INTRODUCTION

The numerical solution of partial differential equations (PDEs) with random input data has been receiving consid-
erable attention in the last decades in the context of uncertainty quantification (UQ). Numerical UQ methods are
continuously improved to address large-scale problems with many input parameters, which still pose a computational
challenge nowadays. The key property to reduce computational costs in high dimensions is a holomorphic depen-
dency of the PDE solution on the input parameters. Such holomorphy results have been established for a variety of
different problem classes [1,2] and allow the use of spectral stochastic methods [3—8] in combination with adaptive
schemes, see, e.g., [9—13] for the case of stochastic collocation.

An alternative, sometimes complementary, approach for the numerical solution of parametric problems is model
order reduction, see [14] and the references therein. Model order reduction based on moment-matching [15,16] can
be used to derive a rational parametric approximation, which is appealing in the case of reduced parametric regularity.
Rational Paé-type approximations have recently been employed for a stochastic Helmholtz problem [17]. Moreover,
in [18], a Pa@&-Legendre method was introduced to cope with discontinuous response surfaces, where it was also
noted that high-dimensional settings are still difficult to address. Another alternative are (multilevel) Monte Carlo
methods, which can handle high-dimensional parameter spaces and more general settings with reduced smoothness.
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A recent analysis of such an approach for a Helmholtz transmission problem, with point evaluations as quantitites of
interest, was presented in [19]. The Helmholtz equation is recovered when two-dimensional versions of our model
problem are considered. However, we quantify uncertainties in scattering parameters, which are more regular. The
last class of methods that are mentioned here are perturbation methods [20,21]. A perturbation approach can lead to
very efficient numerical methods, but is also not considered here, because the uncertainty in the input parameters of
our models can be quite large.

The present study was motivated by the fact that the computational cost of constructing a sparse surrogate model
can still be quite high for various applications. In particular, even if sufficient smoothness is present to allow for
sparse approximation, achieving a reasonable error level in practical applications may require collocation grids with
many points. Hence, in this work, we improve a state-of-the-art adaptive stochastic collocation method, based on
dimension-adaptivity [10] and weighted Leja interpolation [11]. To this end, we combine conformal maps and adjoint
error estimation and correction. Conformal maps have been put forth in [22,23] for the acceleration of interpolation
and quadrature methods, but have not received much attention in the UQ context thus far. Adjoint error correction
in turn was considered in [24,25] in the context of Clenshaw Curtis collocation and the stochastic Galerkin method.
The combination of both methods in the context of uncertainty quantification has not been considered, to the best
of our knowledge. The resulting collocation scheme is able to address a moderately high number of random model
parameters. Moreover, weighted Leja nodes can handle almost arbitrary input probability distributions [11,26—30]
and are ideally suited for adaptivity [9]. In order to efficiently steer the adaptivity, we derive an adjoint representation
of the stochastic error. On the basis of this error formula, the convergence order is enhanced through extrapolation.
Finally, conformal maps offer the potential to further enhance the numerical accuracy by suitably transforming the
required region of holomorphy.

We consider Maxwell’'s source problem as a model class that is relevant for a wide variety of applications. This
model problem is particularly important in computational nanoplasmonics. Plasmonic structures offer great potential
for subwavelength optics and optoelectronics [31] and have been intensively studied from both a fundamental and
an application point of view in recent years. With the aforementioned UQ methods, studying stochastic parameter
variations within the numerical simulation of plasmonic structures comes into reach. This is highly relevant, as rel-
atively large variabilities can be observed, see, e.g., [32]. Although, not considered in the present work, the inverse
UQ problem is also of high relevance, due to the intrinsic difficulty in measuring material dispersion properties. In-
stead, we focus on the propagation of uncertainties from the model inputs to the outputs. In particular, the proposed
framework allows one to compute moments, probability distributions, failure probabilities, and global sensitivities for
physical quantities of interest (Qols). In similar physical settings, UQ studies have been conducted in recent works
[33—-35], which however employ less advanced numerical methods. In [36], UQ for a silicon photonic device has been
addressed, considering a low-dimensional correlated random input parameter vector. Additionally, in comparison to
recent theoretical studies [2,37], we employ additional techniques for convergence acceleration and consider a more
complex numerical example.

The rest of this paper is structured as follows. In Section 2, we describe the numerical method for enhanced
surrogate modeling. In Section 3, we introduce Maxwell's source problem, its finite element discretization, and its
parametrization. In Section 4, the developed method is used to conduct a UQ study for a nontrivial nanoplasmonics
application, namely, an optical grating coupler. In Section 5, we give some concluding remarks.

2. ENHANCED SURROGATE MODELING
In this section, we consider the general parametric problem of finding
u(y) e Vst, ay(u(y),v)=Iy(v), Yve, )

whereV denotes a suitable Hilbert space and= = ¢ R”Y denotes the input parameter vector. Problem (1) may
represent the model of Section 3.2 or other parametrized differential equations with a continuous sesquilinear form
ay(+,-) and a continuous (anti)linear forip(-). Note that boldface letters are used to indicate matrices and vectors.
Since the solutions governed by Maxwell's equations are typically vector-valued, this convention is also used for
u andv in Eg. (1). We assume the map: = — V to be well-defined and smooth, which is often the case for
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parametrized differential equations, see, e.g., [38] for elliptic problems and [1] for other types of PDEs. We are
interested in the model’s response, which may be the solutign itself or a bounded linear functiondl, (u(y)),
commonly referred to as the Qol. In this work, we focus on single-valued and complex Qol%, (1&(y)) € C. For
brevity of notation and due to the well-posedness of the system, we shall reéplacgy)) with J(y), whereJ can
be understood as an abstract representation of the map from the input parameters to the Qol.

We now assume that the input parameters are given as independent random variabl&s (RV¥s), 2,..., N.
We introduce the random vectdf = (Y1,Y2,... ,YN)T, defined on the probability spad®, X, P), where©
denotes the sample spaéethe sigma-algebra of events, afdthe probability measure, its image set= =; x
Z,--- x 2y C RN and its probability density function (PDRYy) = [T._; 0 (yn), Such thaty : © — = and
o0 : & — R.. Then, the parameter vector represents a realization of the random vector, +2.Y (0) € =,
0 € 0. Assuming independence is necessary for the tensor-product constructions in the collocation method, however,
dependence could also be taken into account through a suitable transformation, for instance, Rosenblatt or Nataf
transformations [39,40]. In view of this transformation, we assume in this section that the im&gs gaten as the
hypercubd—1, 1]V, for simplicity.

Now, the Qol is itself a RV and we are interested in quantifying uncertainty, e.g., by computing its moments,
PDF, quantiles, etc. In the case where the Qol is smooth (ideally, analytic) with respect to the input RVs, spectral UQ
methods [41,42] may be employed. Thdnis particularly well-suited to be approximated by polynomials such that

M

Jy) = J(y) =D sm¥nm(y), 2)

m=0

whereV,, : = — R are multivariate polynomials ang, € C the associated coefficients, and fast convergence can be
expected. Once an approximation in the form of Eq. (2) is available, it can be used as an inexpensive substitute of the
original computational model for sampling-based computations. Alternatively, some statistical information regarding
the Qol can be derived directly from the coefficients. In the context of the present work, we will use approximations
in the form of Eq. (2) based on sparse grid interpolation [6,8,9,11,43-47], which can be combined with a conformal

mapping.

2.1 Univariate Interpolation and Conformal Maps

We first discuss univariate interpolation in some detail, since it is also the key building block for the tensor product
constructions used in the multivariate case. In particular, we consider the univariate fyhcfiet, 1] — C

fy) :=J(y,0,...,0). 3)

We assume thaf is analytic on[—1, 1] and can be analytically extended oritp, whereE,. refers to an open
Bernstein ellipse of size > 1, i.e., an ellipse in the complex plane with foci 4t1 and the semi-minor and
semi-major axes summing up t9 as illustrated in Fig. 1. Then, cf. [23] (Theorem 8.2), the error of the univariate
polynomial best approximatiofy;, of degree)/ can be estimated as follows:

CBT‘iM
1f = firlloo < 2, @

_ 0T —
% ol || & Ellipse foci at +-1
= - = = Semimajor axis 7y

—-0.5k& . || = = = Semiminor axis 7y

-1 -05 0 05 1 S Ellipse E,
Rely]

FIG. 1: Bernstein ellipséz,. of sizer = rps + rm
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where|| - || denotes the supremum-norm pnl, 1] and the constar@z > 0 depends on the uniform bound of the
analytic continuation of in E,.. We consider a polynomial interpolant

fu(y) = Z FyN(y), (5)

where{l;}}4, and{y(i)}ﬁo denote univariate Lagrange polynomials and a set of distinct nodes, respectively. There

holds
Cgr—M

17 = Fuallso < (@4 Aa)IS = Firlloo < (1 Ar)=>— (6)
where
M
Apr = max,ei_1y Z 1:(y), (7)

i=0
denotes the Lebesgue constantAlf; grows sub-exponentially, the polynomial interpolation converges uniformly
(for analytic functions). However, the convergence rate depends on the regularity of the analytic continuftion of
the complex plane. This is illustrated by considering the Runge function
fR(y;c):Tcyz’ ceR", ye [-1,1], (8)
which is shown in Fig. 2(a), as a benchmark example. This function is analyttielod], but the analytic continuation
has a complex conjugate pole pairgat= + i(1/4/c), limiting the size of the largest Bernstein ellipse, where the
function fr is analytic. Figure 2(b) demonstrates the effect on the convergence rate, where for increasing constants
¢, corresponding to a reduced size of the region of analyticity, a reduced convergence rate can be observed. The
plot shows the convergence of the polynomial interpolant associated to unweighted Leja points in the empirical
supremum-norm with a cross-validation sample of dize10°.
Hale and Trefethen [48] have raised and discussed the question, whether polynomial methods are an optimal
choice for functions analytic in ae-neighborhood, in the context of numerical quadrature. Such a neighborhood is
depicted in Fig. 3 together with the largest Bernstein ellipse contained in its interior. They have pointed out that, in

3 ‘
1 . = —— c=1
N 1071 —-o— c=5 |
= c=20
< T 04| c=100 ||
205} . =
= =
ﬁ 1077 . |
8
0 . =
| | | m —10 | | I
—1 0 1 10 0 100 200
Y Polynomial order M

(a) (b)

FIG. 2: (a) Runge functiorfr(y; c) for differentc € R™ andy € [—1, 1] and (b) geometric convergence rates of Leja interpolants

Y 1 ||— ~1,1]

? of | f*—— % | | e-neighborhood of [—1, 1]

— 0s e - .-’ - - - Bernstein ellipse E_ , oz
0501 ‘ ]

| | | |
-1-050 05 1
Rely]
FIG. 3: e-neighborhood and largest interior Bernstein ellipse
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this case, superior methods to Gauss quadrature can be derived by conformally mapping the Bernsteif. ellipse
to a straighter regiof2,, = g(E,), as illustrated in Fig. 4. As will be discussed in the following, this approach is
also beneficial for (polynomial) interpolation. In accordance with [48], we focus in this work on conformal mappings
g : E,. — Q,, which map the unit interval to itself, i.e., as follows:

and also fulfill
g+ =+1 (10)
This ensures that the transplanted interpolation nodes
~(7 i M
{5 My = {g(y) } .y (11)

are still real numbers contained in the considered imagé&gseiThere are various choices fgr see, e.g., [49];
however, in this work we focus on the sausage mapping proposed in [48]. It is definedthyoeder Maclaurin
expansion of the inverse sine function, which is then normalized such that (10) is fulfilled, as follows:

-1
[(d—1)/2] , L(d—1)/2] .
(2i)! (2)! 241
N = R E——— T e . AN N v . 12
9s(y:d) Lo 420+ 1)) 2o @i+ (R’ (12)
An alternative mapping, due to Kosloff and Tal-Ezer [50], is given by
arcsin(oy)
N = ———— 1 . 1
gKTE(ya CX) arcsin o x € (07 ) ( 3)

It can be observed that the transplanted nodes are more evenly distributed, see Fig. 5.
We interpolate the transplanted kndtg”} using mapped Lagrange polynomidls= I; o g~%, shown in
Fig. 6(a). Obviously, the mapped Lagrange polynomials also have the property

LW) =1097107) = 1 (y?) = 8, (14)

whereb,;; denotes the Kronecker delta. Thus, the mapped interpghans defined by

M
fM(y) = Zf(@(l))li(y). (15)
=0
0.5F 7 _oa---as S 05F —
0 (’0—*0—*0—0—0—0—0—0—0"—«;\'\ - — 0F I':”_._w._.w_.« ‘,‘ B
-0.51 \\--"T """ A 05| ‘" """ "----"‘ i
1 0 1 " 0 1

FIG. 4. Conformal map of a Bernstein ellipse

Leja nodes
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Transplanted Leja nodes (9th order sausage map)

FIG. 5: Leja and transplanted Leja interpolation nodes
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(b)
FIG. 6: Mapped Leja interpolation polynomials and numerical orders for increasing polynomial degrees: (a) standard and mapped

To derive an error bound for the transplanted interpolation, we first introduce the fuhctienf o g. We assume
that 2 can be continued analytically tb;, where it is uniformly bounded. Lét,, be theMth-order polynomial
interpolant ofh. on the original node$y ¥} M. We observe that the mapped interpoldnt is equivalent tah, o

g~ as follows:

M

far = Z f(g(y(i)))li og t=hyogt (16)
i=0
Because of Eq. (9), we obtain
1f = Futllos = 11(f = fa) 0 g0 97 Ml (17)
= |(h=hm) o g | (18)
= |[h = hull (19)
< @+ Am)l[h = hylls (20)
A a—M

<ran @)

The convergence rate is improvedif> r, which we confirm numerically in Fig. 6(b), where the ninth-order sausage
map gs(y; 9) is employed. Sincgs(y;9)~! is not known analytically, we approximate the inverse mapping by a
Chebyshev approximation of order 100 (up to machine precision).

If the region of analyticity is known, one can estimate the gain of employing a conformal magpgirigri
(based on the convergence estimates), as illustrated in Fig. 7(a). Let the size of the largest Bernstein ellipse in the
region of analyticity be'max and the size of the largest Bernstein ellipse, which is fully mapped into this region, be

Lr N e-neighborhood _40% —— 3rd order sausage map
= 2 s — Ellipse £, L 9th order sausage map
g Of[d S J/|||— Ellipse Ey,,, (2 20% —— 31st order sausage map
— =
- == Sausage g(E;mx) 8 0% --- KTE (x = .8)
e = | [ KTE (x = .95)
-1 0 1
Re[y]

@

(b)

FIG. 7: Convergence gaitr by employing mapped approximations: (a) illustration of geometric gain estimatian£06.3294

and (b) gain in convergence for different mappings
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max. 1he convergence of polynomial interpolation is then giverﬂ{Yl + Apr)exp (— log(rmax)M)] according to

Eq. (6); whereas the mapped interpolation converge3[ds + A ) exp (— log(fmax)M)], see Eq. (21). Assuming

a sufficiently slowly growing Lebesgue constdxy,;, we consider the relative improvement in the asymptotic rate of
geometric convergence (see [51], Definition 6), given by

_ log 7max _

B log Tmax

(22)

which can be attributed to the use of conformal maps. We evaluate the&-g@minfunctions that are analytic ib-
neighborhoods df-1, 1], see Fig. 7(b), by numerically computirigax for different mappings. It should be noted that

higher gains can be expected, if mappings would be employed, which are specifically tailored to the positions of the
poles in the complex plane. However, usually the exact position of these poles is not&powen and this approach

is therefore not pursued any further. The interested reader is referred to [49]. In the remaining part of the paper, we
work with the ninth-th order sausage mappindy; 9) since a detailed comparison of different mappings is not in

the scope of the present paper. The particular mapping is selected because it has already been established in [48,49],
and Fig. 7(b) confirms a significant gain in convergence for a substantial rargeadjhborhoods. Additionally, in

contrast to the map (13), it does not introduce an artificial singularity.

2.2 Sparse Grid Interpolation

Approximations based on sparse grid interpolation are commonly referred to as sparse grid stochastic collocation
methods [6,8,46]. Those methods are based on combinations of univariate interpolation rules, defined by an interpo-
lation level?,, € Ny, a monotonically increasing level-to-nodes functiep : No — N, wherem,, (¢,,) =: m,,, and

m,,(0) = 1and a grid ofn,, (mapped) interpolation nodes

z, = {a} " (23)

Introducing the multi-indeX = ({1, 4,,...,¢y) € N}, the tensor-product multivariate approximation is obtained as
follows:

J@) =T = Y I(3P) Leaty), (24)
i:y(i)EZg
wherey® = (ygm,ggiz), e ,gj(é”)) € Z, are multivariate interpolation nodes, uniquely identified by the multi-

indexi = (i1,42,...,in) € Né\’, andZy = Zy, X Zy, X -+ X Zy,, is the tensor grid of interpolation nodes.
Moreover, L, ; are mapped multivariate Lagrange polynomials, obtained by the compositios: L,; o g1
with

N
Lei(y) = H Loy in (Yn), (25)
n=1
where
me, —1 _ (k)
I "5 t#o
levnin (yn) = k:=0,k75in, yn "— y’n
1, £, =0.

Obviously, for the trivial mappingg : y — vy, it holdsf;“ = Ly ;. More details on the multivariate coordinatewise
conformal mappings will be given in Section 2.2.1. It should be noted that (25) is used for the ease of exposition;
in the actual implementation, the barycentric representation should be used [52]JGnd®as to be evaluated for
eachy®) € Z,, the complexity of the tensor-product approactdign’ ), where

my 1= max,my,, . (26)
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This complexity can be mitigated f@(mk(log mk)N_l) by employing Smolyak sparse grids [53], which typically
result in an acceptable trade-off between approximation accuracy and complexity. We introduce the approximation
level k € Ny and define the multi-index sat,, such that

AkZ:{EI|£‘:€1+£2+“~+€N§/€}‘ (27)

Then, the sparse grid of multivariate interpolation nodgs is constructed as follows:

Zn= U 2z (28)

k—N+1<|£|<k

and the interpolation is given by

W) = Y I(5Y) Lealy). (29)

i:j/'(i)GZA,C

2.2.1 Mapped Leja Nodes, Hierarchical Interpolation and Adaptivity

As shown in [43], Smolyak formulas are in general not interpolatory, unless based on nested sequences of univariate
interpolation nodes, suchthdt 1 C Z,,, . Moreover, to ensure accuracy and fast convergence of the approximation,
the interpolation nodes should be chosen in agreement with the BDE:s). We opt for weighted Leja interpolation

nodes, as in [11]. Omitting conformal mappings for the moment, we consider a univariate, continuous, and positive
weight function. Here, this weight function is given by a univariate RREy,.), 0. : £, — R4. A sequence of

univariate Leja nodeg,(f) €=2,,k=0,1,2,..., can be constructed by solving the optimization problem

yn — y P, (30)

K—1
Yy = argmax v/0n (yn) H
k=0

Yn €Zp

where the starting nody(no) is arbitrarily chosen. For further details on the construction of weighted Leja nodes and

an analysis of their properties, see [11]. We justify the choice of Leja nodes as follows. First of all, Leja nodes satisfy
the nestedness requirement by construction. Second, they allow complete freedom in the choice of the level-to-nodes
functionm,, (¢,,). Finally, they can be tailored to any given PDF. In comparison, the commonly employed Clenshaw-
Curtis nodes would restrict us to the rapidly growing level-to-nodes funetigt¢,,) = 2~ + 1. In the following,

we employ the level-to-nodes function,,(¢,,) = ¢, + 1, ¢,, € Ny, and denote witry,(f") the single extra node
corresponding to interpolation levé], i.e.,yff") = Zy, \ Zy,—1. We also introduce for each parameter a conformal

mapg,, as discussed in Section 2.1. Then, the mapped univariate Lejaﬁéé’aase obtained agaﬁf) = gn(yr(f’)). Of

course, for the trivial map,, : v, — vy, we recover the original Leja nod@é’“) = y,(lk). The multivariate mapping is
then obtained as follows:

g(y) = g1(y1) - -~ gn (yn). (31)
We note that the multivariate mappiggs conformal in each coordinaig, .

In the multivariate case, nested grids of multivariate interpolation nodes can be constructed by enforcing the use
of downward-closed (also, monotone or lower) multi-index sets [9,10]. Such sets are known to preserve the telescopic
properties of the series in Eq. (29) [10]. Moreover, sequences of nested, downward-closed multi-index sets result in
polynomial approximations of increasing accuracy [9]. Given a multi-indexX\ st us first define its forward and
backward neighbor multi-index sets,. andA _, respectively, such that

Ay i={L+e, Ve AVn=1 .. N} (32a)
A ={—e, Ve AYn=1,...,N : £, >0}, (32b)

wheree,, is thenth unit vector. ThenA is said to be downward-closed if and only if
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A_CA. (33)
Assuming now a multi-indeX ¢ A such thatA U £ is downward-closed, it holds thaty, C Z,_, and
v = Zaoe\ Za, (34)
where
Zn = Ze. (35)
LeA

Then, Eq. (29) can be naturally transformed into the hierarchical interpolation
TavelJ)(y) = ZalJ)(y) + se He(y), (36)

where the coefficients, € C, known as hierarchical surpluses, are given by
se=J(30) = Tal)(32), 37)

and H, are multivariate mapped hierarchical polynomials, defined as follows:

N
I:-]Z(y) = H iLZn (yn)’ (38)

where

Again, by choosingy,, as the identity map, we recover standard hierarchical Lagrange polynomials.

The use of (mapped) hierarchical polynomials has the advantage that the basis functions do not change as new
nodes are added. Moreover, the hierarchical surplsisean be interpreted as error indicators, quantifying the contri-
bution of the interpolation nodg®) to the already available approximation. This interpretation motivates the adaptive
construction of the sparse grid approximation baseal posteriorierror estimates. We consider a dimension-adaptive
scheme, similar to the ones employed in [9-11,45,47], with minor modifications to address the case of complex Qols.
The scheme is presented in Algorithm 1. A detailed description follows.

Given a downward-closed multi-index sktas well as the corresponding approximatiorJ] and gridZ,, we
define the set of admissible neighbad&'™, such that

Aidnl ={feA; : £¢ A and {€}_ C A} (39)

Algorithm 1: Dimension-adaptive interpolation

Data: Qol J(y), conformal mapg, multi-index set\, budgetB
Result sparse gridZ  paam, apPProXimatiort y yam [J]

repeat
Compute the admissible s&t?™, as in Eq. (39).
Compute the hierarchical surplusgsVve € Aidm, asin Eq. (37).
Find the multi-indext € A29™ with the maximum error indicatds,|.
Compute the approximatidiy e, as in Eq. (36).

SetA =AUL.
until simulation budgeB is reached
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ExpandingA with admissible multi-indiced € Aidm guarantees that (33) is satisfied, and we thus construct a
sequence of nested downward-closed sets [9]. In this work, the error indicator corresponding to each multeindex
Aidm is chosen to be the modullis | of the corresponding complex hierarchical surplus; however, other choices are
possible, e.g., madxRe{s¢}|, Im{s,}|). We update\ with the multi-index¢ € A29™ corresponding to the maximum
error indicator|s,|. The grid of interpolation node&, and the approximatio, are updated accordingly. This
procedure is continued iteratively, until a budget of model evaluatipisreached. This criterion can be formulated
as follows:

#Zurum > B, (40)

where# denotes the cardinality of a set. If an approximation is not readily available, then the algorithm is initiated
with A = {(0,0,...,0)}. After the termination of the algorithm, the approximation is constructed using thelset
Aadm_

+

2.3 Adjoint Error Estimation and Adaptivity

We aim to improve Algorithm 1 by using an adjoint error indicator to steer adaptivity. Adjoint error estimation is
well-established in the context of the finite element method (FEM); see [54] and the references therein. It has been
considered in a stochastic/parametric context [25,55,56], as well as for Clenshaw-Curtis adaptivity [24,47]. Because
of the exponential growth of Clenshaw-Curtis nodes, adjoint error estimation can result in a significant reduction of
computational cost. In this work, we demonstrate that adjoint techniques can be beneficial for Leja adaptivity, too.

In this section, we rely on the fact thdty) = J, (u(y)), Jy : V — C, is a linear functional with respect to
u(y). However, generalizations to nonlinear functionals are also possible, as in [57] (Chapter 3.2). We rewrite the
primal problem (1) as an operator equatigg: € =, findu(y) € V, such that

(Lyu(y),v) = ay(u(y),v) =ly(v), VeV, (42)

whereL, : V — V* denotes the primal operator ald the dual space t&". The dual problem is given as, for all
y € 2, findz(y) € V, such that

(w, Lyz(y)) = ay(w,z(y)) = Jy(w), Yw eV, (42)
whereL;, : V' — V* denotes the adjoint operator defined by
(Lyu,v) = (u,Lyv), Yu,veV, Vy €= (43)
The so-called primal-dual equivalence
Jy(u(y)) = (u(y), Lyz(y)) = (Lyu(y), z(y)) = ly(2(y)), (44)

follows directly from these definitions. Given (mapped) polynomial approximaiigéof the mappings1,z : = —
V', we are interested in the error

n(y) = Jy(u(y) —u(y)) = ay(uly) —a(y), z(y)) = ly (2(y)) — ay (a(y), z(y)). (45)

Evenifu, z are replaced by their finite element counterparts, the error according to Eq. (45) is not readily computable,
as it would require the computation of the adjaintor all y € =. Following [25,55], we propose to use the error
indicator

i(y) = ay (uly) —u(y), 2(y)) = ly (2(y)) — ay (u(y), z(y)). (46)

By exploiting the continuity of the sesquilinear fory (-, -), it can be shown that the error indicator (46) converges
faster than the mapped polynomial approximatiéns

M(y) —ay)| = lay (u(y) — a(y),z(y) — 2(y))| < Cllu(y) — u(y)llv]z(y) — z(y)|lv. (47)
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In particular, considering for the moment the univariate cdse- 1, for simplicity, and assuming that, z can be
extended analytically onto open Bernstein ellipges, E:_, respectively, and that there exist uniform bounds on their
extensions, then, we obtain

Cg(?ﬁufz)_M
(1—7,)(1—7,)"
for M-point approximations of botlw andz. Hence, for#, = 7., n exhibits twice the rate of geometric conver-
gence.

We proceed by discussing the necessary adaptations to Algorithm 1, in order to incorporate the adjoint er-
ror indicator (46). Additionally to the (mapped) polynomial approximation (36) of the single-valued and complex
Qol, one needs to create (mapped) polynomial approximafigps$, z(y) of the primal and dual solution. The ap-
proximations are constructed with the same multi-index\sas for the Qol, using the same mapped polynomials
Hy(y).

Following [24], we carry out the algorithmic modifications in the dimension-adaptive scheme. While Algorithm 1
uses the error indicatots,|, V£ € A29™ by solving the respective linear problem, we suggest the use of the adjoint-
based error indicator$,|, wheres, = ﬁ(y(‘)). As before, we choose the multi-index with the maximum error
indicator, solve the corresponding linear system, and update the approximations of the primal and the dual solution,
as well as of the Qol. This scheme is summarized in Algorithm 2. After the termination of the algorithm, the approx-
imation can be constructed with the gety A"fm, such that the already computed adjoint-based error indicators are
used as the hierarchical surpluses corresponding to the admissible neighbotg,=€5,, V€ € Ai“m. The error
indicator (46) can be further employed in order to improve the (mapped) polynomial surrogate model of the Qol. In
particular, one can replace the single-valued Qg}) by

N = Allos < C1(1+ App)? (48)

J(y) = ZA[J(y) +0(y), (49)

such that the computed mapped polynomial approximation is corrected by the adjoint-error indicator, before con-
tinuing with further approximation refinements using Algorithm 1. We emphasize that no additional linear equation
system has to be solved in order to evaluate (49).

3. MAXWELLS SOURCE PROBLEM

In this section, we introduce the model problem, i.e., Maxwell's source problem with periodic boundary conditions.
Such a model can be used, for instance, to describe the coupling into a plasmonic grating coupler, which will be
considered in Section 4. We also introduce the finite element (FE) approximation and a parametric version of the
model.

Algorithm 2: Adjoint error-based, dimension-adaptive interpolation
Data: g, A, B anday, Iy, Jy, as defined in Egs. (41) and (42)
Result sparse gridZ yam, approximatiory yaum|.J]
repeat
Compute the admissible s&8%™ as in Eq. (39).
Compute the error indicatofs,|, wheres, = i (y¥)), v£ € A3
Find the multi-indext A'idm with the maximum error indicator.
Compute the hierarchical surplusgs ug, z, as in Eq. (37), by solving the linear problems for primal
and dual solution.
Compute the approximatidiy e, as in Eq. (36), and the corresponding approximations of primal and
dual solution.

SetA =AUL.
until stopping criterion fulfilledl
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3.1 Deterministic Problem

We start with the time-harmonic Maxwell’s equations

VxE=—jwuH in D, (50a)
VxH=Js+jweE in D, (50b)
V-(¢E)=p in D, (50c)
V- (uH) =0 in D, (50d)

whereE denotes the electric field phas®i, the magnetic field phasals the source current phasar,the charge

density phasorw the angular frequency, the dispersive complex-valued permittivity,the permeability, and>

the computational domain to be specified. The permeahility uow,., whereyp, andpug represent the relative and
vacuum permeability, respectively, is assumed to be nondispersive. In absence of charges and source currents, i.e.,
p = 0andJs = 0, the so-called curl-curl equation reads as follows:

V x (1'V xE) — w?epoE =0 in D, (51)

to be endowed with appropriate boundary conditions.
Given an infinitely periodic structure and a periodic excitation, the computational ddihe&m be confined to
a single unit cell of the periodic structure, based on Floquet's Theorem ([58], Chapter 13). The unit cell is illustrated
in Fig. 8. Without loss of generality, we assume periodicity inthendy directions; wheread;,+ andI',- denote
the boundaries in the nonperiodic direction.IAt:, the structure is excited by an incident plane wave

, k:ig?c sin O cos pn°
inc __ —jk".r inc __ inc| _ . inc : inc
E" = Ege™/ , K= |k = —ko| sin®"sin M|, (52)
klnC cos elnc
z

whered™, ¢'"® are the angles of incidence ahgl= w,/Io€o is the wavenumber in vacuum. It is worth noting that,
due to the oblique angles, the periodicity of the excitation differs from the geometrical periodicity of the structure.
According to Floquet's theorem, we need to enforce periodic phase-shift boundary conditibns oi’,- and

onl')+ ULy, i.e,

E|Fm+ = E|1"m_ ejlbzy Py = _kipcdaca (53a)
Elr , =E[p, eV, ¥, = -k d,, (53b)

where the phase-shifts,, 1, depend only on the wavevectkf of the incident wave &t .+ and on the dimensions
d., d, of the unit cell.

FIG. 8: Sketch of a unit cell representing the computational donfaiithe black arrow indicates the incident wavevedbr.
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To truncate the structure in the nonperiodic directioh at, we employ a Floquet absorbing boundary condition
[58] as derived in Appendix A. AF', -, a perfect electric conductor (PEC) boundary condition is applied to truncate
the structure; however, different boundary conditions are also possible, e.g., again a Floquet absorbing boundary
condition or perfectly matched layers (PMLs) [58]. In summary, we are concerned with the boundary value problem

Vx (1 'V x E) — w’epE =0 in D, (54a)
Elp e /% =E|p on I+ UT,—, (54b)
E\py+ e Iy — E|ry, onT,+uUl,-, (54c¢)
nxE=0 onT',-, (54d)
nx H+G(E) = F" onT,+, (54e)

whereG(E) andF" are derived and defined in Appendix A, see Egs. (A.10)—(A.12).

3.1.1 Weak Formulation and Discretization
To simplify the notation, we introduce the traces

ur := (nr X ulr) X nr, (55a)

u; :=nr X u|r, (55b)

wherel" := 0D denotes the boundary @ andnr refers to its outer unit normal. Note that the trace operators are
denoted by subscripts, for brevity of notation.

By building the inner product of Eq. (54a) with tests functiéhe V', whereV is to be determined, and integra-
tion by parts, we obtain

(b 'V X E,V X E'), — w?lo(eE, E') , — jwpo(Hy, E7)p = 0. (56)

The boundary integral can be further simplified, i.e., the contributions,onI',- andTl',+, I', - cancel each other
due to the periodic phase-shift boundary conditions (54b) and (54c) of trial and test functions. We further eliminate
the portion of the integral ofi,- by demanding that the test functioRs fulfill the PEC boundary condition (54d).

The appropriate function spatéfor a weak formulation is a subspace®@fcurl; D), i.e., the (complex) vector
function space of square-integrable functions with square-integrable curl. For more details on function spaces in
the context of Maxwell's source problem, the reader is referred to [59] (Chapter 3). To account for the boundary
conditions in Eq. (54), the function space is chosen as

V= {V € H(curk D) : vrlp _ =0A vrlr_, = *VT|1‘m,€j¢w
v 2 3 (57)
Avalr,, = —vrlr,_ e A velr, € (LA(I.4)) }7

where the conditiorvr|r_, € (LZ(FZ+))3 is required to obtain a well-defined boundary integral. Employing the
Floquet absorbing boundary condition (54e)laon yields the weak formulation: finll € V' s.t.

(I 'V X E,V x E') ) — wuo(¢E, E') +jwno(G(E),Er)p = jwpo(F",E) . N VE' €V. (58)

To ensure a curl-conforming discretization of Eq. (58), we approximate the electri&fieldnerically as fol-

lows:
Ny

En(x) =Y ¢;N;(x), (59)
=1

wherelN; denotes célec basis functions of the first kind [59,60] and first- or second-order, defined on a tetrahedral
mesh of the domai®. Further details on the discretization are given in Appendix B.
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In practice, one is often interested in reflection and transmission coefficients, in addition to the field dblution
itself. Therefore, we define the (complex-valued) scattering parameters as (affine-) linear functi®hals of

Soc,mn = (ET - Eilr'ma T [Ea,mn})rz+7 (60)

wherex € {TE,TM},m € Z,n € Z, andE .., are Floquet modes defined in Appendix A. The scattering parame-
ters are considered as Qols, in the context of the present work.

3.2 Parametrized Model

In this section, we specify the material distribution of the complex permittivityn particular, we assume a linear
material behavior foe andp inside D. Let the domainD be composed of/ nonoverlapping subdomairs,,, i.e.,
D= Uﬁf:l D,,. We further assume that the dispersive permittivity, w) is spatially piecewise constant on each
subdomainD,,, and depends smoothly on a given vectoNbparametery € = ¢ RV

M

e(x,w,y) = Z em (W, y) L (x,), (61)
m=1
where
1, x€ Dy(y),
1,,(x,y) =
x¥) {o, x ¢ D).

On the one hand, the parameter vegtaran be used to represent variations in the material parameters, e.g., different
permittivities, refractive indices, or extinction coefficients, by changing the coefficigr{i®, y ). On the other hand,
it also represents geometric variations of the structure inside the unit cell, since the subdbméinsfor each
material depend og as well.
The parametrized weak formulation reads: fla@) € V' s.t.
ay(E(y),E') = [(E') VE' €V, (62)

where

ay(E,E') := (u;lv x E(y),V x E’)D — w?uo(e(y)E(y), E) +jwuo(g(E(y))7E'T)Fz+. (63)
The parameter-dependent scattering parameters are given as follows:

Semn(y) = (Br(y) — EY®, 71 [Baymnl) (64)

2t
wherex € {TE, TM}.

Remarkl. Relating the model problem of scattering in periodic media to the UQ methodology of the previous section,
the linear functionally (-) is given by

Scx,mn(y) - (ET(y); ’/TT[Eoc,m,nDFZJr *( i‘Pca'/TT[Eax,mn])F )

2zt
=Jy(E)
wherea € {TE, TM}. The strong formulation of the adjoint problem (42) reads
V x <:*v X z) — w?upe*z=0 in D, (65a)
Zﬂrer e_jlb’” = ZTlme on FJ;+ U Fx—, (65b)
ZﬂpyJr e_jlby = ZTle, on Fy+ U Fy—7 (65C)
ze =0 onTl,-, (65d)
e, X (jV X z> +G=F on I+, (65€)
WHo
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whereG andF are defined in Appendix A.
Introducing A 4o¢ @s system matrix arising from the discretization of Eq. (58), the discrete primal problem is
given by
Adofcdof = fdofa (66)

as derived in Appendix B. Discretization of the adjoint problem (42) yields the discrete matrix equation
A Zdor = o, (67)
and the discrete version of the error indicator (46) reads

Tin(y) = 2oi(y) faof(¥) — Zejor(Y) Ador (Y ) Edof(¥)- (68)

Note that the dual solution can be obtained with negligible cost in many cases, e.g., if the primal problem is
solved with a sparse LU decompositidn.s = LU, for the respective dual problem, we obtain

Al = @wo) = UL (69)

Remark2. To prove that Eq. (62) is well-posed and analytic with respect to the model parameters, which are the
main working assumptions of the paper, requires special care due to the presence of the general boundaiy.operator
Here we only refer to [59] (Chapter 4) and [61] (Section 5) for a numerical analysis of well-posedness in the deter-
ministic setting with simpler boundary conditions. Also, recently, shape holomorphy for Maxwell’s source problem
was established in [62], considering bi-Lipschitz shape transformations and holomorphic material parameters, which
are bounded away from zero. However, the analysis was, again, carried out with homogeneous Dirichlet boundary
conditions.

4. APPLICATION

We apply the enhanced surrogate modeling presented in Section 2 to a nontrivial benchmark application from
nanoplasmonics, nhamely, an optical grating coupler [32,63]. We report some details on modeling uncertainties in
material and geometric input data. We also describe how parametric variations are realized numerically and finally
guantify uncertainties in the computational model.

For general periodic structures, we must distinguish between two types of uncertainties. In this work, we focus
on global uncertainties, i.e., we assume that all unit cells are identically affected, modeling a systematic offset in the
fabrication process. We do not address local uncertainties leading to a violation of the periodicity and different unit
cells. Readers interested in the latter case are referred to [34] for a relevant study.

4.1 Numerical Model

The considered grating [32] couples power from an incident transverse magnetic (TM) polarized plane wave, such
that
T [Emc] =7r[Etmoo, at I'.+,

with propagation directio@™ = 53°, ¢ = 0°, directly into a metal-insulator-metal (MIM) plasmon mode, which
is illustrated in Fig. 9(a).

The structure’s design, shown in Fig. 9(b), is assumed to be periodic in direction and infinitely extended
in they direction. The reflection coefficients (60) at the upper boundiary correspond to the coupling efficiency
of the structure, such that larger reflection coefficients indicate a lower coupling efficiency. Therefore, the scattering
parameterS := Stv oo iS considered as the Qol in the following. Note that we focus on the fundamental reflection
coefficientSti oo because, for this particular model, all other scattering parameters have negligible amplitudes.

We model the material properties based on measurement data for noble metals provided by Johnson and Christy
[64] and presented in Table 1. We focus on the frequency rangig 0¥ 400THz to fiax = 430THz (see Fig. 10).
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FIG. 9: An optical grating coupler [32] couples power from an incident plane wave in free space directly into a MIM plasmon
mode, propagating in horizontal direction: (a) illustration of the magnitude of the electric field at a specific (arbitrary chosen) point
in time and (b) shows the design of the considered grating coupler. Note that the structure is periodically extended in the horizontal
direction; only two unit cells are shown.

TABLE 1: Material data, based on the results of [64]

Index | Energy | Frequency| Refractive Extinction Refractive | Extinction
i (V) | fi(THz) | indexnf¥ | coefficientk’ | indexnf9 | coefficientk}?
0 1.64 396.55 |0.144+0.02| 45424+ 0.015| 0.03+ 0.02| 5.242+ 0.015
1 1.76 425,57 |0.13+0.02| 4.103+0.010 | 0.04+ 0.02| 4.838+ 0.010
2 1.88 45458 |0.14+0.02| 3.697+ 0.007 | 0.05+ 0.02 | 4.4834+ 0.007
1.5 ‘+ Gol(i = 15 ‘ +‘Gold
% —m— Silver 5 —=—Silver
21 -
2 8
£ g
E 05 1 ‘g 5 [
0 }_‘T—i—lm—I—H—% &
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FIG. 10: Dispersive optical constants of gold and silver [64]. The black vertical lines define the considered frequency range.

The data are experimentally determined by reflectivity studies and therefore given in terms of the refractiverindices
and the extinction coefficientsfor gold and silver, respectively. From those, one obtains the complex permittivity as
in [65] (Chapter 1.1), i.e.,
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e = (n® — k% — j(2nx))eo. (70)
We interpolate the given materigf* data as follows:
2
B (w) = Bli(w), (71)
=0
wherex € {Au,Ag}, B € {n, k}. Also,
2
w— Ww;
Lw)= [ —=, wi=2xf;, (72)
gm0y Vi T Wi
Ag

are second-order Lagrange polynomials gneh!, k24, n’9, ng, and: = 0, 1,2 are given.

We proceed with the description of the deterministic numerical model, as well as its parametrization. The periodic
mesh for the nominal design is created us@igsH [66]. Since, for this particular structure, only the fundamental
Floguet modes propagate and all higher order modes are attenuated to a negligible amgdlifudevatcan use the
first-order Floquet boundary condition (A.12). We EENICS[67] as the FE library to assemble the FE mathix
and right-hand side (rh€)[see Eqg. (B.1)], as well as the linear functiodal: used for the numerical approximation

of the scattering parameter

Stmoo = (Et — | DL 7TT[ETM,00])F L= Jiicdor — 1.

SinceFENICS 2017.2.0s not able to deal with complex numbers, we assemble the real and the imaginary parts
of the matrix and the vectors separately. We then nuseiPy and scIPY to impose the quasi-periodic boundary
conditions (53a) and (53b) and solve the resulting linear system (B.1) with a sparse LU decomposition. Using second-
order Necklec elements of the first kind, we end up with 56,200 degrees of freedom (DoF)s and achieve an accuracy of
~ 1072 in the scattering parameter. The reference solutions for different frequency sample points are computed with
a commercial software [68] employing an adaptively refined mesh of higher order curved elements. Since a sparse LU
decomposition is used to solve the resulting linear system, the adjoint salgtids obtained with negligible costs.

To incorporate changes in the geometry parameters without the need to remesh, a design element approach is ap-
plied [69]. We describe all (material) interfaces, illustrated in Fig. 11, using nonuniform rational B-splines (NURBS)
[70]. Each NURBS curve

Cz(En Y) = Z Rj(Ev)Pj,i(Y)’ &€ [07 1]7 (73)
=0

is a superposition of rational basis functiaRg(&) weighted by control point® ;. We then define mappings

(@ (b) (d)

FIG. 11: (a) Design elements, (b) mapping from unit square, (c) initial mesh (coarse for illustration) for nominal yf&81G#H,
and (d) deformed mesh fd&t = 40nm andt; = 20nm
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T (&my) =nCru(&y) + (1 -M)Cri(&y), m=1,....M (74)

from the unit squargd < & < 1] x [0 <n < 1] to each design elemeft; (y) (see Fig. 11). Thereby, the subscripts u
and | refer to the upper and lower NURBS curve of the design element, respectively. Given the initial mesh, for each
mesh node the respective coordinates on the unit square are found by solving a nonlinear root-finding problem. We
can then deform the mesh by moving the mesh nodes to the new coordinates obtained by evaluating the mapping (74)
for different geometry parameteys

We consider a fixed frequenay = 27(414THz) and N = 17 random input parametef®. These are the
five geometrical parameters presented in Table 2 and the 12 material parameters given in Table 1. As introduced in
Section 3, both the uncertain geometry and the uncertain material coefficients are modeled by an uncertain complex
permittivity e(x,y); see Eq. (61).

We assume that the RV8,, n = 1,2,...,N = 17, are independent and distributed in the ranges defined
by their nominal values and variations. The variations of the material parameters are chosen according to the error
estimate provided by Johnson and Christy [8#8d$ed on the instrumental accuracy of the reflection and transmission
measurementsSince no further information on the distributions of those measurement uncertainties are specified, the
given error estimate is assumed to correspond2o mterval. For the geometrical parameters, only small variations
in the range oft 1.5 nm are considered (with2o interval of+ 1 nm).

We opt for beta distributions, which have bounded support and can approximate normal distributions for suitable
choices of their shape parameters (see Appendix B in [42]). The shape parameters are chosen based on the results of
a series of Kolmogorov-Smirnov fitting tests [71].

4.1.1 Numerical Results

To illustrate the benefits of using the adjoint error indicator presented in Section 2.3, we consider here only the
thickness of the upper gold layarand the thickness of the dielectric layeas input parameters. We have observed,
numerically, that the Qol is particularly sensitive with respect to these parameters, with slow associated univariate
convergence rates. Figure 12(a) shows the S-parameter with respect to small variations of these two parameters.
We construct (mapped) adaptive Leja approximations using Algorithm 1 and the adjoint-based Algorithm 2. The
accuracy of the surrogate models is measured using a cross-validationé&t ef 1 x 10° parameter realizations
SW .= S(y®), i = 1,...,N%, drawn according to the underlying PDF, which is used to compute a discrete
approximation of the.} error

N

& 1 i a4
E[|S — S|] ~ NCVZ|S()75()|. (75)
i=1

The error (75) is computed for the mapped and adjoint-based approximation, as well as for nonmapped and/or
nonadjoint-based variants, for increasing numbers of model evaluations. The corresponding results are shown in
Fig. 12(b). The plot numerically confirms (47) and shows the doubled convergence order of the adjoint-error indica-
tor. Additionally, it can already be observed that employing the conformal sausagestne), defined in Eq. (12),
yields to a significant improvement of both convergence orders in the considered setting.

Next, we consider allvV = 17 input parameters and construct different polynomial approximations. As a ref-
erence, we compute two nonadaptive approximations, based on generalized polynomial chaos (gPC) [7] and on

TABLE 2: Uncertain geometrical parameters

Parameter Nominal value (nm) | Variation (nm)
Grating radiusR 60 +1.5
Gold layer thicknesst; 12 +1.5
Alumina layer thicknesg, 14 +1.5
Silver layer thicknessg 5 +1.5
Grating depth’ 20 +1.5
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FIG. 12: Considering a two-dimensional parameter space and a fixed frequency of 414 THz. (a) Reflection cdéffiaiehtb)
improved convergence of (mapped) Leja approximations by employing an adjoint-error indicator

isotropic Smolyak sparse-grid interpolation [72]. These are compared to the proposed enhanced surrogate model-
ing, i.e., (mapped) Leja adaptive approximations, using both Algorithm 1 and the adjoint-based Algorithm 2 for
the latter. Chaospy [73] is used for the gPC case, the Sparse-Grid-MATLAB-Kit [72] is employed for the Smolyak
sparse-grid interpolation, while an in-house code was developed for both Leja adaptive algorithms [74]. We compare
the resulting surrogate models with respect to accuracy and computational costs.

The computational costs refer to the number of model evaluations needed for the construction of the approxima-
tion. Although straightforward for the gPC, Smolyak sparse-grid, and the Leja adaptive Algorithm 1, the estimation of
costs is more involved in the case of the adjoint-based Algorithm 2. First, in order to evaluate the duality-based error
indicator (68) at a candidate point, it is sufficient to evaluate a residual of Eq. (62). Therefore, we distinguish between
residual evaluations and solver calls, where in most cases the costs to evaluate the residuals are almost negligible
compared to the solver costs, i.e., assembly and sparse LU decomposition of the system AaiiigesSecond,
the additional costs for computing the dual solutioly forward and backward substitution can also be neglected in
most cases, since the primal problem is solved with a sparse LU decomposition.

As before, the accuracy of the surrogate models is measured using a cross-validatioiv8et=ofl x 10°
parameter realization§® := S(y®), i = 1,..., N%, drawn according to the underlying PDF. In addition to
Eq. (75), we also consider the maximum error over all sample points

max—y _nw|S® — SO, (76)

All accuracy and cost results are presented in Table 3. First, a gPC approximation with a second-order total-
degree polynomial basis, i.e., 171 Jacobi polynomials, is constructed. The polynomial coefficients are computed with
a sparse second-order Gauss quadrature formula, resulting in 613 quadrature nodes, accordingly, model evaluations.
Second, we employ interpolation on an isotropic Smolyak sparse-grid of level 2 based on Clenshaw Curtis nodes,
which requires 613 model evaluations as well. Accordingly, we set a buglget613for the classical, i.e., without
adjoints or conformal maps, Leja adaptive Algorithm 1, such that its costs are identical to the gPC and the Smolyak
sparse-grid interpolation. As can be seen in Table 3, the Leja adaptive approximation is about one order of magnitude
more accurate than the gPC and also significantly better than the isotropic sparse-grid interpolation.

Next, we use again Algorithm 1 but employ conformal maps. In particular, we refer with iso-mapped to applying
the conformal sausage mag(-; 9) for all parameters while aniso-mapped refers to the application of the conformal
map only to the parametets, t,, T (parameters with a particularly slow univariate convergence rate). It can be ob-
served that both approaches yield a similar improvement in terms of accuracy, without (relevant) extra computational
cost.
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TABLE 3: Accuracy and computational cost of different polynomial approximations for 17 input RVs. #LU refers
to the dominating costs for the assembly and sparse LU decomposition of the system matrices. #FB and #Res denote
the number of forward-backward substitutions and residual evaluations, respectively
#LU #FB #Res | Max. Error (75) | Mean Error (74)
Total-degree gPC (without maps) 613 613 0 7.61x 1071t 1.92x 1071
Level 2 Smolyak sparse-grid (without maps) 613 613 0 1.73x 1071 4.45x 1072
Ad. Leja (without adjoints/maps) 613 613 8.56 x 102 5.53x 1073
Ad. iso-mapped Leja (without adjoints) | 613 613 3.59x 1072 4.10x 1073
Ad. aniso-mapped Leja (without adjoints) 613 613 3.85x 1072 4.15x 1073
Ad. Leja (with adjoints; without maps) 558 1116 613 8.46x 102 5.49x 1073
Ad. iso-mapped Leja (with adjoints) 563 1126 613 3.57x 1072 4.09% 1073
Ad. aniso-mapped Leja (with adjoints) | 563 1126 613 3.82x 1072 4.15%x 1073

Ad. aniso-mapped Leja (with adjoints and
error correction)

o O O

3x10°|6x10°|3x10*| 1.25%x 102 1.20x 10~

For the adjoint-based Algorithm 2, we then compute approximations using again 613 (mapped) polynomials,
resulting in errors almost identical to the nonadjoint case. However, since the costs can be predominantly attributed to
thex 560solver calls, the costs are reduced. Note that greater (relative) gains can be observed in different settings,
e.g., when a smaller computational budget is used or less parameter anisotropy is present in the considered model. In
particular, as a numerical test case, we increased material uncertainties by one-third and reduced geometric variations
to the range oft 0.25nm. In that case, the respective computational cost was reducedddb.

The convergence of the mean error (75) with respect to function calls (corresponding to the number of LU
decompositions) of the investigated spectral methods is additionally shown in Fig. 13. Isotropic gPC does not seem
to show a proper convergence. However, it should be noted that we were only able to compute approximations up
to order 3 due to the larger number of parameters and hence, the error decay is probably pre-asymptotic. Additional
convergence results supporting this hypothesis are reported in Appendix C. It can be concluded that the nonadaptive
gPC reference solution achieves a very poor accuracy with the given computational budget. All considered dimension-
adaptive schemes greatly outperform the isotropic approaches. In accordance with the results in Table 3, Fig. 13
illustrates that the application of the conformal map leads to improvements compared to the classical Leja algorithm;
whereas in this setting, there is a negligible difference between the iso-mapped and aniso-mapped approaches. It

F SRR T - HH‘E —h— Non-adaptive gPC (total-degree)
1071 E < | —— Non-adaptive Smolyak (Clenshaw Curtis)
- F 1| —— Adaptive Leja
E 1072 E 1= Iso-mapped adaptive Leja
‘g 10-3 ; ; —o— Aniso—m.apped. adaptiyg Leja
[5) F 1= adaptive Leja + adjoint
5 104 | |-=-  Iso-mapped adaptive Leja + adjoint
o E E . . . ..
g F 1|-e- Aniso-mapped adaptive Leja + adjoint
= 105 F |
1076 | =
E 11l Lol L rnld

10% 10° 10*
Function calls

FIG. 13: Convergence study for the single frequency setting. The adaptive schemes clearly outperform the isotropic approach.
Note that the dashed lines correspond to the error of improved surrogate models, which require the evaluation of FE residuals at
each cross-validation point.
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should be noted that, in contrast to Table 3, the dashed lines in Fig. 13 correspond to the error of the respective
adjoint-based error indicator (68). Therefore, they do not correspond to (mapped) polynomial surrogate models but
require the evaluation of a residual of (62) at each cross-validation sampleypdint= 1,..., N®.

Finally, as shown in the last row of Table 3, we compute a very accurate surrogate model, by using the adjoint-
based Algorithm 2 with a computational budget 0k3L0° LU decomposition. The adjoint-based approximation is
then refined by employing (49) until 8 10* polynomials are used, further reducing the error by more than one-order
of magnitude. It shall be highlighted that the adjoint-based approach results in tremendous computational savings
compared to the classical Leja Algorithm 1 sincex210° full model evaluations could be avoided in this particular
setting.

As often pointed out in the literature (see, e.g., [24]), it is inefficient to reduce the stochastic error below the
discretization error. Therefore, the stochastic approximation is not further refined and the most accurate surrogate
model (Table 3, last row) is in Section 4.1.2 used to compute statistical measures of the absolute value of the scattering
parametefS]|.

4.1.2 Postprocessing the Surrogate Model

Since the (mapped) polynomial surrogate moﬁ(eglr) can be evaluated inexpensively, we employ a Monte Carlo-
based approach by evaluating the surrogate model on a large numi&Cgbarameter sample points, drawn from
the joint PDFo(y). We then use the sample evaluations to estimate statistical momef#$, is PDF, failure
probabilities based on specific design criteria, and its sensitivity with respect to the input parameters.

The expected valug[|S|] and the varianc®||S|] are estimated as follows:

NMC
BlSY = [ 150)le)y ~ e Zis< — BYe[3)), (772)
2 1 = MC
VIISI) = [ (1S()] ~ E[S])e(y) by ~ 30— 1205 |- B8))" (77b)
We estimate the failure probabilitf = P(|.S| > 1 — «) as follows:
NMC
= P(SI 2 1- ) = [ Zr(S)aly) dy ~ NMCZI (5), (78)

wherepg denotes the PDF df| andZ denotes the indicator function

_ 17 ‘S|6[1_(X71]7
Zﬂ&‘{q&emﬁ—@. (79)

Monte Carlo sampling in combination with surrogate modeling is used for simplicity here. However, it should be
noted that equality in (78) faN®' — oo cannot be guaranteed, in general; see [75] for counterexamples and possible
extensions.

The PDFgs of | S| is estimated by employing a kernel density estimator

S
05~ br = NMCZ( - ) (80

with NMC = 10" samples, bandwidth = 10~2, and the Epanechnikov kernel [76]

3
k=21 TelL1, (81)
0, else
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The estimated expected values, standard deviatifisand failure probabilities for an increasing sample $i24°
ando = 0.1 are given in Table 4. The estimated PB§-is shown in Fig. 14(a).

Sensitivity analysis is based on an analysis of variances (ANOVA) [77]. The related metrics are commonly
known as Sobol indices, where we will focus on the so-called main-effect (first-order) and total-effect (total order)
indices, defined in [78]. In the context of the present work, estimations of the Sobol indices for the magnitude of the
scattering parameter shall be based on sampling of the (mapped) polynomial approxishation— C. We use
Saltelli’s algorithm [79] withNe"s = 10° sample points, resulting iB(17 + 1)10° = 3.6 x 10° surrogate model
evaluations. The main-effect and total-effect Sobol indices for each parameter are given in Fig. 14(b). The thickness
of the dielectric layet,, the thickness of the upper gold layigr the grating deptlT”, and the refractive index of
the upper gold layenf" are identified as the most sensitive parameters. Moreover, since the sum of all main-effect
sensitivity indices isv 33%, the remaining 67% indicates higher order interactions, and thus strong coupling among
the input parameters.

It is found that the considered model is highly sensitive to small geometrical variations. In particular, while
geometrical variations in a range of onty1.5 nm are considered, their impact is significantly higher than the one
attributed to material uncertainty, which was modeled based on the measurement error provided by [64].

5. CONCLUSION

In this work, we presented an efficient method to quantify uncertainties in the Maxwell source problem, assuming a
moderately large number of input RVs. Dimension adaptivity in combination with adjoint error correction and con-
formal maps is confirmed to be a promising technique to delay the curse of dimensionality. For the considered FE
model from nanoplasmonics, the comparison of the proposed adaptive algorithm with total degree gPC and isotropic
Smolyak sparse grids shows significant gains in both accuracy and computational costs. In particular, with the adap-
tive scheme we were able to consider up to 17 parameters and achieve an accarat éfwith a few thousand
numerical solutions of the deterministic model. To consider wider frequency ranges with possible poles in combina-
tion with large geometric uncertainties, a combination of polynomial and rational approximations is a topic of future
research.

TABLE 4: Expectation, standard deviation, and failure probability,
ie.,F = P(|S| > 1 - «) for « = 0.1; surrogate-based Monte
Carlo estimation usingd™® sample points

NMC E VvV F (%)
108 0.7595 0.0661 2.20
10° 0.7605 0.0658 1.85
10°P 0.7606 0.0660 2.04
106 0.7607 0.0660 2.07
107 0.7607 0.0660 2.06
8 l ;
. 0.8 0 Main-effect
6 3 06 [0 Total-effect
»n 4 -8 ’
3 02 H
0 0 m i
. . . . 1
08 Refiootion|$| 414 Tiz P A B AR N A R A A M ARt T

@ (b)

FIG. 14: PDF, expectation, standard deviation, failure probability, and Sobol indices for 17 beta-distributed input parameters: (a)
estimated PDF of scattering parameter, failure probability is highlighted and (b) Sobol indices computl@t witinple points
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For the considered optical grating coupler, according to Sobol-sensitivity measures, geometrical parameters have
been found to be the dominant source of input uncertainty. Although the modeling of their probability distributions
could not be based on measurement data yet, this conclusion is substantiated by the very conservative choice of
geometrical standard deviations.
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APPENDIX A. FLOQUET BOUNDARY CONDITION

To truncate the structure in the nonperiodic directioh at, a Floquet absorbing boundary condition can be derived
by splitting the electric field in the unbounded regioi» =T, where we assume vacuum permittiviyand vacuum
permeabilityuo, as follows:

E =E" + E (A1)
whereE" and Es¢ represent the known incident field and the unknown scattered field, respectively. As derived in
[80] (Chapter 3) and [81] (Chapter 12.2.1), the scattered fifccan be represented as an infinite series of Floquet
modes

E= 3 camnBamne 7m0, (A2)

m,n€e”Z
xe{TE, TM}

where

—j(kzma+kyn
eI (Remathy y)(kyne:c - kxmey)

ETE,mn = )
V/dzdy [k2. + k%n

e~ J(kzmztkyny) (kmmem + kyney, — ((kgm + kgn)/Kmn)ez)
ETM,mn = )
Vdzdyy /K2, + k;‘jn

2tm : 2mn
K’ kyn = k;?c =+ Ty, Kmn = k’g — k%m — k/’gn (A3)
Thereby, we distinguish between transverse electric (TE) mBges,, and TM modeEry ., fulfilling E L e,
andH L e., respectively. There exists only a finite number of propagating modess,j.¢.€ R, depending on the
wavenumber:, the angles of incidencg", $'"°, and the dimensions,, d, of the unit cell.

We introduce the operatorg[u] := e, x u andnr[u] := (e, x u) x e, such that

with
ka:m — kinc +

Tt [Hoc.,mne_ijn(z_Zﬂ} =T [cjuv X (E"‘-,mne_ij"(Z_Zﬂ)} - _th,mnWT [Eoc,mne_jwnn(z_ﬁ)}v (A.4)

with <
% for « = TE,
wu
Yoc,mn = we
for « = TM.
Kmn
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The incident plane wavE™™ corresponds to the lowest order Floquet maBggo with modal admittancé’ "

V€ cos(8™°)

N for o« = TE,
Tt [Hinc} — Yinc7r-|- [Einc]’ Yinc — [ (A.5)
L fora =TM
/R cos(0n°) o
By taking the cross product of the curl of (A.1) with, the magnetic field above the structure is expressed as follows:
WY[H} + Z éoc,mnYoc,mnWT[Eoc,mne_j Km”(z_ZJr)] = 2Yinc7TT [Einc} . (AG)
ocey?'ijl;,e‘%M}

For anyu,v € (L2(F2+))3, the space of square-integrable complex vector functioris,enwe introduce the inner
product

(w,v)r_, = / u- v dx, (A7)
4
where the superscriptdenotes complex conjugation. Because of the orthogonality of the modal basis, i.e.,
(77 [ETE, mn, 7TT[ETE,ij])pZ+ = dmidnj, (A.8a)
(ﬂ-T [ETM7mn]’ T [E'l'Mﬂ?j])pz+ = 5mi6nj; (A.8b)

(77 [ETE,mn), 7T [ETM,ij])Fz+ =0, (A.8¢)

whered denotes the Kronecker delta, the unknown coefficiéats,,, € C of the modal expansion (A.6) can be
obtained as follows:

504,7”" = (ﬂ-T [E]v T [E“7mfl])1“z+ = (ﬂ-T [Einc} s TT [Ecx,'rrm])r‘z+ + (WT[ESﬂa T [Ecx,mn])F2+ . (Ag)

=Cux,mn

Equation (A.6) represents the boundary condition to be imposéd . onin practice, the infinite sum of Floquet
modes is truncated temmax < m < Mmax —Mmax < 7 < Nmax-
In that case, we obtain a boundary condition in the form of Eq. (54e) with

]:inc _ 2YinC7TT [Einc] ) (AlO)
g(E) = Z 5a,m7LYoc,mn7TT[Eoc,mn]~ (A.ll)
m|<mmax
||"}§nmax
x€e{TE, TM}

Further simplifications are possible if the dimensions of the unit cell are small enough, such that only the fundamental
modesE, oo propagate, and the bounddry- is placed sufficiently far away from the structure, such that all higher
order modes are attenuated to a negligible amplitude. In this case, the fundamental mode is of particular interest and
we may omit all evanescent higher order modes in Eq. (A.11). In particular, we can employ the first-order absorbing
boundary condition [58] (Chapter 13.4.1), i.e., Eq. (54€) with

kinc . i
- wptk"‘c (k™ - wr[E]) — @WT[EL (A.12)

G(E) =

whereki"® := 7 [k""].
The corresponding terms in the boundary conditions of the dual problem (65) are given as follows:
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F= _LWT[Ea,an (A.13)
WHo
and either - R
g = };,mnycc*,mnWT[EOC-,mn}v (A14)

Wheredmmn = (m7[Ew,mn), ZT)F2+' if Eq. (A.11) is used for the primal problem, or

kitnc . inc
_ inc z
G = Lohie (k- z7) + quT7 (A.15)

if lowest order Floquet boundary conditions (A.12) are employed in Eq. (54).

APPENDIX B. DETAILS ON FE DISCRETIZATION

The mesh is assumed to be periodic, i.e., the surface meshEs.oandI’, -, as well as o+ andl',-, are
respectively identical. Without loss of generality, we further assume the vector of coefficients'» to be ordered
such that the boundary conditions imposed in Eq. (57) can be expressed as follows:

Cinner I 0 0 0 0
cr_, 0 I 0 0 0
cr,_ 00 0 0 0
Cr . 00 I 0 0 Cinner
Ccr _ 0 0 Ie 7%= 0 0 Cr_,
c= cr =10 0 0 I 0 cr . = Pcof,
cr _ 00 0 TIe ¥y 0 cr, ;
Cr, nr,+ 00 0 0 | Cr, nr,;
cr,_nr,. 00 0 0 Ie b=
crnr, - 00 0 0 Ie— 7%y
cr _ mr;, 0 0 0 VS G

where we have introduced the reduced veetgr =c C™ooF of Npor < N;, DoFs and denotes an identity matrix of
appropriate size [58] (Chapter 13.1.2).

Let A € CN»xNe andf € CM» be the system matrix and right-hand side vector, which are obtained by using
Eqg. (59) in Eq. (58), as well asédelec test functions. In the case of using the higher-order Floquet port boundary
condition, i.e., Eq. (54e) with Eq. (A.10), the boundary integrals lead to dense sub-blocks in the Anatiivereas
Eqg. (A.12) preserves the sparsity of the FE matrix. The quasi-periodic and PEC boundary conditions (57) on ansatz
and test functions can be imposed conveniently using the nataxC =< Neer | leading to the reduced system

AdorCaor = PHAPCor = PP = fyor, (B.1)
whereP" denotes the Hermitian transposeRfFunctions spanned by the reduced DoF form a proper subspace of
Eq. (57).

APPENDIX C. CONVERGENCE STUDY OF GPC AND SPARSE-GRID PROJECTION

Since the computational cost for a proper convergence study in the 17-dimensional setting is too high, we are restricted
again to the two most sensitive parameters, i,€t,, and repeat the gPC convergence study with sparse Gaussian
quadrature. Again, we use a random cross-validation sample akélZe= 1 x 10° to compute the error (75). Results

are presented in Fig. C1. It can be observed that, similar to Fig. 13, the error slightly increases up3defder a
convergent behavior can indeed be observed.
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FIG. C1: Convergence study of a gPC approximation using pseudo-spectral projection and sparse Gauss quadrature
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