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We propose an efficient surrogate modeling technique for uncertainty quantification. The method is based on a well-
known dimension-adaptive collocation scheme. We improve the scheme by enhancing sparse polynomial surrogates
with conformal maps and adjoint error correction. The methodology is applied to Maxwell’s source problem with ran-
dom input data. This setting comprises many applications of current interest from computational nanoplasmonics, such
as grating couplers or optical waveguides. Using a nontrivial benchmark model, we show the benefits and drawbacks
of using enhanced surrogate models through various numerical studies. The proposed strategy allows us to conduct a
thorough uncertainty analysis, taking into account a moderately large number of random parameters.
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1. INTRODUCTION

The numerical solution of partial differential equations (PDEs) with random input data has been receiving consid-
erable attention in the last decades in the context of uncertainty quantification (UQ). Numerical UQ methods are
continuously improved to address large-scale problems with many input parameters, which still pose a computational
challenge nowadays. The key property to reduce computational costs in high dimensions is a holomorphic depen-
dency of the PDE solution on the input parameters. Such holomorphy results have been established for a variety of
different problem classes [1,2] and allow the use of spectral stochastic methods [3–8] in combination with adaptive
schemes, see, e.g., [9–13] for the case of stochastic collocation.

An alternative, sometimes complementary, approach for the numerical solution of parametric problems is model
order reduction, see [14] and the references therein. Model order reduction based on moment-matching [15,16] can
be used to derive a rational parametric approximation, which is appealing in the case of reduced parametric regularity.
Rational Pad́e-type approximations have recently been employed for a stochastic Helmholtz problem [17]. Moreover,
in [18], a Pad́e-Legendre method was introduced to cope with discontinuous response surfaces, where it was also
noted that high-dimensional settings are still difficult to address. Another alternative are (multilevel) Monte Carlo
methods, which can handle high-dimensional parameter spaces and more general settings with reduced smoothness.
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A recent analysis of such an approach for a Helmholtz transmission problem, with point evaluations as quantitites of
interest, was presented in [19]. The Helmholtz equation is recovered when two-dimensional versions of our model
problem are considered. However, we quantify uncertainties in scattering parameters, which are more regular. The
last class of methods that are mentioned here are perturbation methods [20,21]. A perturbation approach can lead to
very efficient numerical methods, but is also not considered here, because the uncertainty in the input parameters of
our models can be quite large.

The present study was motivated by the fact that the computational cost of constructing a sparse surrogate model
can still be quite high for various applications. In particular, even if sufficient smoothness is present to allow for
sparse approximation, achieving a reasonable error level in practical applications may require collocation grids with
many points. Hence, in this work, we improve a state-of-the-art adaptive stochastic collocation method, based on
dimension-adaptivity [10] and weighted Leja interpolation [11]. To this end, we combine conformal maps and adjoint
error estimation and correction. Conformal maps have been put forth in [22,23] for the acceleration of interpolation
and quadrature methods, but have not received much attention in the UQ context thus far. Adjoint error correction
in turn was considered in [24,25] in the context of Clenshaw Curtis collocation and the stochastic Galerkin method.
The combination of both methods in the context of uncertainty quantification has not been considered, to the best
of our knowledge. The resulting collocation scheme is able to address a moderately high number of random model
parameters. Moreover, weighted Leja nodes can handle almost arbitrary input probability distributions [11,26–30]
and are ideally suited for adaptivity [9]. In order to efficiently steer the adaptivity, we derive an adjoint representation
of the stochastic error. On the basis of this error formula, the convergence order is enhanced through extrapolation.
Finally, conformal maps offer the potential to further enhance the numerical accuracy by suitably transforming the
required region of holomorphy.

We consider Maxwell’s source problem as a model class that is relevant for a wide variety of applications. This
model problem is particularly important in computational nanoplasmonics. Plasmonic structures offer great potential
for subwavelength optics and optoelectronics [31] and have been intensively studied from both a fundamental and
an application point of view in recent years. With the aforementioned UQ methods, studying stochastic parameter
variations within the numerical simulation of plasmonic structures comes into reach. This is highly relevant, as rel-
atively large variabilities can be observed, see, e.g., [32]. Although, not considered in the present work, the inverse
UQ problem is also of high relevance, due to the intrinsic difficulty in measuring material dispersion properties. In-
stead, we focus on the propagation of uncertainties from the model inputs to the outputs. In particular, the proposed
framework allows one to compute moments, probability distributions, failure probabilities, and global sensitivities for
physical quantities of interest (QoIs). In similar physical settings, UQ studies have been conducted in recent works
[33–35], which however employ less advanced numerical methods. In [36], UQ for a silicon photonic device has been
addressed, considering a low-dimensional correlated random input parameter vector. Additionally, in comparison to
recent theoretical studies [2,37], we employ additional techniques for convergence acceleration and consider a more
complex numerical example.

The rest of this paper is structured as follows. In Section 2, we describe the numerical method for enhanced
surrogate modeling. In Section 3, we introduce Maxwell’s source problem, its finite element discretization, and its
parametrization. In Section 4, the developed method is used to conduct a UQ study for a nontrivial nanoplasmonics
application, namely, an optical grating coupler. In Section 5, we give some concluding remarks.

2. ENHANCED SURROGATE MODELING

In this section, we consider the general parametric problem of finding

u(y) ∈ V s.t., ay(u(y),v) = ly(v), ∀v ∈ V, (1)

whereV denotes a suitable Hilbert space andy ∈ Ξ ⊂ RN denotes the input parameter vector. Problem (1) may
represent the model of Section 3.2 or other parametrized differential equations with a continuous sesquilinear form
ay(·, ·) and a continuous (anti)linear formly(·). Note that boldface letters are used to indicate matrices and vectors.
Since the solutions governed by Maxwell’s equations are typically vector-valued, this convention is also used for
u andv in Eq. (1). We assume the mapu : Ξ → V to be well-defined and smooth, which is often the case for
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parametrized differential equations, see, e.g., [38] for elliptic problems and [1] for other types of PDEs. We are
interested in the model’s response, which may be the solutionu(y) itself or a bounded linear functionalJy(u(y)),
commonly referred to as the QoI. In this work, we focus on single-valued and complex QoIs, i.e.,Jy(u(y)) ∈ C. For
brevity of notation and due to the well-posedness of the system, we shall replaceJy(u(y)) with J(y), whereJ can
be understood as an abstract representation of the map from the input parameters to the QoI.

We now assume that the input parameters are given as independent random variables (RVs)Yn, n = 1, 2, . . . , N .
We introduce the random vectorY = (Y1, Y2, . . . , YN )>, defined on the probability space(Θ, Σ, P ), whereΘ
denotes the sample space,Σ the sigma-algebra of events, andP the probability measure, its image setΞ = Ξ1 ×
Ξ2 · · · × ΞN ⊂ RN and its probability density function (PDF)%(y) =

∏N
n=1 %n(yn), such thatY : Θ → Ξ and

% : Ξ → R+. Then, the parameter vector represents a realization of the random vector, i.e.,y = Y(θ) ∈ Ξ,
θ ∈ Θ. Assuming independence is necessary for the tensor-product constructions in the collocation method, however,
dependence could also be taken into account through a suitable transformation, for instance, Rosenblatt or Nataf
transformations [39,40]. In view of this transformation, we assume in this section that the image setΞ is given as the
hypercube[−1, 1]N , for simplicity.

Now, the QoI is itself a RV and we are interested in quantifying uncertainty, e.g., by computing its moments,
PDF, quantiles, etc. In the case where the QoI is smooth (ideally, analytic) with respect to the input RVs, spectral UQ
methods [41,42] may be employed. Then,J is particularly well-suited to be approximated by polynomials such that

J(y) ≈ J̃(y) =
M∑

m=0

smΨm(y), (2)

whereΨm : Ξ → R are multivariate polynomials andsm ∈ C the associated coefficients, and fast convergence can be
expected. Once an approximation in the form of Eq. (2) is available, it can be used as an inexpensive substitute of the
original computational model for sampling-based computations. Alternatively, some statistical information regarding
the QoI can be derived directly from the coefficients. In the context of the present work, we will use approximations
in the form of Eq. (2) based on sparse grid interpolation [6,8,9,11,43–47], which can be combined with a conformal
mapping.

2.1 Univariate Interpolation and Conformal Maps

We first discuss univariate interpolation in some detail, since it is also the key building block for the tensor product
constructions used in the multivariate case. In particular, we consider the univariate functionf : [−1, 1] → C

f(y) := J(y, 0, . . . , 0). (3)

We assume thatf is analytic on[−1, 1] and can be analytically extended ontoEr, whereEr refers to an open
Bernstein ellipse of sizer > 1, i.e., an ellipse in the complex plane with foci at± 1 and the semi-minor and
semi-major axes summing up tor, as illustrated in Fig. 1. Then, cf. [23] (Theorem 8.2), the error of the univariate
polynomial best approximationf∗M of degreeM can be estimated as follows:

‖f − f∗M‖∞ ≤ CBr−M

r − 1
, (4)
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FIG. 1: Bernstein ellipseEr of sizer = rM + rm
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where‖ · ‖∞ denotes the supremum-norm on[−1, 1] and the constantCB > 0 depends on the uniform bound of the
analytic continuation off in Er. We consider a polynomial interpolant

fM (y) :=
M∑

i=0

f(y(i))li(y), (5)

where{li}M
i=0 and{y(i)}M

i=0 denote univariate Lagrange polynomials and a set of distinct nodes, respectively. There
holds

‖f − fM‖∞ ≤ (1 + ∆M )‖f − f∗M‖∞ ≤ (1 + ∆M )
CBr−M

r − 1
, (6)

where

∆M := maxy∈[−1,1]

M∑

i=0

|li(y)|, (7)

denotes the Lebesgue constant. If∆M grows sub-exponentially, the polynomial interpolation converges uniformly
(for analytic functions). However, the convergence rate depends on the regularity of the analytic continuation off in
the complex plane. This is illustrated by considering the Runge function

fR(y; c) =
1

1 + cy2
, c ∈ R+, y ∈ [−1, 1], (8)

which is shown in Fig. 2(a), as a benchmark example. This function is analytic on[−1, 1], but the analytic continuation
has a complex conjugate pole pair aty = ± i(1/

√
c), limiting the size of the largest Bernstein ellipse, where the

functionfR is analytic. Figure 2(b) demonstrates the effect on the convergence rate, where for increasing constants
c, corresponding to a reduced size of the region of analyticity, a reduced convergence rate can be observed. The
plot shows the convergence of the polynomial interpolant associated to unweighted Leja points in the empirical
supremum-norm with a cross-validation sample of size1× 103.

Hale and Trefethen [48] have raised and discussed the question, whether polynomial methods are an optimal
choice for functions analytic in anε-neighborhood, in the context of numerical quadrature. Such a neighborhood is
depicted in Fig. 3 together with the largest Bernstein ellipse contained in its interior. They have pointed out that, in
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FIG. 2: (a) Runge functionfR(y; c) for differentc ∈ R+ andy ∈ [−1, 1] and (b) geometric convergence rates of Leja interpolants
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this case, superior methods to Gauss quadrature can be derived by conformally mapping the Bernstein ellipseEr

to a straighter regionΩr = g(Er), as illustrated in Fig. 4. As will be discussed in the following, this approach is
also beneficial for (polynomial) interpolation. In accordance with [48], we focus in this work on conformal mappings
g : Er → Ωr, which map the unit interval to itself, i.e., as follows:

g([−1, 1]) = [−1, 1], (9)

and also fulfill
g(± 1) = ± 1. (10)

This ensures that the transplanted interpolation nodes

{ŷ(i)}M
i=0 := {g(

y(i)
)}M

i=0
, (11)

are still real numbers contained in the considered image setΞn. There are various choices forg, see, e.g., [49];
however, in this work we focus on the sausage mapping proposed in [48]. It is defined by adth-order Maclaurin
expansion of the inverse sine function, which is then normalized such that (10) is fulfilled, as follows:

gS(y; d) =



b(d−1)/2c∑

i=0

(2i)!
4i(2i + 1)(i!)2



−1 b(d−1)/2c∑

i=0

(2i)!
4i(2i + 1)(i!)2

y2i+1. (12)

An alternative mapping, due to Kosloff and Tal-Ezer [50], is given by

gKTE(y; α) =
arcsin(αy)
arcsinα

, α ∈ (0, 1). (13)

It can be observed that the transplanted nodes are more evenly distributed, see Fig. 5.
We interpolate the transplanted knots{ŷ(i)} using mapped Lagrange polynomialsl̂i = li ◦ g−1, shown in

Fig. 6(a). Obviously, the mapped Lagrange polynomials also have the property

l̂j(ŷ(i)) = lj ◦ g−1(ŷ(i)) = lj(y(i)) = δij , (14)

whereδij denotes the Kronecker delta. Thus, the mapped interpolantf̂M is defined by

f̂M (y) =
M∑

i=0

f
(
ŷ(i)

)
l̂i(y). (15)
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To derive an error bound for the transplanted interpolation, we first introduce the functionh := f ◦ g. We assume
that h can be continued analytically toEr̂, where it is uniformly bounded. LethM be theM th-order polynomial
interpolant ofh on the original nodes{y(i)}M

i=0. We observe that the mapped interpolantf̂M is equivalent tohM ◦
g−1 as follows:

f̂M =
M∑

i=0

f
(
g
(
y(i)

))
li ◦ g−1 = hM ◦ g−1. (16)

Because of Eq. (9), we obtain

||f − f̂M ||∞ = ||(f − f̂M ) ◦ g ◦ g−1||∞ (17)

= ||(h− hM ) ◦ g−1||∞ (18)

= ||h− hM ||∞ (19)

≤ (1 + ∆M )||h− h∗M ||∞ (20)

≤ (1 + ∆M )
ĈBr̂−M

r̂ − 1
. (21)

The convergence rate is improved ifr̂ > r, which we confirm numerically in Fig. 6(b), where the ninth-order sausage
mapgS(y; 9) is employed. SincegS(y; 9)−1 is not known analytically, we approximate the inverse mapping by a
Chebyshev approximation of order 100 (up to machine precision).

If the region of analyticity is known, one can estimate the gain of employing a conformal mappinga priori
(based on the convergence estimates), as illustrated in Fig. 7(a). Let the size of the largest Bernstein ellipse in the
region of analyticity bermax and the size of the largest Bernstein ellipse, which is fully mapped into this region, be
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and (b) gain in convergence for different mappings
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r̂max. The convergence of polynomial interpolation is then given byO[
(1 + ∆M ) exp (− log(rmax)M)

]
according to

Eq. (6); whereas the mapped interpolation converges asO[
(1 + ∆M ) exp (− log(r̂max)M)

]
, see Eq. (21). Assuming

a sufficiently slowly growing Lebesgue constant∆M , we consider the relative improvement in the asymptotic rate of
geometric convergence (see [51], Definition 6), given by

G =
log r̂max

log rmax
− 1, (22)

which can be attributed to the use of conformal maps. We evaluate the gainG for functions that are analytic inε-
neighborhoods of[−1, 1], see Fig. 7(b), by numerically computingr̂max for different mappings. It should be noted that
higher gains can be expected, if mappings would be employed, which are specifically tailored to the positions of the
poles in the complex plane. However, usually the exact position of these poles is not knowna priori and this approach
is therefore not pursued any further. The interested reader is referred to [49]. In the remaining part of the paper, we
work with the ninth-th order sausage mappinggS(y; 9) since a detailed comparison of different mappings is not in
the scope of the present paper. The particular mapping is selected because it has already been established in [48,49],
and Fig. 7(b) confirms a significant gain in convergence for a substantial range ofε-neighborhoods. Additionally, in
contrast to the map (13), it does not introduce an artificial singularity.

2.2 Sparse Grid Interpolation

Approximations based on sparse grid interpolation are commonly referred to as sparse grid stochastic collocation
methods [6,8,46]. Those methods are based on combinations of univariate interpolation rules, defined by an interpo-
lation level`n ∈ N0, a monotonically increasing level-to-nodes functionmn : N0 → N, wheremn(`n) =: m`n and
mn(0) = 1 and a grid ofm`n (mapped) interpolation nodes

Z`n =
{

ŷ(in)
n

}m`n−1

in=0
. (23)

Introducing the multi-index̀ = (`1, `2, . . . , `N ) ∈ NN
0 , the tensor-product multivariate approximation is obtained as

follows:
J(y) ≈ J̃(y) =

∑

i:ŷ(i)∈Z`

J
(
ŷ(i)

)
L̂`,i(y), (24)

whereŷ(i) =
(
ŷ
(i1)
1 , ŷ

(i2)
2 , . . . , ŷ

(iN )
N

)
∈ Z` are multivariate interpolation nodes, uniquely identified by the multi-

indexi = (i1, i2, . . . , iN ) ∈ NN
0 , andZ` = Z`1 × Z`2 × · · · × Z`N

is the tensor grid of interpolation nodes.
Moreover,L̂`,i are mapped multivariate Lagrange polynomials, obtained by the compositionL̂`,i = L`,i ◦ g−1

with

L`,i(y) =
N∏

n=1

l`n,in(yn), (25)

where

l`n,in(yn) :=





m`n−1∏

k=0,k 6=in

yn − y
(k)
n

y
(in)
n − y

(k)
n

, `n 6= 0,

1, `n = 0.

Obviously, for the trivial mapping,g : y 7→ y, it holdsL̂`,i = L`,i. More details on the multivariate coordinatewise
conformal mappingg will be given in Section 2.2.1. It should be noted that (25) is used for the ease of exposition;
in the actual implementation, the barycentric representation should be used [52]. SinceJ(y) has to be evaluated for
eachy(i) ∈ Z`, the complexity of the tensor-product approach isO(

mN
k

)
, where

mk := maxnm`n
. (26)
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This complexity can be mitigated toO
(
mk(log mk)N−1

)
by employing Smolyak sparse grids [53], which typically

result in an acceptable trade-off between approximation accuracy and complexity. We introduce the approximation
levelk ∈ N0 and define the multi-index setΛk, such that

Λk := {` : |`| = `1 + `2 + · · ·+ `N ≤ k}. (27)

Then, the sparse grid of multivariate interpolation nodesZΛk
is constructed as follows:

ZΛk
=

⋃

k−N+1≤|`|≤k

Z`, (28)

and the interpolation is given by

IΛk
[J ](y) =

∑

i:ŷ(i)∈ZΛk

J
(
ŷ(i)

)
L̂`,i(y). (29)

2.2.1 Mapped Leja Nodes, Hierarchical Interpolation and Adaptivity

As shown in [43], Smolyak formulas are in general not interpolatory, unless based on nested sequences of univariate
interpolation nodes, such thatZ`n−1 ⊂ Z`n . Moreover, to ensure accuracy and fast convergence of the approximation,
the interpolation nodes should be chosen in agreement with the PDFs%n(yn). We opt for weighted Leja interpolation
nodes, as in [11]. Omitting conformal mappings for the moment, we consider a univariate, continuous, and positive
weight function. Here, this weight function is given by a univariate PDF%n(yn), %n : Ξn → R+. A sequence of
univariate Leja nodesy(k)

n ∈ Ξn, k = 0, 1, 2, . . . , can be constructed by solving the optimization problem

y(K)
n = arg max

yn∈Ξn

√
%n(yn)

K−1∏

k=0

∣∣∣yn − y(k)
n

∣∣∣, (30)

where the starting nodey(0)
n is arbitrarily chosen. For further details on the construction of weighted Leja nodes and

an analysis of their properties, see [11]. We justify the choice of Leja nodes as follows. First of all, Leja nodes satisfy
the nestedness requirement by construction. Second, they allow complete freedom in the choice of the level-to-nodes
functionmn(`n). Finally, they can be tailored to any given PDF. In comparison, the commonly employed Clenshaw-
Curtis nodes would restrict us to the rapidly growing level-to-nodes functionmn(`n) = 2`n + 1. In the following,
we employ the level-to-nodes functionmn(`n) = `n + 1, `n ∈ N0, and denote withy(`n)

n the single extra node
corresponding to interpolation level`n, i.e.,y(`n)

n = Z`n \ Z`n−1. We also introduce for each parameter a conformal
mapgn, as discussed in Section 2.1. Then, the mapped univariate Leja nodesŷ

(k)
n are obtained aŝy(k)

n = gn(y(k)
n ). Of

course, for the trivial mapgn : yn 7→ yn we recover the original Leja nodesŷ
(k)
n = y

(k)
n . The multivariate mapping is

then obtained as follows:
g(y) = g1(y1) · · · gN (yN ). (31)

We note that the multivariate mappingg is conformal in each coordinateyn.
In the multivariate case, nested grids of multivariate interpolation nodes can be constructed by enforcing the use

of downward-closed (also, monotone or lower) multi-index sets [9,10]. Such sets are known to preserve the telescopic
properties of the series in Eq. (29) [10]. Moreover, sequences of nested, downward-closed multi-index sets result in
polynomial approximations of increasing accuracy [9]. Given a multi-index setΛ, let us first define its forward and
backward neighbor multi-index sets,Λ+ andΛ−, respectively, such that

Λ+ := {` + en, ∀` ∈ Λ, ∀n = 1, . . . , N}, (32a)

Λ− := {`− en, ∀` ∈ Λ, ∀n = 1, . . . , N : `n > 0}, (32b)

whereen is thenth unit vector. Then,Λ is said to be downward-closed if and only if
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Λ− ⊂ Λ. (33)

Assuming now a multi-index̀ /∈ Λ such thatΛ ∪ ` is downward-closed, it holds thatZΛ ⊂ ZΛ∪` and

ŷ(`) = ZΛ∪` \ ZΛ, (34)

where
ZΛ =

⋃

`∈Λ

Z`. (35)

Then, Eq. (29) can be naturally transformed into the hierarchical interpolation

IΛ∪`[J ](y) = IΛ[J ](y) + s` Ĥ`(y), (36)

where the coefficientss` ∈ C, known as hierarchical surpluses, are given by

s` = J
(
ŷ(`)

)
− IΛ[J ]

(
ŷ(`)

)
, (37)

andĤ` are multivariate mapped hierarchical polynomials, defined as follows:

Ĥ`(y) =
N∏

n=1

ĥ`n(yn), (38)

where

ĥ`n(yn) :=





`n−1∏

k=0

g−1
n (yn)− y

(k)
n

y
(`n)
n − y

(k)
n

, `n 6= 0,

1, `n = 0.

Again, by choosinggn as the identity map, we recover standard hierarchical Lagrange polynomials.
The use of (mapped) hierarchical polynomials has the advantage that the basis functions do not change as new

nodes are added. Moreover, the hierarchical surplusess` can be interpreted as error indicators, quantifying the contri-
bution of the interpolation nodêy(`) to the already available approximation. This interpretation motivates the adaptive
construction of the sparse grid approximation based ona posteriorierror estimates. We consider a dimension-adaptive
scheme, similar to the ones employed in [9–11,45,47], with minor modifications to address the case of complex QoIs.
The scheme is presented in Algorithm 1. A detailed description follows.

Given a downward-closed multi-index setΛ, as well as the corresponding approximationIΛ[J ] and gridZΛ, we
define the set of admissible neighborsΛadm

+ , such that

Λadm
+ := {` ∈ Λ+ : ` /∈ Λ and {`}− ⊂ Λ}. (39)

Algorithm 1: Dimension-adaptive interpolation

Data: QoI J(y), conformal mapg, multi-index setΛ, budgetB
Result: sparse gridZΛ∪Λadm

+
, approximationIΛ∪Λadm

+
[J ]

repeat
Compute the admissible setΛadm

+ , as in Eq. (39).
Compute the hierarchical surplusess`, ∀` ∈ Λadm

+ , as in Eq. (37).
Find the multi-index̀ ∈ Λadm

+ with the maximum error indicator|s`|.
Compute the approximationIΛ∪`, as in Eq. (36).
SetΛ = Λ ∪ `.

until simulation budgetB is reached;
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ExpandingΛ with admissible multi-indices̀ ∈ Λadm
+ guarantees that (33) is satisfied, and we thus construct a

sequence of nested downward-closed sets [9]. In this work, the error indicator corresponding to each multi-index` ∈
Λadm

+ is chosen to be the modulus|s`| of the corresponding complex hierarchical surplus; however, other choices are
possible, e.g., max(|Re{s`}|, |Im{s`}|). We updateΛ with the multi-index̀ ∈ Λadm

+ corresponding to the maximum
error indicator|s`|. The grid of interpolation nodesZΛ and the approximationIΛ are updated accordingly. This
procedure is continued iteratively, until a budget of model evaluationsB is reached. This criterion can be formulated
as follows:

#ZΛ∪Λadm
+
≥ B, (40)

where# denotes the cardinality of a set. If an approximation is not readily available, then the algorithm is initiated
with Λ = {(0, 0, . . . , 0)}. After the termination of the algorithm, the approximation is constructed using the setΛ ∪
Λadm

+ .

2.3 Adjoint Error Estimation and Adaptivity

We aim to improve Algorithm 1 by using an adjoint error indicator to steer adaptivity. Adjoint error estimation is
well-established in the context of the finite element method (FEM); see [54] and the references therein. It has been
considered in a stochastic/parametric context [25,55,56], as well as for Clenshaw-Curtis adaptivity [24,47]. Because
of the exponential growth of Clenshaw-Curtis nodes, adjoint error estimation can result in a significant reduction of
computational cost. In this work, we demonstrate that adjoint techniques can be beneficial for Leja adaptivity, too.

In this section, we rely on the fact thatJ(y) = Jy(u(y)), Jy : V → C, is a linear functional with respect to
u(y). However, generalizations to nonlinear functionals are also possible, as in [57] (Chapter 3.2). We rewrite the
primal problem (1) as an operator equation:∀y ∈ Ξ, find u(y) ∈ V , such that

〈Lyu(y),v〉 = ay(u(y),v) = ly(v), ∀v ∈ V, (41)

whereLy : V → V ∗ denotes the primal operator andV ∗ the dual space toV . The dual problem is given as, for all
y ∈ Ξ, find z(y) ∈ V , such that

〈w, L∗yz(y)〉 = ay(w, z(y)) = Jy(w), ∀w ∈ V, (42)

whereL∗y : V → V ∗ denotes the adjoint operator defined by

〈Lyu,v〉 = 〈u, L∗yv〉, ∀u,v ∈ V, ∀y ∈ Ξ. (43)

The so-called primal-dual equivalence

Jy(u(y)) = 〈u(y), L∗yz(y)〉 = 〈Lyu(y), z(y)〉 = ly(z(y)), (44)

follows directly from these definitions. Given (mapped) polynomial approximationsũ, z̃ of the mappingsu, z : Ξ →
V , we are interested in the error

η(y) = Jy

(
u(y)− ũ(y)

)
= ay

(
u(y)− ũ(y), z(y)

)
= ly

(
z(y)

)− ay

(
ũ(y), z(y)

)
. (45)

Even ifũ, z̃ are replaced by their finite element counterparts, the error according to Eq. (45) is not readily computable,
as it would require the computation of the adjointz for all y ∈ Ξ. Following [25,55], we propose to use the error
indicator

η̃(y) = ay

(
u(y)− ũ(y), z̃(y)

)
= ly

(
z̃(y)

)− ay

(
ũ(y), z̃(y)

)
. (46)

By exploiting the continuity of the sesquilinear formay(·, ·), it can be shown that the error indicator (46) converges
faster than the mapped polynomial approximationsũ, z̃

|η(y)− η̃(y)| = |ay

(
u(y)− ũ(y), z(y)− z̃(y)

)| ≤ C‖u(y)− ũ(y)‖V ‖z(y)− z̃(y)‖V . (47)
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In particular, considering for the moment the univariate caseN = 1, for simplicity, and assuming thatu, z can be
extended analytically onto open Bernstein ellipsesEr̂u

, Er̂z
, respectively, and that there exist uniform bounds on their

extensions, then, we obtain

‖η− η̃‖∞ ≤ C1(1 + ∆M )2 C2(r̂ur̂z)−M

(1− r̂u)(1− r̂z)
, (48)

for M -point approximations of bothu andz. Hence, forr̂u = r̂z, η̃ exhibits twice the rate of geometric conver-
gence.

We proceed by discussing the necessary adaptations to Algorithm 1, in order to incorporate the adjoint er-
ror indicator (46). Additionally to the (mapped) polynomial approximation (36) of the single-valued and complex
QoI, one needs to create (mapped) polynomial approximationsũ(y), z̃(y) of the primal and dual solution. The ap-
proximations are constructed with the same multi-index setΛ as for the QoI, using the same mapped polynomials
Ĥ`(y).

Following [24], we carry out the algorithmic modifications in the dimension-adaptive scheme. While Algorithm 1
uses the error indicators|s`|, ∀` ∈ Λadm

+ , by solving the respective linear problem, we suggest the use of the adjoint-
based error indicators|s̃`|, wheres̃` = η̃

(
ŷ(`)

)
. As before, we choose the multi-index with the maximum error

indicator, solve the corresponding linear system, and update the approximations of the primal and the dual solution,
as well as of the QoI. This scheme is summarized in Algorithm 2. After the termination of the algorithm, the approx-
imation can be constructed with the setΛ ∪ Λadm

+ , such that the already computed adjoint-based error indicators are
used as the hierarchical surpluses corresponding to the admissible neighbors, i.e.,s` = s̃`, ∀` ∈ Λadm

+ . The error
indicator (46) can be further employed in order to improve the (mapped) polynomial surrogate model of the QoI. In
particular, one can replace the single-valued QoIJ(y) by

J̃(y) = IΛ[J ](y) + η̃(y), (49)

such that the computed mapped polynomial approximation is corrected by the adjoint-error indicator, before con-
tinuing with further approximation refinements using Algorithm 1. We emphasize that no additional linear equation
system has to be solved in order to evaluate (49).

3. MAXWELL’S SOURCE PROBLEM

In this section, we introduce the model problem, i.e., Maxwell’s source problem with periodic boundary conditions.
Such a model can be used, for instance, to describe the coupling into a plasmonic grating coupler, which will be
considered in Section 4. We also introduce the finite element (FE) approximation and a parametric version of the
model.

Algorithm 2: Adjoint error-based, dimension-adaptive interpolation
Data: g, Λ, B anday, ly, Jy as defined in Eqs. (41) and (42)
Result: sparse gridZΛ∪Λadm

+
, approximationIΛ∪Λadm

+
[J ]

repeat
Compute the admissible setΛadm

+ , as in Eq. (39).
Compute the error indicators|s̃`|, wheres̃` = η̃

(
y(`)

)
, ∀` ∈ Λadm

+ .
Find the multi-index̀ ∈ Λadm

+ with the maximum error indicator.
Compute the hierarchical surplusess`, u`, z` as in Eq. (37), by solving the linear problems for primal
and dual solution.
Compute the approximationIΛ∪`, as in Eq. (36), and the corresponding approximations of primal and
dual solution.
SetΛ = Λ ∪ `.

until stopping criterion fulfilled;
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3.1 Deterministic Problem

We start with the time-harmonic Maxwell’s equations

∇×E = −jωµH in D, (50a)

∇×H = Js + jωεE in D, (50b)

∇ · (εE) = ρ in D, (50c)

∇ · (µH) = 0 in D, (50d)

whereE denotes the electric field phasor,H the magnetic field phasor,Js the source current phasor,ρ the charge
density phasor,ω the angular frequency,ε the dispersive complex-valued permittivity,µ the permeability, andD
the computational domain to be specified. The permeabilityµ = µ0µr, whereµr andµ0 represent the relative and
vacuum permeability, respectively, is assumed to be nondispersive. In absence of charges and source currents, i.e.,
ρ = 0 andJs = 0, the so-called curl-curl equation reads as follows:

∇× (
µ−1

r ∇×E
)−ω2εµ0E = 0 in D, (51)

to be endowed with appropriate boundary conditions.
Given an infinitely periodic structure and a periodic excitation, the computational domainD can be confined to

a single unit cell of the periodic structure, based on Floquet’s Theorem ([58], Chapter 13). The unit cell is illustrated
in Fig. 8. Without loss of generality, we assume periodicity in thex andy directions; whereas,Γz+ andΓz− denote
the boundaries in the nonperiodic direction. AtΓz+ , the structure is excited by an incident plane wave

Einc = E0e
−jkinc·r, kinc =




kinc
x

kinc
y

kinc
z


 = −k0




sin θinc cosφinc

sinθinc sinφinc

cos θinc


, (52)

whereθinc, φinc are the angles of incidence andk0 = ω
√

µ0ε0 is the wavenumber in vacuum. It is worth noting that,
due to the oblique angles, the periodicity of the excitation differs from the geometrical periodicity of the structure.
According to Floquet’s theorem, we need to enforce periodic phase-shift boundary conditions onΓx+ ∪ Γx− and
onΓy+ ∪ Γy− , i.e.,

E|Γx+ = E|Γx− ejψx , ψx = −kinc
x dx, (53a)

E|Γy+ = E|Γy− ejψy , ψy = −kinc
y dy, (53b)

where the phase-shiftsψx, ψy depend only on the wavevectorkinc of the incident wave atΓz+ and on the dimensions
dx, dy of the unit cell.

x
y

z

φ

θ

dx
dy

Γz+

Γz−

Γy−

Γy+

FIG. 8: Sketch of a unit cell representing the computational domainD. The black arrow indicates the incident wavevectorkinc.
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To truncate the structure in the nonperiodic direction atΓz+ , we employ a Floquet absorbing boundary condition
[58] as derived in Appendix A. AtΓz− , a perfect electric conductor (PEC) boundary condition is applied to truncate
the structure; however, different boundary conditions are also possible, e.g., again a Floquet absorbing boundary
condition or perfectly matched layers (PMLs) [58]. In summary, we are concerned with the boundary value problem

∇× (
µ−1

r ∇×E
)−ω2εµ0E = 0 in D, (54a)

E|Γx+ e−jψx = E|Γx− on Γx+ ∪ Γx− , (54b)

E|Γy+ e−jψy = E|Γy− on Γy+ ∪ Γy− , (54c)

n×E = 0 on Γz− , (54d)

n×H + G(E) = F inc on Γz+ , (54e)

whereG(E) andF inc are derived and defined in Appendix A, see Eqs. (A.10)–(A.12).

3.1.1 Weak Formulation and Discretization

To simplify the notation, we introduce the traces

uT := (nΓ × u|Γ)× nΓ, (55a)

ut := nΓ × u|Γ, (55b)

whereΓ := ∂D denotes the boundary ofD andnΓ refers to its outer unit normal. Note that the trace operators are
denoted by subscripts, for brevity of notation.

By building the inner product of Eq. (54a) with tests functionE′ ∈ V , whereV is to be determined, and integra-
tion by parts, we obtain

(
µ−1

r ∇×E,∇×E′
)
D
−ω2µ0(εE,E′)D − jωµ0(Ht,E′T)Γ = 0. (56)

The boundary integral can be further simplified, i.e., the contributions onΓx+ , Γx− andΓy+ , Γy− cancel each other
due to the periodic phase-shift boundary conditions (54b) and (54c) of trial and test functions. We further eliminate
the portion of the integral onΓz− by demanding that the test functionsE′ fulfill the PEC boundary condition (54d).

The appropriate function spaceV for a weak formulation is a subspace ofH(curl;D), i.e., the (complex) vector
function space of square-integrable functions with square-integrable curl. For more details on function spaces in
the context of Maxwell’s source problem, the reader is referred to [59] (Chapter 3). To account for the boundary
conditions in Eq. (54), the function space is chosen as

V :=
{
v ∈ H(curl;D) : vT|Γz− = 0∧ vT|Γx+ = −vT|Γx− ejψx

∧ vT|Γy+ = −vT|Γy− ejψy ∧ vT|Γz+ ∈ (
L2(Γz+)

)3
}

,
(57)

where the conditionvT|Γz+ ∈ (
L2(Γz+)

)3
is required to obtain a well-defined boundary integral. Employing the

Floquet absorbing boundary condition (54e) onΓz+ yields the weak formulation: findE ∈ V s.t.
(
µ−1

r ∇×E,∇×E′
)
D
−ω2µ0(εE,E′)D + jωµ0(G(E),E′T)Γz+

= jωµ0
(F inc,E′T

)
Γz+

∀E′ ∈ V. (58)

To ensure a curl-conforming discretization of Eq. (58), we approximate the electric fieldE numerically as fol-
lows:

Eh(x) =
Nh∑

j=1

cjNj(x), (59)

whereNj denotes Ńed́elec basis functions of the first kind [59,60] and first- or second-order, defined on a tetrahedral
mesh of the domainD. Further details on the discretization are given in Appendix B.
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In practice, one is often interested in reflection and transmission coefficients, in addition to the field solutionE
itself. Therefore, we define the (complex-valued) scattering parameters as (affine-) linear functionals ofE

Sα,mn :=
(
ET −Einc

T , πT[Eα,mn]
)
Γz+

, (60)

whereα ∈ {TE, TM},m ∈ Z, n ∈ Z, andEα,mn are Floquet modes defined in Appendix A. The scattering parame-
ters are considered as QoIs, in the context of the present work.

3.2 Parametrized Model

In this section, we specify the material distribution of the complex permittivityε. In particular, we assume a linear
material behavior forε andµ insideD. Let the domainD be composed ofM nonoverlapping subdomainsDm, i.e.,
D =

⋃M
m=1 Dm. We further assume that the dispersive permittivityε(x,ω) is spatially piecewise constant on each

subdomainDm and depends smoothly on a given vector ofN parametersy ∈ Ξ ⊂ RN

ε(x,ω,y) =
M∑

m=1

εm(ω,y)1m(x,y), (61)

where

1m(x,y) =

{
1, x ∈ Dm(y),
0, x /∈ Dm(y).

On the one hand, the parameter vectory can be used to represent variations in the material parameters, e.g., different
permittivities, refractive indices, or extinction coefficients, by changing the coefficientsεm(ω,y). On the other hand,
it also represents geometric variations of the structure inside the unit cell, since the subdomainsDm(y) for each
material depend ony as well.

The parametrized weak formulation reads: findE(y) ∈ V s.t.

ay(E(y),E′) = l(E′) ∀E′ ∈ V, (62)

where

ay(E,E′) :=
(
µ−1

r ∇×E(y),∇×E′
)
D
−ω2µ0(ε(y)E(y),E′)D + jωµ0

(G(
E(y)

)
,E′T

)
Γz+

. (63)

The parameter-dependent scattering parameters are given as follows:

Sα,mn(y) =
(
ET(y)−Einc

T , πT[Eα,mn]
)
Γz+

, (64)

whereα ∈ {TE, TM}.
Remark1. Relating the model problem of scattering in periodic media to the UQ methodology of the previous section,
the linear functionalJy(·) is given by

Sα,mn(y) = (ET(y), πT[Eα,mn])Γz+︸ ︷︷ ︸
=Jy(E)

−(
Einc

T , πT[Eα,mn]
)
Γz+

,

whereα ∈ {TE, TM}. The strong formulation of the adjoint problem (42) reads

∇×
(

1
µ∗r
∇× z

)
−ω2µ0ε

∗z = 0 in D, (65a)

zT|Γx+ e−jψx = zT|Γx− on Γx+ ∪ Γx− , (65b)

zT|Γy+ e−jψy = zT|Γy− on Γy+ ∪ Γy− , (65c)

zt = 0 on Γz− , (65d)

ez ×
(

j

ωµ0
∇× z

)
+ G = F on Γz+ , (65e)
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whereG andF are defined in Appendix A.
IntroducingAdof as system matrix arising from the discretization of Eq. (58), the discrete primal problem is

given by
Adofcdof = fdof , (66)

as derived in Appendix B. Discretization of the adjoint problem (42) yields the discrete matrix equation

AH
dofzdof = Jdof, (67)

and the discrete version of the error indicator (46) reads

η̃h(y) = z̃H
dof(y)fdof(y)− z̃H

dof(y)Adof(y)c̃dof(y). (68)

Note that the dual solution can be obtained with negligible cost in many cases, e.g., if the primal problem is
solved with a sparse LU decompositionAdof = LU, for the respective dual problem, we obtain

AH
dof = (LU)H = UHLH. (69)

Remark2. To prove that Eq. (62) is well-posed and analytic with respect to the model parameters, which are the
main working assumptions of the paper, requires special care due to the presence of the general boundary operatorG.
Here we only refer to [59] (Chapter 4) and [61] (Section 5) for a numerical analysis of well-posedness in the deter-
ministic setting with simpler boundary conditions. Also, recently, shape holomorphy for Maxwell’s source problem
was established in [62], considering bi-Lipschitz shape transformations and holomorphic material parameters, which
are bounded away from zero. However, the analysis was, again, carried out with homogeneous Dirichlet boundary
conditions.

4. APPLICATION

We apply the enhanced surrogate modeling presented in Section 2 to a nontrivial benchmark application from
nanoplasmonics, namely, an optical grating coupler [32,63]. We report some details on modeling uncertainties in
material and geometric input data. We also describe how parametric variations are realized numerically and finally
quantify uncertainties in the computational model.

For general periodic structures, we must distinguish between two types of uncertainties. In this work, we focus
on global uncertainties, i.e., we assume that all unit cells are identically affected, modeling a systematic offset in the
fabrication process. We do not address local uncertainties leading to a violation of the periodicity and different unit
cells. Readers interested in the latter case are referred to [34] for a relevant study.

4.1 Numerical Model

The considered grating [32] couples power from an incident transverse magnetic (TM) polarized plane wave, such
that

πT
[
Einc

]
= πT[ETM,00], at Γz+ ,

with propagation directionθinc = 53◦, φinc = 0◦, directly into a metal-insulator-metal (MIM) plasmon mode, which
is illustrated in Fig. 9(a).

The structure’s design, shown in Fig. 9(b), is assumed to be periodic in thex direction and infinitely extended
in they direction. The reflection coefficients (60) at the upper boundaryΓz+ correspond to the coupling efficiency
of the structure, such that larger reflection coefficients indicate a lower coupling efficiency. Therefore, the scattering
parameterS := STM,00 is considered as the QoI in the following. Note that we focus on the fundamental reflection
coefficientSTM,00 because, for this particular model, all other scattering parameters have negligible amplitudes.

We model the material properties based on measurement data for noble metals provided by Johnson and Christy
[64] and presented in Table 1. We focus on the frequency range offmin = 400THz tofmax = 430THz (see Fig. 10).
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FIG. 9: An optical grating coupler [32] couples power from an incident plane wave in free space directly into a MIM plasmon
mode, propagating in horizontal direction: (a) illustration of the magnitude of the electric field at a specific (arbitrary chosen) point
in time and (b) shows the design of the considered grating coupler. Note that the structure is periodically extended in the horizontal
direction; only two unit cells are shown.

TABLE 1: Material data, based on the results of [64]

Index Energy Frequency Refractive Extinction Refractive Extinction
i (eV) fi (THz) index nAu

i coefficientκAu
i index nAg

i coefficientκAg
i

0 1.64 396.55 0.14± 0.02 4.542± 0.015 0.03± 0.02 5.242± 0.015
1 1.76 425.57 0.13± 0.02 4.103± 0.010 0.04± 0.02 4.838± 0.010
2 1.88 454.58 0.14± 0.02 3.697± 0.007 0.05± 0.02 4.483± 0.007
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FIG. 10: Dispersive optical constants of gold and silver [64]. The black vertical lines define the considered frequency range.

The data are experimentally determined by reflectivity studies and therefore given in terms of the refractive indicesn
and the extinction coefficientsκ for gold and silver, respectively. From those, one obtains the complex permittivity as
in [65] (Chapter 1.1), i.e.,
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ε =
(
n2 − κ2 − j(2nκ)

)
ε0. (70)

We interpolate the given materialβα
i data as follows:

βα(ω) =
2∑

i=0

βα
i li(ω), (71)

whereα ∈ {Au, Ag}, β ∈ {n, κ}. Also,

li(ω) =
2∏

j=0,j 6=i

ω−ωj

ωi −ωj
, ωi = 2πfi, (72)

are second-order Lagrange polynomials andfi, nAu
i , κAu

i , nAg
i , κ

Ag
i , andi = 0, 1, 2 are given.

We proceed with the description of the deterministic numerical model, as well as its parametrization. The periodic
mesh for the nominal design is created usingGMSH [66]. Since, for this particular structure, only the fundamental
Floquet modes propagate and all higher order modes are attenuated to a negligible amplitude atΓz+ , we can use the
first-order Floquet boundary condition (A.12). We useFENICS [67] as the FE library to assemble the FE matrixA
and right-hand side (rhs)f [see Eq. (B.1)], as well as the linear functionalJdof used for the numerical approximation
of the scattering parameter

STM,00 =
(
ET −Einc

T , πT[ETM,00]
)
Γz+

≈ JH
dofcdof − 1.

SinceFENICS 2017.2.0is not able to deal with complex numbers, we assemble the real and the imaginary parts
of the matrix and the vectors separately. We then useNUMPY and SCIPY to impose the quasi-periodic boundary
conditions (53a) and (53b) and solve the resulting linear system (B.1) with a sparse LU decomposition. Using second-
order Ńed́elec elements of the first kind, we end up with 56,200 degrees of freedom (DoF)s and achieve an accuracy of
≈ 10−3 in the scattering parameter. The reference solutions for different frequency sample points are computed with
a commercial software [68] employing an adaptively refined mesh of higher order curved elements. Since a sparse LU
decomposition is used to solve the resulting linear system, the adjoint solutionzdof is obtained with negligible costs.

To incorporate changes in the geometry parameters without the need to remesh, a design element approach is ap-
plied [69]. We describe all (material) interfaces, illustrated in Fig. 11, using nonuniform rational B-splines (NURBS)
[70]. Each NURBS curve

Ci(ξ;y) =
n∑

j=0

Rj(ξ)Pj,i(y), ξ ∈ [0, 1], (73)

is a superposition of rational basis functionsRj(ξ) weighted by control pointsPj . We then define mappings

D1

D2

D3

D4

D5

(a)

Cu

Cl

ξ
η

T

(b) (c) (d)

FIG. 11: (a) Design elements, (b) mapping from unit square, (c) initial mesh (coarse for illustration) for nominal designynominal,
and (d) deformed mesh forR = 40nm andt1 = 20nm
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Tm(ξ, η;y) = ηCm,u(ξ;y) + (1− η)Cm,l(ξ;y), m = 1, . . . ,M (74)

from the unit square[0≤ ξ ≤ 1]× [0≤ η ≤ 1] to each design elementDi(y) (see Fig. 11). Thereby, the subscripts u
and l refer to the upper and lower NURBS curve of the design element, respectively. Given the initial mesh, for each
mesh node the respective coordinates on the unit square are found by solving a nonlinear root-finding problem. We
can then deform the mesh by moving the mesh nodes to the new coordinates obtained by evaluating the mapping (74)
for different geometry parametersy.

We consider a fixed frequencyω = 2π(414THz) andN = 17 random input parametersY. These are the
five geometrical parameters presented in Table 2 and the 12 material parameters given in Table 1. As introduced in
Section 3, both the uncertain geometry and the uncertain material coefficients are modeled by an uncertain complex
permittivity ε(x,y); see Eq. (61).

We assume that the RVsYn, n = 1, 2, . . . , N = 17, are independent and distributed in the ranges defined
by their nominal values and variations. The variations of the material parameters are chosen according to the error
estimate provided by Johnson and Christy [64] “based on the instrumental accuracy of the reflection and transmission
measurements.” Since no further information on the distributions of those measurement uncertainties are specified, the
given error estimate is assumed to correspond to a2σ interval. For the geometrical parameters, only small variations
in the range of± 1.5 nm are considered (with a2σ interval of± 1 nm).

We opt for beta distributions, which have bounded support and can approximate normal distributions for suitable
choices of their shape parameters (see Appendix B in [42]). The shape parameters are chosen based on the results of
a series of Kolmogorov-Smirnov fitting tests [71].

4.1.1 Numerical Results

To illustrate the benefits of using the adjoint error indicator presented in Section 2.3, we consider here only the
thickness of the upper gold layert1 and the thickness of the dielectric layert2 as input parameters. We have observed,
numerically, that the QoI is particularly sensitive with respect to these parameters, with slow associated univariate
convergence rates. Figure 12(a) shows the S-parameter with respect to small variations of these two parameters.
We construct (mapped) adaptive Leja approximations using Algorithm 1 and the adjoint-based Algorithm 2. The
accuracy of the surrogate models is measured using a cross-validation set ofN cv = 1× 103 parameter realizations
S(i) := S(y(i)), i = 1, . . . , N cv, drawn according to the underlying PDF, which is used to compute a discrete
approximation of theL1

% error

E[|S − S̃|] ≈ 1
N cv

Ncv∑

i=1

|S(i) − S̃(i)|. (75)

The error (75) is computed for the mapped and adjoint-based approximation, as well as for nonmapped and/or
nonadjoint-based variants, for increasing numbers of model evaluations. The corresponding results are shown in
Fig. 12(b). The plot numerically confirms (47) and shows the doubled convergence order of the adjoint-error indica-
tor. Additionally, it can already be observed that employing the conformal sausage mapgS(·; 9), defined in Eq. (12),
yields to a significant improvement of both convergence orders in the considered setting.

Next, we consider allN = 17 input parameters and construct different polynomial approximations. As a ref-
erence, we compute two nonadaptive approximations, based on generalized polynomial chaos (gPC) [7] and on

TABLE 2: Uncertain geometrical parameters

Parameter Nominal value (nm) Variation (nm)
Grating radius,R 60 ± 1.5

Gold layer thickness,t1 12 ± 1.5
Alumina layer thickness,t2 14 ± 1.5

Silver layer thickness,t3 5 ± 1.5
Grating depth,T 20 ± 1.5
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FIG. 12: Considering a two-dimensional parameter space and a fixed frequency of 414 THz. (a) Reflection coefficient|S| and (b)
improved convergence of (mapped) Leja approximations by employing an adjoint-error indicator

isotropic Smolyak sparse-grid interpolation [72]. These are compared to the proposed enhanced surrogate model-
ing, i.e., (mapped) Leja adaptive approximations, using both Algorithm 1 and the adjoint-based Algorithm 2 for
the latter. Chaospy [73] is used for the gPC case, the Sparse-Grid-MATLAB-Kit [72] is employed for the Smolyak
sparse-grid interpolation, while an in-house code was developed for both Leja adaptive algorithms [74]. We compare
the resulting surrogate models with respect to accuracy and computational costs.

The computational costs refer to the number of model evaluations needed for the construction of the approxima-
tion. Although straightforward for the gPC, Smolyak sparse-grid, and the Leja adaptive Algorithm 1, the estimation of
costs is more involved in the case of the adjoint-based Algorithm 2. First, in order to evaluate the duality-based error
indicator (68) at a candidate point, it is sufficient to evaluate a residual of Eq. (62). Therefore, we distinguish between
residual evaluations and solver calls, where in most cases the costs to evaluate the residuals are almost negligible
compared to the solver costs, i.e., assembly and sparse LU decomposition of the system matricesAdof(y). Second,
the additional costs for computing the dual solutionz by forward and backward substitution can also be neglected in
most cases, since the primal problem is solved with a sparse LU decomposition.

As before, the accuracy of the surrogate models is measured using a cross-validation set ofN cv = 1 × 103

parameter realizationsS(i) := S(y(i)), i = 1, . . . , N cv, drawn according to the underlying PDF. In addition to
Eq. (75), we also consider the maximum error over all sample points

maxi=1,...,N cv|S(i) − S̃(i)|. (76)

All accuracy and cost results are presented in Table 3. First, a gPC approximation with a second-order total-
degree polynomial basis, i.e., 171 Jacobi polynomials, is constructed. The polynomial coefficients are computed with
a sparse second-order Gauss quadrature formula, resulting in 613 quadrature nodes, accordingly, model evaluations.
Second, we employ interpolation on an isotropic Smolyak sparse-grid of level 2 based on Clenshaw Curtis nodes,
which requires 613 model evaluations as well. Accordingly, we set a budgetB = 613for the classical, i.e., without
adjoints or conformal maps, Leja adaptive Algorithm 1, such that its costs are identical to the gPC and the Smolyak
sparse-grid interpolation. As can be seen in Table 3, the Leja adaptive approximation is about one order of magnitude
more accurate than the gPC and also significantly better than the isotropic sparse-grid interpolation.

Next, we use again Algorithm 1 but employ conformal maps. In particular, we refer with iso-mapped to applying
the conformal sausage mapgS(·; 9) for all parameters while aniso-mapped refers to the application of the conformal
map only to the parameterst1, t2, T (parameters with a particularly slow univariate convergence rate). It can be ob-
served that both approaches yield a similar improvement in terms of accuracy, without (relevant) extra computational
cost.
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TABLE 3: Accuracy and computational cost of different polynomial approximations for 17 input RVs. #LU refers
to the dominating costs for the assembly and sparse LU decomposition of the system matrices. #FB and #Res denote
the number of forward-backward substitutions and residual evaluations, respectively

#LU #FB #Res Max. Error (75) Mean Error (74)

Total-degree gPC (without maps) 613 613 0 7.61× 10−1 1.92× 10−1

Level 2 Smolyak sparse-grid (without maps) 613 613 0 1.73× 10−1 4.45× 10−2

Ad. Leja (without adjoints/maps) 613 613 0 8.56× 10−2 5.53× 10−3

Ad. iso-mapped Leja (without adjoints) 613 613 0 3.59× 10−2 4.10× 10−3

Ad. aniso-mapped Leja (without adjoints) 613 613 0 3.85× 10−2 4.15× 10−3

Ad. Leja (with adjoints; without maps) 558 1116 613 8.46× 10−2 5.49× 10−3

Ad. iso-mapped Leja (with adjoints) 563 1126 613 3.57× 10−2 4.09× 10−3

Ad. aniso-mapped Leja (with adjoints) 563 1126 613 3.82× 10−2 4.15× 10−3

Ad. aniso-mapped Leja (with adjoints and
error correction)

3 × 103 6× 103 3× 104 1.25× 10−3 1.20× 10−4

For the adjoint-based Algorithm 2, we then compute approximations using again 613 (mapped) polynomials,
resulting in errors almost identical to the nonadjoint case. However, since the costs can be predominantly attributed to
the≈ 560solver calls, the costs are reduced. Note that greater (relative) gains can be observed in different settings,
e.g., when a smaller computational budget is used or less parameter anisotropy is present in the considered model. In
particular, as a numerical test case, we increased material uncertainties by one-third and reduced geometric variations
to the range of± 0.25nm. In that case, the respective computational cost was reduced by> 50%.

The convergence of the mean error (75) with respect to function calls (corresponding to the number of LU
decompositions) of the investigated spectral methods is additionally shown in Fig. 13. Isotropic gPC does not seem
to show a proper convergence. However, it should be noted that we were only able to compute approximations up
to order 3 due to the larger number of parameters and hence, the error decay is probably pre-asymptotic. Additional
convergence results supporting this hypothesis are reported in Appendix C. It can be concluded that the nonadaptive
gPC reference solution achieves a very poor accuracy with the given computational budget. All considered dimension-
adaptive schemes greatly outperform the isotropic approaches. In accordance with the results in Table 3, Fig. 13
illustrates that the application of the conformal map leads to improvements compared to the classical Leja algorithm;
whereas in this setting, there is a negligible difference between the iso-mapped and aniso-mapped approaches. It
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FIG. 13: Convergence study for the single frequency setting. The adaptive schemes clearly outperform the isotropic approach.
Note that the dashed lines correspond to the error of improved surrogate models, which require the evaluation of FE residuals at
each cross-validation point.
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should be noted that, in contrast to Table 3, the dashed lines in Fig. 13 correspond to the error of the respective
adjoint-based error indicator (68). Therefore, they do not correspond to (mapped) polynomial surrogate models but
require the evaluation of a residual of (62) at each cross-validation sample pointy(i), i = 1, . . . , N cv.

Finally, as shown in the last row of Table 3, we compute a very accurate surrogate model, by using the adjoint-
based Algorithm 2 with a computational budget of 3× 103 LU decomposition. The adjoint-based approximation is
then refined by employing (49) until 3× 104 polynomials are used, further reducing the error by more than one-order
of magnitude. It shall be highlighted that the adjoint-based approach results in tremendous computational savings
compared to the classical Leja Algorithm 1 since 27× 103 full model evaluations could be avoided in this particular
setting.

As often pointed out in the literature (see, e.g., [24]), it is inefficient to reduce the stochastic error below the
discretization error. Therefore, the stochastic approximation is not further refined and the most accurate surrogate
model (Table 3, last row) is in Section 4.1.2 used to compute statistical measures of the absolute value of the scattering
parameter|S|.

4.1.2 Postprocessing the Surrogate Model

Since the (mapped) polynomial surrogate modelS̃(y) can be evaluated inexpensively, we employ a Monte Carlo-
based approach by evaluating the surrogate model on a large number ofNMC parameter sample points, drawn from
the joint PDF%(y). We then use the sample evaluations to estimate statistical moments of|S|, its PDF, failure
probabilities based on specific design criteria, and its sensitivity with respect to the input parameters.

The expected valueE[|S|] and the varianceV[|S|] are estimated as follows:

E[|S|] =
∫

Ξ

|S(y)|%(y) dy ≈ 1
NMC

NMC∑

i=1

|S̃(i)| =: EMC[|S̃|], (77a)

V[|S|] =
∫

Ξ

(|S(y)| − E[|S|])2
%(y) dy ≈ 1

NMC − 1

NMC∑

i=1

(
|S̃(i)| − EMC[|S̃|]

)2
. (77b)

We estimate the failure probabilityF = P (|S| ≥ 1− α) as follows:

F = P (|S| ≥ 1− α) =
∫

Ξ

IF (S(y))%(y) dy ≈ 1
NMC

NMC∑

i=1

IF
(
S̃(i)

)
, (78)

where%S denotes the PDF of|S| andIF denotes the indicator function

IF (S) =

{
1, |S| ∈ [1− α, 1],
0, |S| ∈ [0, 1− α).

(79)

Monte Carlo sampling in combination with surrogate modeling is used for simplicity here. However, it should be
noted that equality in (78) forN cv →∞ cannot be guaranteed, in general; see [75] for counterexamples and possible
extensions.

The PDF%S of |S| is estimated by employing a kernel density estimator

%S ≈ %̃T :=
1

hNMC

NMC∑

i=1

K

(
T − |S̃(i)|

h

)
, (80)

with NMC = 107 samples, bandwidthh = 10−3, and the Epanechnikov kernel [76]

K(T ) :=





3
4

(
1− T 2

)
, T ∈ [−1, 1],

0, else.
(81)
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The estimated expected values, standard deviations
√
V, and failure probabilities for an increasing sample sizeNMC

andα = 0.1 are given in Table 4. The estimated PDF%̃S is shown in Fig. 14(a).
Sensitivity analysis is based on an analysis of variances (ANOVA) [77]. The related metrics are commonly

known as Sobol indices, where we will focus on the so-called main-effect (first-order) and total-effect (total order)
indices, defined in [78]. In the context of the present work, estimations of the Sobol indices for the magnitude of the
scattering parameter shall be based on sampling of the (mapped) polynomial approximationS̃ : Ξ → C. We use
Saltelli’s algorithm [79] withN sens = 105 sample points, resulting in2(17 + 1)105 = 3.6× 106 surrogate model
evaluations. The main-effect and total-effect Sobol indices for each parameter are given in Fig. 14(b). The thickness
of the dielectric layert2, the thickness of the upper gold layert1, the grating depthT , and the refractive index of
the upper gold layernAu

1 are identified as the most sensitive parameters. Moreover, since the sum of all main-effect
sensitivity indices is∼ 33%, the remaining 67% indicates higher order interactions, and thus strong coupling among
the input parameters.

It is found that the considered model is highly sensitive to small geometrical variations. In particular, while
geometrical variations in a range of only± 1.5 nm are considered, their impact is significantly higher than the one
attributed to material uncertainty, which was modeled based on the measurement error provided by [64].

5. CONCLUSION

In this work, we presented an efficient method to quantify uncertainties in the Maxwell source problem, assuming a
moderately large number of input RVs. Dimension adaptivity in combination with adjoint error correction and con-
formal maps is confirmed to be a promising technique to delay the curse of dimensionality. For the considered FE
model from nanoplasmonics, the comparison of the proposed adaptive algorithm with total degree gPC and isotropic
Smolyak sparse grids shows significant gains in both accuracy and computational costs. In particular, with the adap-
tive scheme we were able to consider up to 17 parameters and achieve an accuracy of≈ 10−3 with a few thousand
numerical solutions of the deterministic model. To consider wider frequency ranges with possible poles in combina-
tion with large geometric uncertainties, a combination of polynomial and rational approximations is a topic of future
research.

TABLE 4: Expectation, standard deviation, and failure probability,
i.e.,F = P (|S| ≥ 1 − α) for α = 0.1; surrogate-based Monte
Carlo estimation usingNMC sample points

NMC E
√
V F (%)

103 0.7595 0.0661 2.20

104 0.7605 0.0658 1.85

105 0.7606 0.0660 2.04

106 0.7607 0.0660 2.07

107 0.7607 0.0660 2.06
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FIG. 14: PDF, expectation, standard deviation, failure probability, and Sobol indices for 17 beta-distributed input parameters: (a)
estimated PDF of scattering parameter, failure probability is highlighted and (b) Sobol indices computed with105 sample points
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For the considered optical grating coupler, according to Sobol-sensitivity measures, geometrical parameters have
been found to be the dominant source of input uncertainty. Although the modeling of their probability distributions
could not be based on measurement data yet, this conclusion is substantiated by the very conservative choice of
geometrical standard deviations.
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the Deutsche Forschungsgemeinschaft [(DFG) German Research Foundation] Grant No. RO4937/1-1. The work of
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APPENDIX A. FLOQUET BOUNDARY CONDITION

To truncate the structure in the nonperiodic direction atΓz+ , a Floquet absorbing boundary condition can be derived
by splitting the electric field in the unbounded regionz ≥ z+, where we assume vacuum permittivityε0 and vacuum
permeabilityµ0, as follows:

E = Einc + Esc, (A.1)

whereEinc andEsc represent the known incident field and the unknown scattered field, respectively. As derived in
[80] (Chapter 3) and [81] (Chapter 12.2.1), the scattered fieldEsc can be represented as an infinite series of Floquet
modes

Esc =
∑

m,n∈Z
α∈{TE, TM}

cα,mnEα,mne−jκmn(z−z+), (A.2)

where

ETE,mn :=
e−j(kxmx+kyny)(kynex − kxmey)

√
dxdy

√
k2

xm + k2
yn

,

ETM,mn :=
e−j(kxmx+kyny)

(
kxmex + kyney − ((k2

xm + k2
yn)/κmn)ez

)
√

dxdy

√
k2

xm + k2
yn

,

with

kxm := kinc
x +

2πm

dx
, kyn := kinc

y +
2πn

dy
, κmn :=

√
k2

0 − k2
xm − k2

yn. (A.3)

Thereby, we distinguish between transverse electric (TE) modesETE,mn and TM modesETM,mn, fulfilling E ⊥ ez

andH ⊥ ez, respectively. There exists only a finite number of propagating modes, i.e.,κmn ∈ R, depending on the
wavenumberk0, the angles of incidenceθinc, φinc, and the dimensionsdx, dy of the unit cell.

We introduce the operatorsπt[u] := ez × u andπT[u] := (ez × u)× ez such that

πt

[
Hα,mne−jκmn(z−z+)

]
= πt

[
j

ωµ
∇×

(
Eα,mne−jκmn(z−z+)

)]
= −Yα,mnπT

[
Eα,mne−jκmn(z−z+)

]
, (A.4)

with

Yα,mn :=





κmn

ωµ
for α = TE,

ωε

κmn
for α = TM.
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The incident plane waveEinc corresponds to the lowest order Floquet modesEα,00 with modal admittanceY inc

πt
[
Hinc

]
= Y incπT

[
Einc

]
, Y inc :=





√
ε cos(θinc)√

µ
for α = TE,

√
ε√

µ cos(θinc)
for α = TM.

(A.5)

By taking the cross product of the curl of (A.1) withez, the magnetic field above the structure is expressed as follows:

πt[H] +
∑

m,n∈Z
α∈{TE, TM}

c̃α,mnYα,mnπT[Eα,mne−jκmn(z−z+)] = 2Y incπT
[
Einc

]
. (A.6)

For anyu,v ∈ (
L2(Γz+)

)3
, the space of square-integrable complex vector functions onΓz+ , we introduce the inner

product

(u,v)Γz+ :=
∫

Γz+

u · v∗ dx, (A.7)

where the superscript∗ denotes complex conjugation. Because of the orthogonality of the modal basis, i.e.,

(πT[ETE,mn], πT[ETE,ij ])Γz+
= δmiδnj , (A.8a)

(πT[ETM,mn], πT[ETM,ij ])Γz+
= δmiδnj , (A.8b)

(πT[ETE,mn], πT[ETM,ij ])Γz+
= 0, (A.8c)

whereδ denotes the Kronecker delta, the unknown coefficientsc̃α,mn ∈ C of the modal expansion (A.6) can be
obtained as follows:

c̃α,mn = (πT[E], πT[Eα,mn])Γz+
=

(
πT

[
Einc

]
, πT[Eα,mn]

)
Γz+

+ (πT[Esc], πT[Eα,mn])Γz+︸ ︷︷ ︸
=cα,mn

. (A.9)

Equation (A.6) represents the boundary condition to be imposed onΓz+ . In practice, the infinite sum of Floquet
modes is truncated to−mmax≤ m ≤ mmax,−nmax≤ n ≤ nmax.

In that case, we obtain a boundary condition in the form of Eq. (54e) with

F inc = 2Y incπT
[
Einc

]
, (A.10)

G(E) =
∑

|m|≤mmax
|n|≤nmax

α∈{TE, TM}

c̃α,mnYα,mnπT[Eα,mn]. (A.11)

Further simplifications are possible if the dimensions of the unit cell are small enough, such that only the fundamental
modesEα,00 propagate, and the boundaryΓz+ is placed sufficiently far away from the structure, such that all higher
order modes are attenuated to a negligible amplitude. In this case, the fundamental mode is of particular interest and
we may omit all evanescent higher order modes in Eq. (A.11). In particular, we can employ the first-order absorbing
boundary condition [58] (Chapter 13.4.1), i.e., Eq. (54e) with

G(E) = − kinc
t

ωµkinc
z

(
kinc

t · πT[E]
)− kinc

z

ωµ
πT[E], (A.12)

wherekinc
t := πT[kinc].

The corresponding terms in the boundary conditions of the dual problem (65) are given as follows:
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F = − j

ωµ0
πT[Eα,mn], (A.13)

and either
G = −

∑
α,m,n

d̃∗α,mnY ∗
α,mnπT[Eα,mn], (A.14)

whered̃α,mn = (πT[Eα,mn], zT)Γz+ , if Eq. (A.11) is used for the primal problem, or

G =
kinc

t

ωµ0kinc
z

(
kinc

t · zT
)

+
kinc

z

ωµ0
zT, (A.15)

if lowest order Floquet boundary conditions (A.12) are employed in Eq. (54).

APPENDIX B. DETAILS ON FE DISCRETIZATION

The mesh is assumed to be periodic, i.e., the surface meshes onΓx+ andΓx− , as well as onΓy+ andΓy− , are
respectively identical. Without loss of generality, we further assume the vector of coefficientsc ∈ CNh to be ordered
such that the boundary conditions imposed in Eq. (57) can be expressed as follows:

c =




cinner

cΓz+

cΓz−

cΓx+

cΓx−

cΓy+

cΓy−

cΓx+∩Γy+

cΓx−∩Γy+

cΓx+∩Γy−

cΓx−∩Γy−




=




I 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 Ie−jψx 0 0
0 0 0 I 0
0 0 0 Ie−jψy 0
0 0 0 0 I
0 0 0 0 Ie−jψx

0 0 0 0 Ie−jψy

0 0 0 0 Ie−j(ψx+ψy)







cinner

cΓz+

cΓx+

cΓy+

cΓx+∩Γy+




= Pcdof,

where we have introduced the reduced vectorcdof =∈ CNDoF of NDoF < Nh DoFs andI denotes an identity matrix of
appropriate size [58] (Chapter 13.1.2).

Let A ∈ CNh×Nh andf ∈ CNh be the system matrix and right-hand side vector, which are obtained by using
Eq. (59) in Eq. (58), as well as Ńed́elec test functions. In the case of using the higher-order Floquet port boundary
condition, i.e., Eq. (54e) with Eq. (A.10), the boundary integrals lead to dense sub-blocks in the matrixA, whereas
Eq. (A.12) preserves the sparsity of the FE matrix. The quasi-periodic and PEC boundary conditions (57) on ansatz
and test functions can be imposed conveniently using the matrixP ∈ CNh×NDoF, leading to the reduced system

Adofcdof = PHAPcdof = PHf = fdof, (B.1)

wherePH denotes the Hermitian transpose ofP. Functions spanned by the reduced DoF form a proper subspace of
Eq. (57).

APPENDIX C. CONVERGENCE STUDY OF GPC AND SPARSE-GRID PROJECTION

Since the computational cost for a proper convergence study in the 17-dimensional setting is too high, we are restricted
again to the two most sensitive parameters, i.e.,t1, t2, and repeat the gPC convergence study with sparse Gaussian
quadrature. Again, we use a random cross-validation sample of sizeNMC = 1×103 to compute the error (75). Results
are presented in Fig. C1. It can be observed that, similar to Fig. 13, the error slightly increases up to order3 before a
convergent behavior can indeed be observed.
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FIG. C1: Convergence study of a gPC approximation using pseudo-spectral projection and sparse Gauss quadrature
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