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We discuss multiscale methods for nonlinear problems by extending recently developed multiscale concepts for linear
problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions
for constructing macroscopic equations. These techniques are intended for problems without scale separation and high
contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis
functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method
(CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling
methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such
as averages of the solution on each continuum. This paper extends the linear concepts to local nonlinear problems.
The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local
problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches.
In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear
problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in
our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages
(constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the
coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow
problems, which are challenging because of convection-dominated nature of the concentration equation. The numerical
results show that we can achieve good accuracy using our new concepts for these complex problems.
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1. INTRODUCTION

As multiscale methods for linear equations are becoming more useful, their extension to difficult nonlinear problems
remains challenging. Many nonlinear problems have a multiscale nature due to spatial and temporal scales. For
example, the dynamics of multi-phase flow and transport in heterogeneous media varies over multiple space and time
scales. In the past, many well-known linear and nonlinear upscaling tools have been developed [e.g., Abdulle and Bai
(2013); Allaire and Brizzi (2005); Arbogast (2002); Arbogast et al. (2007a,b); Brown and Peterseim (2016); Chung
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and Leung (2013); Chung et al. (2014a,c,d, 2017a,b); Drohmann et al. (2012); E and Engquist (2003); Efendiev
and Wu (2010); Efendiev et al. (2013); Fish and Chen (2004); Fish and Fan (2008); Fish et al. (1997); Henning
and Ohlberger (2009); Matache and Schwab (2002); Oskay and Fish (2007); Owhadi and Zhang (2007); Peszyńska
et al. (2002); Yuan and Fish (2009)]. Single-phase upscaling methods include permeability upscaling (Chen et al.,
2003; Durlofsky, 1991; Holden and Nielsen, 2000; Wu et al., 2002) and many multiscale techniques (Allaire and
Brizzi, 2005; Arbogast et al., 2007a; Chung et al., 2014d; Efendiev et al., 2013; Henning and Ohlberger, 2009;
Matache and Schwab, 2002; Owhadi and Zhang, 2007). Nonlinear upscaling methods, [known as pseudo-relative
permeability approach Barker and Thibeau (1997); Chen et al. (2003); Kyte and Berry (1975)], compute nonlinear
relative permeability functions based on single cell two-phase flow computations. These nonlinear approaches lack
robustness and are process dependent Efendiev and Durlofsky (2002, 2003). To overcome these difficulties, a better
understanding of nonlinear upscaling methods is needed.

Nonlinear upscaling methods can be traced back to nonlinear homogenization Efendiev and Pankov (2004);
Pankov (1997). The main idea of nonlinear homogenization is to formulate coarse-grid equations based on nonlinear
local problems formulated in each coarse block. Some examples include p-Laplacian, pseudo-elliptic equations, and
parabolic equations Efendiev and Pankov (2004). In these approaches, the local problems are solved with periodic
boundary conditions and some constraints on averages of the solutions of gradients. In nonperiodic cases, these
methods are extended by solving local problems in coarse block subject to some boundary conditions. Because of
nonlinearity, these local problems must be solved for all possible average values, which can make the computations
expensive. The upscaled fluxes on-the-fly can be computed by using the values at previous iteration or previous time.
These approaches are limited to problems without high contrast and scale separation. Our goal is to extend these
approaches to problems with high contrast and non-separable scales.The main novel components of our approach
is introducing multiple macroscopic variables for each coarse-grid block, formulating appropriate local constrained
problems that determine the downscaling map and formulating macroscopic equations.

In computational mechanics literature, much research is dedicated to nonlinear upscaling methods, which include
generalized continuum theories (Fafalis et al., 2012), computational continua framework (Fish and Kuznetsov, 2010),
and other approaches. Multiscale enrichment methods based on the partition of unity (Fish and Yuan, 2005, 2007)
combine the linear and nonlinear homogenization theory with the partition of unity method to handle the problems
with inseparable fine and coarse scales. Computational continua (Fafalis and Fish, 2018; Fish and Kuznetsov, 2010),
which use nonlocal quadrature to couple the coarse scale system stated on a unions of some disjoint computational unit
cells, are introduced for non-scale-separation heterogeneous media. Fish (2013) and Fish et al. (2012, 2015) further
enhance the method by combining the computational continua with model reduction technique. Originally, the com-
putational continua approaches were developed to overcome the limitations of higher-order homogenization models
and generalized continuum theories, namely, the need for higher-order finite element continuity, additional degrees of
freedom, and nonclassical boundary conditions. Though there are some similarities, our proposed approaches differ
from computational continua framework. Our approach explores the localization of high-contrast (with respect to the
coarse-mesh size) features by introducing additional degrees of freedom (continua) and using oversampled regions.
In the future, we plan to use some ingredients of computational continua approaches in improving our approach and
in making it more applicable to computational materials.

To design the new upscaled model, we use the concept of non-local multi-continuum (NLMC), which derives
from Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) Chung et al.
(2018a,c,d). CEM-GMsFEM identifies the degrees of freedom that cannot be localized and then constructs multiscale
basis functions with support in the oversampled regions. However, the degrees of freedom in CEM-GMsFEM, in
general, do not have physical meanings since they are coordinates in the multiscale space. In order to obtain an
upscaled model, we designed multiscale basis functions such that the degrees of freedom represent the average of the
solutions. As a result, the coarse-grid model is an equation for the solutions averaged over each continua.

In this article, we extend the concept of NLMC to nonlinear equations by first identifying macroscopic quan-
tities for each coarse-grid block. These variables are typically found via local spectral decomposition and represent
the features that cannot be localized [similar to multicontina variables (Barenblatt et al., 1960; Lee et al., 2001;
Panasenko, 2018; Warren and Root, 1963)]. Next, we consider local problems formulated in the oversampled regions
with constraints. These local problems allow identifying the downscaling map from average macroscopic quantities
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to the fine-grid variables. By imposing the constraints for each continuum variable via the source term, we define
effective fluxes and the homogenized equation. Using the local solutions in the oversampled regions with constraints
allows localizing the global downscaled map, which provides an accurate representation of the solution; however, it
is expensive as it involves solving the global problem. By using the constraints in the oversampled regions, we can
guarantee the proximity between the global and local downscaled maps for a given set of oversampled constraints.

The resulting homogenized equation significantly differs from standard homogenization. First, there are several
variables per coarse block, which represent each continuum. Second, the local problems are formulated in over-
sampled regions with constraints. Finally, the nonlinear homogenized fluxes depend on all averages in oversampled
regions, which bring non-local behavior for the equation. These ingredients are needed to perform upscaling in the
absence of scale separation and high contrast.

In summary, our nonlinear nonlocal multicontinua approach has the following steps:

• For each coarse-grid block, identify coarse-grid variables (continua) and associated quantities. This is typically
done via some local spectral problems and describes the quantities that can not be localized.

• Define local problems in oversampled regions with constraints. The constraints are given for each continua
variables over all coarse-grid blocks. Local problems use specific source terms and boundary conditions, which
allow localizing the global downscaled map and identifying effective fluxes. This step gives a downscaling from
average continua to the fine-grid solution.

• The formulation of the coarse-grid problem. We seek the coarse-grid variables such that the downscaled fine-
grid solution approximately solves the global problem in a weak sense. The weak sense is defined via specific
test functions, which are piecewise constants in each continua. This provides an upscaled model.

We consider two types of methods: linear interpolation and non-linear interpolation. In the first approach, we
seek the solution in the form

w =
∑
i,j

wj
iϕ

j
i ,

whereϕj
i are multiscale basis functions for coarse celli and for continuaj defined in the oversampled region. This

approach is simpler because linear approximation of the solution is used. However, because of the nonlinearity, the
nonlinear approximation is needed [see Efendiev and Pankov (2003, 2004, 2005)]. In Efendiev and Pankov (2004),
the authors propose such an approach for pseudomonotone equations (similar to homogenization). In our problem,
we present a nonlinear interpolation (we refer as nonlinear nonlocal multicontinua). In this approach, the solution is
sought as a nonlinear map, which approximatedwj

i from neighboring cells in a nonlinear fashion, which is defined via
local problems. The local problem provides a nonlinear map from coarse-grid macroscopic variables to the fine-grid
solution. This mapping is used to construct macroscopic equations. We use nonlocality and multi-continua to address
the cases without scale separation and high contrast.

As one of the numerical examples, we consider two-phase flow and transport, though our approach can be applied
to a wide range of problems. Two-phase flow and transport is one of challenging problems. Typical approaches
include pseudo-relative permeability approach, also known as multi-phase upscaling, where the relative permeabilities
are computed based on local two-phase flow simulations. These approaches are process dependent. Our approach
provides a novel upscaling, which shows that each coarse-grid block needs to contain several average pressures
and saturations and, moreover, these coarse-grid relative permeabilities are non-local and depend on saturations and
pressures of neighboring cells. This model provides a new way to look at two-phase flow equations and can be further
used in different modeling purposes.

The article is organized as follows. Section 2 presents preliminaries and main concepts used for linear problems.
Section 3 is devoted to a general concept of nonlinear upscaling and this is discussed in several examples. In Section 4,
we present the linear interpolation based approach and numerical results for multi-phase flow and transport. Though
our main focus is on nonlinear interpolation, the linear interpolation approach is practical for many applications. In
Section 5, we present the nonlinear approach for multi-phase flow and corresponding numerical results.
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2. PRELIMINARIES

We consider a general nonlinear system of the form

∂tU +G(x, t, U,∇U) = g. (1)

In general,U is a vector-valued function andg(x, t) is the source term.G is assumed to be heterogeneous in
space (and time, in general), which are resolved on the fine grid (see Fig. 1 for fine and coarse grid illustrations). Our
objective is to derive coarse-grid equations. Examples for (1) are:

Example 1.Nonlinear (pseudomonotone) parabolic equations, whereG(x, t, U,∇U) := divκ(x, t, U,∇U).
Example 2.Hyperbolic equations, whereG(x, t, U,∇U) := v(x) · ∇G(x,U) andU is a scalar function andv

is a vector valued function. For example,v = −κ(x)∇p and div(v) = q, as in Darcy’s flow.
Example 3. Hamilton-Jacobi equations, whereG(x, t, U,∇U) := G(x,∇U) andU is a scalar function.
Example 4.One of our objectives is to address the upscaling of multi-phase flow, which is a challenging problem.

In this case, the model equations have the following form. The two-phase flow equations are derived by writing
Darcy’s flow for each water (α= w) and oil (α = o) phases and the mass conservation as follows:

uα = −λrw(Sw)κ(x)∇p

∇ · (ut) = qp, ∂tSα +∇ · (uα) = q.
(2)

Here,uα is the Darcy velocity of the phaseα, ut =
∑

α uα, Sα is the saturation of the phaseα, andλrα is
the relative mobility of the phaseα. By denoting the saturation of the water phase viaS = Sw, we can write the
equations as:

−div(λ(S)κ∇p) = qp

∂tS +∇ · (uf(S)) = q, u = −κ∇p.
(3)

The special case of the two-phase flow consists of single-phase flow:

−div(κ∇p) = qp

∂tS +∇ · (uS) = q, u = −κ∇p.
(4)

2.1 Overview of NLMC for Linear Problems

This section is a brief overview of the NLMC method for linear problems Chung et al. (2018b). Our goal is to
summarize the key ideas in linear NLMC and extend them to the nonlinear NLMC in the next section. To be specific,
we will consider a model parabolic equation with a heterogeneous coefficient, namely,

∂u

∂t
− div(κ∇u) = g, in Ω× [0, T], (5)

with appropriate initial and boundary condition, whereκ is the heterogeneous field,g is a given source,Ω is the
physical domain, andT > 0 is a fixed time.

The NLMC upscaled system is defined on a coarse mesh,T H , of the domainΩ. We writeT H =
∪
{Ki | i =

1, · · · , N}, whereKi denotes thei-th coarse element andN denotes the number of coarse elements inT H . For each
coarse elementKi, we will identify multiple continua corresponding to various solution features. This can be done
via a local spectral problem or a suitable weight function. The upscaled parameter is defined using multiscale basis
functions. For each coarse elementKi and each continuum withinKi, we will construct a multiscale basis function
whose support is an oversampled regionK+

i , which is obtained by enlarging the coarse blockKi by a few coarse
grid layers. See Fig. 1 for an illustration of coarse grid and oversample region.

Now we will specify the definition of continuum. For each coarse blockKi, we will identify a set of continua,
which are represented by a set of auxiliary basis functionsϕ

j
i , wherej denotes thejth continuum. There are multiple
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FIG. 1: Illustration of coarse and fine meshes as well as oversampled regions. The regionK+ is an oversampled region corre-
sponding to the coarse blockK.

ways to construct these functionsϕj
i . One way is to follow the idea proposed in CEM-GMsFEM by Chung et al.

(2018c). In this framework, the auxiliary basis functionsϕj
i are obtained as the dominant eigenfunctions of a local

spectral problem defined onKi. These eigenfunctions can capture the heterogeneities and the contrast of the medium.
The resulting solution of the upscaled system corresponds to the moments of the true solution with respect to these
eigenfunctions. Another way is to follow the framework in the original NLMC method (Chung et al., 2018b), designed
for flows in fractured media, which can be easily modified for general heterogeneous media. In this approach, one
identifies explicit information of fracture networks. The auxiliary basis functionsϕ

j
i are piecewise constant functions,

namely, they equal one within one fracture network and zero otherwise. The resulting solution of the upscaled system
corresponds to the average of the solution on fracture networks, which can be regarded as one of the continua. Finally,
one can generalize the previous approach to construct other auxiliary basis functions. In particular, we can defineϕ

j
i

to be characteristic functions of some regionsK
(j)
i ⊂ Ki. These regionsK(j)

i can be chosen to reflect various

properties of the medium. For instance, one can chooseK
(j)
i to be the region in which the medium has a certain range

of values. We will consider this last choice in this article.
Once the auxiliary basis functionsϕj

i are specified, we can construct the required basis functions. The idea
generalizes the original energy minimization framework in CEM-GMsFEM. Consider a given coarse elementKi

and a given continuumj within Ki. The corresponding auxiliary basis functionϕj
i is used to construct our required

multiscale basis functionψj
i by solving a problem in an oversampled regionK+

i . Specifically, we findψj
i ∈ H1

0(K
+
i )

andµ ∈ Vaux such that ∫
K+

i

κ∇ψj
i · ∇v +

∫
K+

i

µv = 0, ∀v ∈ H1
0(K

+
i ),∫

Kℓ

ψ
j
iϕ

ℓ
m = δjℓδim, ∀Kℓ ⊂ K+

i ,

(6)

whereδim denotes the standard delta function andVaux is the space spanned by auxiliary basis functions. We note
that the functionµ serves as a Lagrange multiplier for the constraints in the second equation of (6). We also note
that the basis functionψj

i has mean value one on thej-th continuum withinKi and has mean value zero in all other
continua in all coarse elements withinK+

i . In practice, the above system (6) is solved inK+
i using a fine mesh, which

is typically a refinement of the coarse grid. See Fig. 1 for an illustration.
Now, we can derive the NLMC upscaled system. As an illustration of the concept, we consider a forward Euler

method for the time discretization of (5). At thenth time step, the solution vector is denoted byUn, where each
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component ofUn represents the average of the solution on a continuum within a coarse element. We note that the
size of this vector is

∑N
i=1 Li, whereLi is the number of continua inKi. The upscaled stiffness matrixAT is defined

as

(AT )
(i,ℓ)
jm = a(ψi

j ,ψ
ℓ
m) :=

∫
Ω

κ∇ψi
j · ∇ψℓ

m, (7)

and the upscaled mass matrixMT is defined as

(MT )
(i,ℓ)
jm =

∫
Ω

ψi
jψ

ℓ
m. (8)

Finally, the NLMC system is written as

MT (U
n+1 − Un) + ∆tATU

n = ∆tGn, (9)

where the components of the vectorGn are defined as
∫
Ω
g(·, tn)ϕj

i andtn is the time at thenth time step. We note
that the nonlocal connections of the continua are coupled by the matricesAT andMT , and that the local computation
in (6) results from a spatial decay property of the multiscale basis function [see Chung et al. (2018a,c,d)] for the
theoretical foundation.

3. NONLINEAR NON-LOCAL MULTICONTINUA MODEL

3.1 General Concept

We will first present some general concepts of our nonlinear NLMC. We consider the following nonlinear problem

Ut +G(x,U,∇U) = g, (10)

whereG has a multiscale dependence with respect to space (and time, in general).
To formulate the coarse-grid equations in the time interval[tn, tn+1], we first introduce coarse-grid variables

Un,j
i , wherei is the coarse-grid block,j is a continuum representing the coarse-grid variables, andn is the time step

[cf. Chung et al. (2018b)]. The continuum plays a role of a macroscopic variable, which can not be localized. For
each coarse-grid blocki, we need several coarse-grid variables, which will be indexed byj. In this article, we will
consider two types of interpolation for multiscale degrees of freedom. The first approach is called linear interpolation,
which constructs approximate solutionUn

H at the timetn as

Un
H =

∑
i,j

Un,j
i ψ

j
i ,

whereψj
i are multiscale basis functions, which are defined via local constrained problems formulated in the oversam-

pled regions. These basis functions are possibly supported in the oversampled regions and the resulting coarse-grid
equations will be nonlinear and nonlocal when projected to the appropriate test spaces. The values ofUn,j

i are com-
puted via the variational formulation using an explicit or implicit discretization of time:

(Un+1
H , VH)− (Un

H , VH) + ∆t(G(x,UL
H ,∇UL

H), VH) = ∆t(g, VH), ∀VH , (11)

whereL = n or L = n + 1 depending whether explicit or implicit discretization is used, andVH denotes test
functions. Here,(·, ·) denotes usualL2 inner product. As for the test space, one can use the multiscale space spanned
by ψj

i or the auxiliary basis functionsϕj
i . This linear approach is simpler to use; however, it ignores the nonlinear

interpolation, which is important for nonlinear homogenization and numerical homogenization (Efendiev and Pankov,
2004; Pankov, 1997).

Next, we describe the nonlinear approach, which we refer as nonlinear nonlocal multicontinuum approach. In this
case, the solution is sought as a nonlinear interpolation of the degrees of freedomUn,j

i defined in the oversampled re-
gion. More precisely, we compute a downscale function using the given solution valuesUn,j

i by solving a constrained
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problem in the oversampled regions. Mathematically, this downscale functionUn
h can be written as a function of all

valuesUn,j
i , namely,

Un
h = F(Un),

whereF is a nonlinear map andUn is a vector containing all values{Un,j
i }. The nonlinear map is computed by

solving the local problem (cf. (14)), and the functionUn
h is glued together from local downscaled maps. Once this

map is defined, we seek all coarse-grid macroscopic variables{Un,j
i } such that the downscaled fine-grid solutionUn

h

solves the global problem in a variational setting. The test functions are defined for each degrees of freedom in the
form of piecewise constants or piecewise functions, in, for example, a finite volume or Petrov Galerkin setting. More
precisely, the coarse-grid system has the form

(Un+1
h , VH)− (Un

h , VH) + ∆t(G(x,UL
h ,∇UL

h ), VH) = ∆t(g, VH), (12)

for all suitable test functionsVH . Here,L = n or L = n + 1 can be used for explicit or implicit discretization. The
test functions are chosen to be piecewise polynomials or auxiliary basis functionsϕ

j
i . We remark that the dimension

of the test space is chosen to be the dimension of the coarse-grid macroscopic variables.

3.2 Nonlinear Nonlocal Multicontinuum Approach

In this section, we give some details of our nonlinear nonlocal multicontinuum approach, in general, and then present
some examples. The illustration is given in Fig. 2. In later sections, we present a detailed application to two-phase
flow equations.

Step 1. Defining coarse-grid variables.The first step involves defining macroscopic variables. In our case, we
will define them byUn,i

j , wherei is the coarse-grid block,j is the continua, andn is the time step. These variables in
our applications will be defined by prescribing averages to subregions, which can have complex shapes (for example,
fracture regions). The equation forUn,i

j , in general, will have a form

U
n+1,j
j − U

n,j

j +G
j

i (U
L
) = 0, (13)

whereL = n or L = n + 1 for explicit or implicit discretizations. The operatorG
j

i is determined respect to the
given continuumj and coarse elementi, and contains information from the source term and the time step size∆t. In

FIG. 2: Illustration of the steps.
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(13), we useU
L

to denote the vector consisting of all macroscopic quantitiesUL,j
i for all i andj. The operatorG

j

i is
obtainedby solving local problems on an oversampled region corresponding toKi. To define (13), we next discuss
local problems.

Step 2. Local solves for generic constraints.The computation ofG
j

i requiressolutions of constrained local
nonlinear problems. Here we present a general formulation. We consideri to be the index for a coarse elementKi or
a coarse neighborhoodωi, which is defined for a coarse nodei by

ωi =
∪

{K ∈ T H : xi ∈ K}.

The choice ofKi or ωi depends on the global coarse grid discretization. For example, with finite volume or
Petrov Galerkin formulation, we chooseKi, while for continuous Galerkin formulation, we chooseωi. In this part,
we present the steps usingωi. The required local nonlinear problem will be solved onω+

i , which is an oversampled

region obtained by enlargingω+
i a few coarse grid layers. We letc := {c(l)m } be a set of scalar values, wherem

denotes themth coarse element in the oversampled regionω+
i andl denotes thelth continuum withinKm ⊂ ω+

i .
The local problem is solved by finding a functionNωi

(x; c) given by

G(x,Nωi
(x; c),∇Nωi

(x; c)) =
∑
m,l

µ
(l)
i.m(c)I

K
(l)
m

inω+
i (14)

with constraints ∫
ω+

Nωi
(x; c)I

K
(l)
m
(x) = c(l)m .

Here,I
K

(l)
m
(x) is an indicator function for the regionK(l)

m defined for the continual within coarse blockm. We

remark that the valuesµ(l)i.m(c) play the role of Lagrange multipliers for the constraints. We notice thatNωi
depends

on all constraints in the oversampled region. In general, constraints can be imposed on the gradients ofNωi
and the

constraint function can have a complex form. We remark that the problem (14) requires a boundary condition, which
is problem dependent. We will discuss it later. Our main message is that the local problems with constraints are solved
in oversampled region and involve several coarse-grid variables for each coarse block. For the precise formulation,
the values{c(l)m } will be chosen as the macroscopic variables.

Discussion on localization.
Next, we discuss the idea behind the localization principle stated above (Fig. 3). For this reason, we first define

the global downscaling operator,NG(x; c), which solves the global problem with constraints

G(x,NG(x; c),∇NG(x; c)) =
∑
m,l

µ
(l)
i.m(c)I

K
(l)
m

in Ω (15)

with constraints ∫
Ω

NG(x; c)IK(l)
m
(x) = c(l)m .

The boundary conditions are taken as the original global boundary conditions. For our localization, we desire
that the local downscaled solution,Nωi

(x; c) in K (target coarse block) defined in (14), is approximately the same
asNG restricted toK for the same constraint values as the global problem inω+

i :

Nωi(x; c) ≈ NG(x; c) in K,

wherec values coincide inω+
i . This property allows solving local nonlinear problems instead of the global problem

without sacrificing the accuracy and defining correct upscaled coefficients. This desired property can be shown for
monotone elliptic equations using zero Dirichlet boundary conditions on∂ω+

i . For more complex nonlinear systems,
appropriate boundary conditions on∂ω+

i are used to achieve this property.
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FIG. 3: Illustration of the localization.

Step 3. Defining coarse-grid model.The upscaled fluxG
j

i is defined by substituting the downscaled global
solution corresponding to the constraints given byc and multiplying it by test functions. For this procedure, one first
defines a global fine-grid downscaled field that is constrained. Equation (14) defines local fine-grid fields constrained
to macroscopic variables in oversampled regions. In general, one needs to “glue” together a global downscaled solu-
tion, which approximates the global problem in a weak sense. A simple approach to glue together is to use partition
of unity functions,χωi for each regionωi. Then,

F(U) =
∑
i

Nωi
χωi

.

In some discretization scenarios (e.g., finite volume, Discontinuous Galerkin, . . . ), it is not necessary to glue
together in order to obtain a global fine-grid field. In the proposed NLMC approach, our coarse-grid fomrulation uses
“finite volume” type approximation and we will not need to glue local approximations. In this case,

F(U) = Nωi and ∇F(U) = ∇Nωi on Ei, (16)

whereEi is a coarse edge for the coarse grid. In general, we can write it asF(U) = Nωi
in all local fine-grid blocks,

and the following variational formulation(
∂

∂t
F(U), VH

)
+ (G(x,F(U),∇F(U)), VH) = (g, VH), (17)

whereVH are test functions. In this setup,

(G(x,F(U),∇F(U)), VH) = (G(x, U), VH).

The above equation can formally be thought as

∂

∂t
M(U) + G(x, U) = g.

The time discretization of Eq. (17) can be written as

(F(U
n+1

), VH)− (F(U
n
), VH) + ∆t(G(x,F(U

L
),∇F(U

L
)), VH) = ∆t(g, VH), (18)
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whereL = n or L = n + 1 for explicit or implicit discretizations. In general, the downscaling operator has the
following property:

(F(U
L
), VH) ≈ (U

L
, VH), or (F(U

L
), VH) = (U

L
, VH) (19)

which simplifies the computations. In the latter situation, the mass matrixM is diagonal. In addition,

(F(U
L
), Vh) ≈ (UL

h , Vh), (20)

whereUL
h is a fine-scale field andU

L
is the corresponding coarse-grid average. Equation (20) states that if we use the

average of the fine-scale field to re-construct it, the resulting approximation remains close to the original fine-scale

field. We remark that the operatorG
j

i in (13) is obtained using (18). More precisely, we have

G
j

i := ∆t(G(x,F(U
L
),∇F(U

L
)), VH)−∆t(g, VH)

by using a test functionVH corresponding to regioni and continuumj.
Next, we present some more concrete constructions for some cases, listed in Section 2.
Example 1.In this example, we consider a class of nonlinear (pseudomonotone) parabolic equations withG =

div (k(x,U,∇U)), wherek is a heterogeneous function inx, and in general, also inU and∇U . We will consider
a continuous Galerkin discretization in space on a coarse grid and explicit Euler discretization in time. Letc =
{Un,j

i } be a set of macroscopic variables at the timetn. In particular,Un,j
i denotes the mean value of the solution on

continuumj within coarse elementi at time timetn. On an oversampled regionω+
i , we find a functionNωi

on the
fine grid such that

G(x,Nωi ,∇Nωi) =
∑

K
(l)
m ⊂ω

+
i

µ(l)m (c)I
K

(l)
m

in ω+
i

subject to the following constraints∫
ωi

Nωi
(x)I

K
(l)
m
(x) = Un,l

m , ∀K(l)
m ⊂ ωi,∫

ωi

Nωi(x)IK(l)
m
(x) = 0, ∀K(l)

m ⊂ ω+
i \ωi.

We remark thatµ(l)m plays the role of Lagrange multiplier. The above problem is solved using the Dirichlet
boundary condition on∂ω+

i . We can setNωi
equals to zero on∂ω+

i , and this choice of motivated by the decay
property of multiscale basis functions in CEM-GMsFEM. Then we can define a global fine scale function by

Un
h =

∑
i

Nωi
χωi

,

where{χωi
} are suitable partition of unity functions, where we notice that the values ofNωi

withinω+
i \ωi are not

used. Using the global downscale functionUn
h and suitable test functions, we can derive a coarse grid scheme. We

note that the upscaled model has the form (17).
Example 2. In this example, we consider a class of hyperbolic equations, whereG(x, t, U,∇U) := v(x) ×

∇G(x,U) andU is a scalar function andv is a vector valued function. For example,v = −κ(x)∇p and div(v) = q,
as in Darcy’s flow. We will consider a finite volume type discretization in space on a coarse grid and explicit Euler
discretization in time. Letc = {Un,j

i } be a set of macroscopic variables at the timetn. As above,Un,j
i denotes the

mean value of the solution on continuumj within coarse elementi at time timetn. On an oversampled regionK+
i ,

we find a functionNKi
on the fine grid such that

G(x,∇NKi
) =

∑
K

(l)
m ⊂K+

i

µ(l)m (c)I
K

(l)
m

in K+
i
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subject to the following constraints∫
K+

i

Nωi(x)IK(l)
m
(x) = Un,l

m , ∀K(l)
m ⊂ K+

i .

We remark thatµ(l)m plays the role of Lagrange multiplier. The above problem is solved using the standard
inflow boundary condition on the inflow part of∂K+

i . We can setNKi
equals to zero to the value{Un,j

i } chosen by
upwinding. Then we can define a global fine scale function by

Un
h =

∑
i

NKiχK+
i

where{χK+
i
} are suitable partition of unity functions for the overlapping partition{K+

i }. We remark that this global
downscale functionUn

h preserves the mean values, namely,

1

|K(j)
i |

∫
K

(j)
i

Un
h = Un,j

i .

Usingthe global downscale functionUn
h and suitable test functions, we can derive a coarse grid scheme. For the

test functions, we use{I
K

(l)
m
(x)}, for all m, l. Hence, we obtain

Un+1,j
i = Un,j

i −∆t

∫
K

(j)
i

G(x,∇Un
h ) + ∆t

∫
K

(j)
i

g, ∀ i, j. (21)

We note that this upscaled model has the form (17). We also note that the number of unknowns is the same of
number of equations.

Example 3.For this case, the local problem can be formulated as follows. On an oversampled regionK+
i , we

find a functionNKi
on the fine grid such that

G(x,∇NKi
) =

∑
K

(l)
m ⊂K+

i

µ(l)m (c)I
K

(l)
m

in K+
i

subject to the following constraints∫
K+

i

Nωi(x)IK(l)
m
(x) = Un,l

m , ∀K(l)
m ⊂ K+

i .

Similar to Example 2, the upscaled model has the form (17) and (21).
In summary, the local problems involve original local problems with constraints formulated in the oversampled

regions. The source term constants represent the homogenized fluxes and their dependence on averages of solutions
and gradients are the functional form of the equations.

3.2.1 RVE-based Extension of the Method

The proposed concept can also be used for problems with scale separation. A typical example is a fractured media,
where the fracture distributions are periodic or posess some scale separation. In this case, we do not use the oversam-
pling based local problems and simply use local problems in RVE. To be more precise, Step 1 remains the same as
before, which involves identifying local multicontinua variables in each coarse-grid block.

In Step 2, we solve the local problem (14) in RVE subject to the constraints. The main difference is that we use
only the constrained in the target coarse-grid block. Thus, there are fewer constraints and the problem is localized to
the target coarse block.

Once the local solves are defined, via periodicity, we extend the local solution to theωi and use this extension
to compute the effective flux. This construction is similar to Efendiev and Pankov (2004) or MsFEM using RVE
(Efendiev and Hou, 2009).
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4. LINEAR APPROACH

In this section, we will focus on the linear approach (c.f. Section 3), and present some numerical results.

4.1 Linear Transport

In this section, we will present some numerical results for the linear transport equation with a given velocity. More
precisely, we consider

∂tS +∇ · (uS) = q in Ω,

whereu ∈ H(div,Ω) is a given divergence-free velocity field withu · n = 0 on∂Ω. We takeΩ = [0,1]2, and the
velocity fieldu is shown in Fig. 4. The coarse grid sizeH = 1/20, and we use a single continuum model. In Table 1,
we present a error comparison between our upscaling method and the standard finite volume method.

The derivation of the upscaled system follows the ideas in Section 2.1. For each coarse elementKi, we solve the
following system in an oversampled regionK+

i :

∇ · (uψi) + µ = 0 (22)

to obtain a basis functionψi. The above system is equipped with the constraints∫
Kj

ψi = δij . (23)

FIG. 4: A velocity fieldu. Left: x1-component. Right:x2-component.

TABLE 1: L2 relative errors for our upscaling method. The
relative error for standard finite volume scheme on the same
grid is 27.78%

#layer Err ors

5 11.57%

7 7.73%

9 7.22%

∞ 6.91%
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We remark thatµ is a piecewise constant function, and plays the role of Lagrange multiplier. We notice that
the upscaled system has the form (9). In practice, one can add artificial diffusion in (22) in order to obtain a stable
numerical solution, and use zero Dirichlet boundary condition. We remark that one can use other boundary conditions,
see Section 3.2.

By using the standard finite volume method, the relativeL2 error is 27.78% at the final timeT = 1. From Table 1,
we see that our upscaling method provides much better approximations, where “#layer” standards for the number
of layers used in the oversampling domains. When# layer equals∞, it means that the oversampling domain is the
whole physical domain. In Fig. 5, we show the snapshots of the solution atT = 1. From this figure, we observe that
the solution computed with CEM provides a good approximation, particularly, in saturated regions.

4.2 Single Phase Flow

In this section, we apply our method to a single phase flow problem which is described as follows:

∂tSw +∇ · (uwSw) = qw, (24)

−∇ · (κ∇Pw) = q, (25)

uw = −κ∇Pw, (26)

where we assumeq is a function independent of time such that we can compute the velocityuw in the initial time
step and use the velocity to construct the basis function for saturationSw.

For solving single phase flow problem, we can separate the computation process into two parts. Since Eqs. (25)
and (26) are independent of saturation and the given source term is independent of time, we know that the velocity
is independent of time. Therefore, we can decouple the system of equations into two parts which are Eqs. (24)–(26).
The first part of the computation is computing the velocity and pressure by solving Eqs. (25) and (26) by Mixed Gen-
eralized Multiscale Finite Element Methods (MGMsFEM) (Chung et al., 2014b). The second part of the computation
is computing the numerical solution for the saturation by solving Eq. (24). Given a numerical velocityums, Eq. (24)
is a standard linear transport equation. We can use the method discussed in Section 4.1 to construct the multiscale
basis function and then compute the numerical solution for saturation. Next, we will discuss the computation of the
saturation.

We will consider a multi-continuum version of the method. Assume that an approximation of the velocityums

has been computed by the MGMsFEM. We derive the upscaled system following the ideas in Section 2.1. For each
coarse elementKi and a continuumj within Ki, we solve the following system in an oversampled regionK+

i :

∇ · (umsψ
j
i ) + µ = 0 (27)

FIG. 5: Snapshots of the solution atT = 1. Left: fine solution, Middle: finite volume solution, Right: upscale solution with 5
oversampling layers.
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to obtain a basis functionψj
i . The above system is equipped with the constraints∫

K
(l)
m

ψ
j
i = δmjδil. (28)

We remark thatµ is a piecewise constant function, and plays the role of Lagrange multiplier. We notice that the
upscaled system has the form (9).

Now, we present some numerical examples. We takeΩ = [0,1]2, and the permeability fieldκ is shown in Fig. 6.
The coarse grid sizeH = 1/20. We will use a dual continuum model to solve this problem. For each coarse element
Kj , we define two continua byK(1)

j = {x ∈ Kj |κ(x) > 103} andK(2)
j = {x ∈ Kj |κ(x) ≤ 103}. In Table 2,

we present a error comparison at timesT = 5 andT = 10 between our method and the finite volume method for
the saturation equation (26) with piecewise constant test functions in each continuum. From the table, we observe
the performance of our scheme for various choices of oversampling layers. For all these cases, we observe that our
scheme performs better than the usual (dual continuum) finite volume scheme whose error is 13.10% and 14.04% at
the observation timesT = 5 andT = 10, respectively. We notice that the relative error in the velocityums is 5.51%.
In Figs. 7 and 8, we present the comparisons between the the averaged fine-grid solution and the solution obtained
our proposed method. From these figures, we observe that our proposed method can capture the solution features
accurately.
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FIG. 6: Permeability fieldκ

TABLE 2: L2 relative errors for our upscaling method. The relative error
for dual continuum finite volume scheme on the same grid is 13.10% and
14.04% forT = 5 andT = 10, respectively. In this case, the relative error
in velocityums is 5.51%

#layer \ time T = 5 T = 10

4 12.83% 14.57%

6 7.33% 6.93%

8 5.89% 5.51%

∞ 5.69% 5.24%
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FIG. 7: Snapshots of the solution atT = 10. Left: fine solution, Middle: upscaled solution, Right: finite volume solution.

FIG. 8: Error comparison to fine solution atT = 10. Left: upscaled solution, Right: finite volume solution.

4.3 Two Phase Flow

In this section, we apply our upscaling method to two phase flow problem which is described as follows:

∂tSw +∇ · (uw) = qw, (29)

−∇ · (κλt(Sw)∇Pw) = q, (30)

uw = −κλw(Sw)∇Pw, (31)

λt = λw(Sw) + λo(Sw). (32)

In the process of basis construction, we will use a similar approach as solving single phase flow problem. We
notice that the exact velocity depends on the saturation and hence depends on time. To reduce the computational
burden, we use the initial total mobilityλt(Sw(0))as the reference mobility to construct the multiscale basis functions
for approximating the exact velocity field based on the following equations,

−∇ · (ut) = q, (33)

ut = −κλt(Sw(0, ·))∇P. (34)
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Next, using the total velocityut, we will construct the basis functions for approximating the exact saturation
based on the following transport equation,

∂tSw +∇ ·

(
ut

λt(Sw(0, ·))
Sw

)
= qw, . (35)

Hence, the construction for the basis functions is separated into two parts. The first part is computing an ap-
proximating velocityu(0)

t,ms and pressurePms by solving Eqs. (33) and (34) by Mixed Generalized Multiscale Finite
Element Methods (MGMsFEM). The multiscale basis functions constructed during the processing are used to span
the finite element spaceVms, which is used to approximate the exact velocity. The second part is constructing the
saturation basis functions by the method discussed in Section 3 with a fixed velocityu

(0)
t,ms. This part is also similar

to the single phase flow.
To compute the coarse grid solution, we will use IMplicit Pressure Explicit Saturation (IMPES) scheme. Given

the saturationS(n)
ms and the total velocityu(n)

t,ms at the previous time step, we will compute the total velocity at the next

time stepu(n+1)
t,ms by solving ∫

Ω

∇ · u(n+1)
t,ms p =

∫
Ω

qp, ∀p ∈ QH∫
Ω

κ−1λ−1
t (S(n)

w (, ·))u(n+1)
t,ms · v =

∫
Ω

P (n+1)
ms ,∇ · v, ∀v ∈ Vms,

whereQH is the space for pressure. Then, we will use the velocityu
(n+1)
t,ms to compute the saturation at the next time

step as before [similar to (27) and (28)].
We next present some numerical examples. We takeΩ = [0,1]2. The permeability fieldκ is shown in Fig. 6, and

we use

λw =

(
Sw − Swc

(1− Swc − Sor)

)2

µ−1
w , λo =

(
1− Sw − Sor

1− Swc − Sor

)2

µ−1
o ,

with µw = 1,µo = 1,Swc = 0.2, andSor = 0.2. The coarse grid sizeH = 1/20. We are using the dual continuum
model to solve this problem. For each coarse elementKj , we define two continua byK(1)

j = {x ∈ Kj |κ(x) >

103} andK(2)
j = {x ∈ Kj |κ(x) ≤ 103}. In Table 3, we present a error comparison between our method and the

finite volume method for the saturation equation with piecewise constant test functions in each continuum. For this
experiment, we observed that the upscaling method works in general better than the finite volume method as before.

Next we consider another test case with the mediumκ shown in Fig. 9, which is a SPE benchmark test case. The
coarse grid size is chosen asH = 1/24. We are again using the dual continuum model to solve this problem. For
each coarse elementKj , we defineK(1)

j = {x ∈ Kj | log10(κ(x)) > 0.8}andK(2)
j = {x ∈ Kj | log10(κ(x)) ≤ 0.8}.

In Fig. 10, we present the snapshots of the averaged fine solution, finite volume solution and our upscaled solution at

TABLE 3: L2 relative errors for our upscaling method. The relative error for
dual continuum finite volume scheme on the same grid is 10.01% and 14.13%
for T = 10 andT = 20, respectively.

#layer \ time T = 10 T = 20

4 15.82% 14.94%

6 7.03% 6.63%

8 4.11% 4.33%

∞ 3.52% 4.11%
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FIG. 9: A SPE permeability fieldlog10(κ) (in log scale).

FIG. 10: Snapshots of the solution atT = 10. Left: averaged fine solution. Middle: finite volume. Right: our upscaled solution.

the observation timeT = 10. We observe that our method is able to capture the dynamics of the solution, while the
finite volume method does not produce a good solution. In Table 4, we present the errors of our approximation and
observe good accuracy.

5. NONLINEAR APPROACH

In this section, we will present a numerical test to show the performance of the nonlinear approach (c.f. Section 3).
To to do, we consider the following single phase flow problem

∂tSw +∇ · (uwλ(Sw)) = qw,

−∇ · (κ∇Pw) = q,

uw = −κ∇Pw,

TABLE 4: L2 relative errors for our upscaling method. The relative error for dual continuum finite
volume scheme on the same grid is 14.75% and 19.74% forT = 5 andT = 10, respectively.

#layer \ time T = 5 T = 10
6 7.19% 11.12%

∞ 6.70% 10.16%
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where
λ(S) = Sβ.

We assumeq is a function independent of time such that we can compute the velocity in the initial time step and
use the velocity to construct the basis function for saturation.

The derivation of the upscaled system follows the ideas in Section 3.2. Assume that an approximation of the
velocityums has been computed. Let{Sn,j

i } be a set of upscaled values for the continuumj in the coarse regionKi

at the timetn. For each coarse elementKi, we solve the following system in an oversampled regionK+
i :

∇ · (umsλ(Ni)) + µ = 0 (36)

to obtain a local downscale functionNi. The above system is equipped with the constraints

1

|K(j)
i |

∫
K

(j)
i

Ni = Sn,j
i . (37)

We remark thatµ is a piecewise constant function, and plays the role of Lagrange multiplier. Then we define a
global downscale field by

Sn
h =

∑
i

Niχ
K+

i ,

where{χK+
i } is a set of partition of unity functions corresponding to the setsK+

i . Then we apply a finite volume
scheme to the saturation equation as follows

Sn+1,j
i = Sn,j

i −∆t

∫
∂K

(j)
i

λ(Sn
h )ums · n+∆t

∫
K

(j)
i

qw. (38)

We notice that the upscaled system (38) has the form (17).
We next present some numerical results. We takeΩ = [0,1]2, and the permeability fieldκ is shown in Fig. 6.

The coarse grid sizeH = 1/10. We are using a dual continuum model to solve this problem. For eachKj , we define

K
(1)
j = {x ∈ Kj |κ(x) > 103} andK(2)

j = {x ∈ Kj |κ(x) ≤ 103}. In Table 5, we present a error comparison
between our method and the finite volume method for the saturation equation with piecewise constant test functions
in each continua. We consider three choices ofβ, and present the relative errors at timesT = 5 andT = 10. From
the results, we observe that our method is able to compute more accurate numerical solutions.

We remark that our proposed upscaling method can be applied to other nonlinear systems, which will be investi-
gated in more detail in a forthcoming paper.

6. CONCLUSIONS

In this article, we present a general framework for coarse-grid modeling of nonlinear PDEs. The fine-grid problem is
described by nonlinear PDEs including two-phase flow and transport model. The main concept of our upscaled model
is three fold, (1) We determine macroscopic quantities in each coarse-grid block, which can vary among the coarse-
grid blocks. (2) We define appropriate local problems with constraints in oversampled regions that are solvable. The

TABLE 5: L2 norm relative errors. Left: Nonlinear upscaling. Right:
Finite volume method.

β \ time T = 5 T = 10 β \ time T = 5 T = 10
2 9.91% 11.85% 2 28.70% 23.61%

3 7.54% 12.60% 3 31.32% 26.27%

5 10.07% 14.89% 5 32.98% 29.19%
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constraints are given by macroscopic quantities. These local problems allow downscaling from macroscopic quantities
to each coarse-grid block. (3) We formulate the coarse-grid problem such that the downscaled solution over the entire
domain solves the global problem in a weak sense.

The formulation of local problems allow easily defined macroscopic fluxes via forcing terms. We also discuss the
use of multiscale basis function in a linear fashion for solving nonlinear PDEs. Our main example includes two-phase
flow and transport and its simplifications. The model problem is described by a coupled PDEs. We consider various
permeability fields and show that one can achieve an accurate approximation of the solution.
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