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Two families of methods are widely used in data assimilation: the four-dimensional variational (4D-Var) approach, and
the ensemble Kalman filter (EnKF) approach. The two families have been developed largely through parallel research ef-
forts. Each method has its advantages and disadvantages. It is of interest to develop hybrid data assimilation algorithms
that can combine the relative strengths of the two approaches. This paper proposes a subspace approach to investigate
the theoretical equivalence between the suboptimal 4D-Var method (where only a small number of optimization itera-
tions are performed) and the practical EnKF method (where only a small number of ensemble members are used) in a
linear setting. The analysis motivates a new hybrid algorithm: the optimization directions obtained from a short win-
dow 4D-Var run are used to construct the EnKF initial ensemble. The proposed hybrid method is computationally less
expensive than a full 4D-Var, as only short assimilation windows are considered. The hybrid method has the potential to
perform better than the regular EnKF due to its look-ahead property. Numerical results show that the proposed hybrid
ensemble filter method performs better than the regular EnKF method for the test problem considered.
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1. INTRODUCTION

Data assimilation (DA) is a procedure to combine imperfect model predictions with imperfect observations in order
to produce coherent estimates of the evolving state of the system, and to improve the ability of models to represent
reality. DA is accomplished through inverse analysis by estimating initial, boundary conditions, and model parameters.
It has become an essential tool for weather forecasts, climate studies, and environmental analyses.

Two data assimilation methodologies are currently widely used: variational and ensemble filters [1–6]. While both
methodologies are rooted in statistical estimation theory, their theoretical developments and practical implementations
have distinct histories. The four-dimensional variational (4D-Var) methodology has been used extensively in opera-
tional weather prediction centers. In traditional (strong-constrained) 4D-Var a perfect model is assumed; the analysis
provides the single trajectory that best fits the background state and all the observations in the assimilation window
[7]. The 4D-Var requires the solution of a numerical optimization problem, with gradients provided by an adjoint
model; the necessity of maintaining an adjoint model is the main disadvantage of 4D-Var. The ensemble Kalman filter
(EnKF) is based on Kalman’s work [8] but uses a Monte Carlo approach to propagate error covariances through the
model dynamics. The EnKF corrections are computed in a low-dimensional subspace (spanned by the ensemble) and
therefore the EnKF analyses are inherently suboptimal. Nevertheless, EnKF performs well in many practical situations
[9], is easy to implement, and naturally provides estimates of the analysis covariances.
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It is known that the fully resolved variational method and the optimal Kalman filter technique compute the same
estimate of the posterior mean for linear systems, linear observation operators [10]. In case of Gaussian uncertainty
they produce optimal estimates, in a Bayesian sense. For very long assimilation windows, the 4D-Var analysis at the
end of the window is similar to the one produced by running a Kalman filter indefinitely [11]. In the presence of model
errors the weak-constrained 4D-Var and the fixed-interval Kalman smoother are equivalent [12].

With both methods coming to maturity, new interest in the community has been devoted to assess the relative merits
of 4D-Var and EnKF [13, 14]. The better understanding of the strengths of each method has opened the possibility
to combine them and buildhybrid data assimilation methods; In terms of EnKF and 4D-Var hybridization, relevant
work can be found in [15–28]. Specifically, in [27], the error subspace statistical estimation (ESSE) and optimal
interpolation (OI) schemes are compared to illustrate the advantages and properties of the ESSE. Some hybrid systems
aim to improve the background error covariance in the variational system using the information from the ensemble
system. In [22], a hybrid background error covariance is used in the operational global data assimilation system at
the Met Office, generating an average under 1% reduction of RMS errors. In their hybrid 4D-Var implementation,
the background error covariance matrix is a linear combination of the climatological and ensemble covariance. With
this update of the background covariance matrix, the authors hope to capture the “error of the day” and improve
the forecast system performance. Another attempt to hybridize the ensemble and variational approaches is describes
in [23], in which the method is based on the point statistical interpolation (GSI) 3D-Var. The authors experimented
various background error covariance updates on the NCEP global forecast system and found that, in general, the
hybrid system results in more skillful forecast.

Some hybrid systems investigate the error subspace. In [25], assimilation in the unstable subspace (AUS) algorithm
is used in the context of both 4D-Var (4DVar-AUS) and the extended Kalman filter (EKF-AUS). In their work, the
state correction is carried out in a unstable and neutral subspace spanned by Lyapunov vectors with positive and
zero exponents. Both 4DVar-AUS and EKF-AUS are simpler to implement, less computational demanding, and as
efficient as their counterparts. In [26], an improvement is made based on the En4DVar by [29]. The leading singular
vectors are extracted from the 4-D ensemble perturbations and are used to construct the analysis increment. The
hybrid system results in a significant computational efficiency improvement. An iterative ensemble Kalman smoother
(IEnKS) method was implemented in the context of a joint estimation of state variables and parameters on a low-order
Lorenz-95 model [28]. The comparisons with EnKF, EnKS and 4D-Var show a systematically outperformance.

A truly hybrid method that couples the 4D-Var and EnKF directly is E4DVAR, proposed in [30]. E4DVAR uses
the 4D-Var assimilation procedure to compute analysis means; EnKF is an auxiliary process that provides covariance
information. The hybrid scheme proposed in this work is based on EnKF data assimilation; 4D-Var is an auxiliary
process that generates the directions of initial ensemble perturbations.

Previous comparative analyses involving ensemble and variational approaches assume large number of ensemble
members in EnKF, and many optimization iterations in 4D-Var. Little attention has been devoted to analyzing the
practical situation where only a small number of optimization iterations is performed in 4D-Var, and only a small
ensemble is used in EnKF. In this paper we study the relationship between the suboptimal 4D-Var and the practical
EnKF methods in a linear setting. The close relationship between 4D-Var and EnKF opens the possibility of combining
these two approaches, and motivates a new hybrid data assimilation algorithm.

To be specific, consider a forward model that propagates the initial model statex(t0) ∈ Rn to a future state
x(t) ∈ Rn,

x(t) = Mt0→t (x(t0)) , t0 ≤ t ≤ tF. (1)

Heret0 andtF are the beginning and the end points of the simulation time interval.
The model solution operatorM represents, for example, a discrete approximation of the partial differential

equations that govern the atmospheric or oceanic processes. Realistic atmospheric and ocean models typically have
n ∼ 106 − 109 variables. Perturbations (small errorsδx) may be simultaneously evolved according to the tangent
linear model:

δx(t) = Mt0→t (x(t0)) · δx(t0), t0 ≤ t ≤ tF. (2)

We consider the case where the initial model state is uncertain and a better state estimate is sought for. The model
(1) simulation fromt0 to tF is initialized with a background (prior estimate)xB

0 of the true atmospheric statext
0. The
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background errors (uncertainties) are assumed to have a normal distribution(xB
0 − xt

0) ∈ N (0,B). The background
represents the best estimate of the true stateprior to any measurement being available.

Observations of the true stateyk = Hk(xt
k) + εk are available at each time instanttk, k = 0, . . . , Nobs − 1,

where the observation operatorHk maps the state space to the observation space. These observations are corrupted
by measurement and representative errors, which are assumed to have a normal distribution,εk ∈ N (0,Rk). Data
assimilation combines the background estimatexB

0 , the measurementsy0, · · · ,yNobs−1, and the modelM to obtain
an improved estimatexA

0 of the true initial statext
0. This improved estimate is called the “analysis” (or posterior

estimate of the) state.
The four-dimensional variational (4D-Var) technique is derived from variational calculus and control theory [7].

It provides the analysisxA
0 as the argument which minimizes the cost function:

J (x0) =
1
2
(x0 − xB

0 )T B−1
0 (x0 − xB

0 ) (3)

+
1
2

Nobs−1∑

k=0

(Hk(xk)− yk)T R−1
k (Hk(xk)− yk)

s.t.xk = Mt0→tk
(x0).

Typically, a gradient-based optimization procedure is used to solve the constrained optimization problem (3) with
gradients obtained by adjoint modeling.

In the incremental formulation of 4D-Var [1, 5, 31], one linearizes the estimation problem around the background
trajectory (the trajectory started from the background initial conditionxB

0 which has a state valuexB
k at tk). By

expressing the state as the correction over the background statexk = xB
k + ∆xk, k = 0, · · · , Nobs − 1, we have

J ′(∆x0) =
1
2

∆x0
T B−1

0 ∆x0 (4)

+
1
2

Nobs∑

k=0

(
Hk∆xk − dB

k

)T
R−1

k

(
Hk∆xk − dB

k

)
,

dB
k = yk −Hk

(
xB

k

)
,

where∆xk = Mt0→tk
∆x0, andHk is the linearized observational operator aroundxB

k at timetk. The incremental
4D-Var problem (4) uses linearized operators and leads to a quadratic cost functionJ ′. The incremental 4D-Var
estimate isxA

0 = xB
0 + ∆xA

0 . A new linearization can be performed about this estimate and the incremental problem
(4) can be solved again to improve the resulting analysis.

Ensemble filters are based on the Kalman filter [8] theory, which gives a minimum variance estimate of the true
state under the assumption that the model dynamics and observation operators are all linear. If all errors are addi-
tive and Gaussian, then the Kalman filter estimate is optimal in a Bayesian sense. The extended Kalman filter [32]
provides a suboptimal state estimation in the nonlinear case by linearizing the model dynamics and the observation
operator. We note that in typical large-scale applications (e.g., from meteorology and oceanography) errors are dis-
tinctly non-Gaussian [33]. Nevertheless, Kalman filter methods—based on linear theory (and on Gaussian analysis,
from a Bayesian point of view)—produce useful results in non-Gaussian and mildly non-linear meteorological and
oceanographical applications.

A typical assumption is that while the state evolves according to nonlinear dynamics (1), small errors evolve ac-
cording to the linearized model (2). If the errors in the model state attk−1 have a normal distributionN (0,Ak−1) and
propagate according to the linearized model dynamics (2), then the forecast errors attk are also normally distributed
N (0,Ak). The forecast is obtained using

xf
k = Mtk−1→tk

(
xA

k−1

)
, (5)

Bk = Mtk−1→tk
Ak−1 MT

tk−1→tk
+ Qk,
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whereMT is the adjoint of the tangent linear model, andQk is the covariance matrix of model errors. In this paper
we will consider perfect models, i.e., we will assumeQk = 0 from now on. The analysis provides the state estimate
xA

k and the corresponding error covariance matrixAk

xA
k = xf

k + Kk

(
yk −Hk(xf

k)
)
,

Ak = Bk −Kk Hk Bk, (6)

Kk = Bk HT
k

(
Hk Bk HT

k + Rk

)−1
,

whereKk is the Kalman gain matrix.
The extended Kalman filter is not practical for large systems because of the prohibitive computational cost needed

to invert large matrices and to propagate the covariance matrix in time. Approximations are needed to make the
EKF computationally feasible. The (“perturbed observations” version of the) ensemble Kalman filter [32] uses a
Monte Carlo approach to propagate covariances. An ensemble ofNens states [labelede = 1, · · · , Nens] is used to
sample the probability distribution of the background error. Each member of the ensemble (with statexA

k−1(e) at

tk−1) is propagated totk using the nonlinear model (1) to obtain the “forecast” ensemblexf
k(e). If model errors

are considered, Gaussian noise is added to the forecast to account for the effect of model errors. Each member of
the forecast is analyzed separately using the state equation in (6). The forecast and the analysis error covariances are
estimated from the statistical samples ({xf

k(e)}e=1,··· ,Nens and{xA
k (e)}e=1,··· ,Nens respectively). The EnKF approach

to data assimilation has attracted considerable attention in meteorology [9, 34] due to its many attractive features.
It has been established that the 4D-Var and the EnKF techniques are equivalent for linear systems with Gaussian

uncertainty [10],provided that the 4D-Var solution is computed exactly and an infinitely large number of ensemble
members is used in EnKF, and they both use the same covariance matrix. By equivalentwe mean that the two ap-
proaches provide the same estimates of the posterior mean. In practice, the dynamical systems of interest for data
assimilation are very large—for example, typical models of the atmosphere haven ∼ 106 − 109 variables. As a
consequence, the numerical optimization problem in 4D-Var (3) can only be solved approximately, by an iterative
procedure stopped after a relatively small number of iterations. (In practice, if possible, the number of iterations can
be sufficient to ensure that the difference between an exact solution of the minimization problem and the truncated
solution is smaller than the statistical uncertainty in the analysis). Similarly, in an ensemble-based approach, the num-
ber of ensemble members is typically much smaller than the state space dimension and the sampling is inherently
suboptimal.

The main contribution of this work is conceptual, and proposes a subspace approach to analyze the relationship
between thesuboptimal4D-Var solution and thesuboptimalEnKF solution. The analysis motivates a new hybrid
filter algorithm for data assimilation which uses intermittent short 4D-Var runs to periodically reinitialize an ensemble
filter. Beside the conceptual contribution, the new approach is potentially useful due to the following characteristics:

• The hybrid method is computationally less expensive than the full-fledged 4D-Var: instead of solving the 4D-
Var problem to convergence over a long assimilation window, one solves it suboptimally over a short time
sub-window; a less expensive hybrid filter then carries out the data assimilation throughout the entire window.

• The hybrid method has the potential to perform better than the regular EnKF. In the first cycle this is due to
the special sampling of the initial error space. In subsequent cycles the potential for better performance comes
from the look-ahead nature of the hybrid approach: while the regular EnKF continues indefinitely with an
error subspace constructed based onpast dynamics and past data, the hybrid EnKF periodically chooses a new
subspace based onfuture dynamics and future data.

Preliminary versions of this work have been reported in Cheng’s PhD dissertation [35] and in the technical report
[36].

The paper is organized as follows. Section 2 performs a theoretical analysis that reveals subtle similarities between
the suboptimal 4D-Var and EnKF solutions in the linear case, and for one observation time. This analysis motivates a
new hybrid filter algorithm for data assimilation, which is discussed in Section 3. Numerical experiments presented in
Section 4 reveal that the proposed algorithm performs better than the traditional EnKF for both linear and nonlinear
problems.
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2. COMPARISON OF SUBOPTIMAL 4D-VAR AND ENKF SOLUTIONS IN THE LINEAR CASE WITH A
SINGLE OBSERVATION TIME

Consider a linear model that advances the statex ∈ Rn from t0 to tF ,

xF = M · x0.

We assume that the modelM is perfect (the model error is zero).
We also assume the initial state uncertain, and is drawn from a distribution with meanE[xt

0] = xB
0 and covariance

Cov[xt
0] = B0. The mean background state and the background covariance at the final time are

xB
F = M · xB

0 , BF = M ·B0 ·MT .

A single set of measurements is taken attF ; the measurements are corrupted by unbiased random errors

yF = H · xt
F + εF , E[εF ] = 0, Cov[εF ] = RF .

We consider the assimilation window[t0, tF ]. Data assimilation produces a posterior distribution for the initial values,
with meanE[xt

0] = xA
0 and posterior covariance matrixCov[xt

0] = A0. The best posterior estimatexA
0 is called the

analysisstate. The mean analysis state and the analysis covariance matrix at the final time are

xA
F = M · xA

0 , AF = M ·A0 ·MT .

We use both 4D-Var and EnKF methods to estimate the posterior initial conditionxA
0 . Each method is applied in

a suboptimal formulation: only a small number of iterations is used to obtain the 4D-Var solution, and only a small
number of ensemble members is used in EnKF.

We first state the main result of this section; the detailed analysis and the proof follow.

Theorem 1. Consider the case of a linear, perfect model, with observations taken at only one time—at the end of
the assimilation window. One posterior state estimate is computed by the suboptimal 4D-Var method (truncated after
several iterations); another estimate of the posterior mean state is obtained by the suboptimal EnKF method (using
only a small number of ensemble members). Both methods use the same error covariance matrices for the background
and observations.

There exists a particular initialization of the ensemble for which the suboptimal EnKF mean state estimate is
equivalent to the state estimate computed by the suboptimal 4D-Var method.

Comment 1. The setting of the theorem does not capture the ability of 4D-Var to simultaneously incorporate time
distributed observations, the effects of nonlinear dynamics and nonlinear observation operators, and the benefits of
EnKF stabilization techniques like covariance inflation and localization.

Nevertheless, the simplified setting allows us to draw interesting and useful parallels between 4D-Var and EnKF,
and to gain considerable insight.

Comment 2. In a Bayesian framework it is typically assumed that the prior distribution of uncertainty is Gaussian,
xt

0 ∈ N
(
xB

0 ,B0

)
, and the observation errors are normally distributed,εF ∈ N (0,RF ). Consequently, the uncer-

tainty in the background state at the final timexB
F is also Gaussian. Moreover, the Bayesian posterior probability

density is Gaussian,xt
0 ∈ N

(
xA

0 ,A0

)
. Both the full 4D-Var and the full Kalman filter yield theoptimalanalysisxA

0 .
The error normality assumption is not necessary for establishing the equivalence between 4D-Var and EnKF. With-
out the normality assumption, the analyses produced by the two methods are equivalent, but not optimal in Bayesian
sense.

Comment 3. The proof of Theorem 1 is constructive: we show how a particular initialization of the filter can be
obtained, such that the filter solution coincides with the suboptimal 4D-Var solution. This construction will then be
used in a hybrid version of the filter.
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2.1 Full 4D-Var Solution

The 4D-Var analysis is obtained as the minimizer of the function:

J (x0) =
1
2

(
x0 − xB

0

)T
B−1

0

(
x0 − xB

0

)

+
1
2

(HMx0 − yF )T R−1
F (HMx0 − yF ) .

The first order necessary condition∇x0J = 0 reveals that the optimum increment is obtained by solving the following
linear system:

A ·∆x0 = b

A =
(
B−1

0 + MT HT R−1
F HM

)
(7)

b = MT HT R−1
F

(
yF −HMxB

0

)

∆x0 = x0 − xB
0 .

where the solution is the deviation of the analysis from the background state,xA
0 = xB

0 + ∆x0. The system matrix
A in (7) is the inverse of the posterior covariance att0 [37], A = A−1

0 . The right-hand side vectorb in (7) is the
innovation vector corresponding to the background statedF = y − HMxB

0 scaled by the inverse covariance and
“pulled back” tot0 via the adjoint model

b = MT HT R−1
F dF .

For nonlinear systems the above procedure (based on linearized dynamics and observation operator) corresponds
to the incremental 4D-Var formulation; this, in general, is only an approximation of full fledged 4D-Var, and it coin-
cides with the Gauss-Newton method for solving the optimality system [38].

2.2 Iterative 4D-Var Solution by the Lanczos Method

In practice, (7) is not solved exactly. It is solved within some approximation margin by using an iterative method
and performing a number of iterations that is much smaller than the size of the state space. We are interested in the
properties of this suboptimal algorithm. In the nonlinear case a relatively small number of iterations are performed
with a numerical optimization algorithm.

Assume that the Lanczos algorithm [39] is employed to solve the symmetric linear system (7). The convergence
of the Lanczos iterations (and, in general, that of any iterative method) can be improved via preconditioning. For
this particular approximation we chose, the background covariance is known, and this covariance offers a popular
preconditioner. Assume that a Cholesky or a symmetric square root decompositionB1/2

0 of B0 is available:

B0 = B1/2
0 ·BT/2

0 , BT/2
0 =

(
B1/2

0

)T

.

Applying the background covariance square root as a symmetric preconditioner to the original 4D-Var system (7)
leads to the following preconditioned 4D-Var system:

Ã ·∆u0 = b̃ (8)

Ã = BT/2
0 AB1/2

0 = In×n + BT/2
0 MT HT R−1

F HMB1/2
0

b̃ = BT/2
0 b = BT/2

0 MT HT R−1
F

(
yF −HMxB

0

)

∆x0 = B1/2
0 ∆u0

Assume thatK Lanczos iterations are performed from the starting point∆u[0]
0 = 0, i.e.,∆x[0]

0 = 0 (x[0]
0 = xB

0 ).
Consequently, the first residual isr[0] = b̃. The Lanczos method computes a symmetric tridiagonal matrixT̃K ∈
RK×K and a second matrix

ṼK =
[
ṽ1, · · · , ṽK

] ∈ Rn×K
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whose columns form an orthonormal basis of the Krylov space

KK(Ã, r[0]) =
{

r[0], Ã r[0], Ã2 r[0], · · · , ÃK−1 r[0]
}

.

The matrices have the following properties [39]

Ṽ T
K ṼK = IK×K , Ṽ T

K Ã ṼK = T̃K .

The approximate solution of the preconditioned 4D-Var system (8) obtained afterK Lanczos iterations is the exact
solution of the system reduced over the Krylov subspaceKK ,

Ṽ T
K Ã ṼK · θ̃K = Ṽ T

K b̃ ; ∆u[K] = ṼK θ̃K (9)

Ṽ T
K Ã ṼK = IK×K + Ṽ T

K BT/2
0 MT HT R−1

F HMB1/2
0 ṼK

Ṽ T
K b̃ = Ṽ T

K BT/2
0 MT HT R−1

F

(
yF −HMxB

0

)

∆x0 = B1/2
0 ∆u[K] = B1/2

0 ṼK θ̃K

∆xF = M∆x0 = MB1/2
0 ṼK θ̃K .

An explicit form of the solution (9) can be obtained using the Sherman-Morrison-Woodbury formula [40, 41]

(
W + UV T

)−1
= W−1 −W−1U

(
I + V T W−1U

)−1
V T W−1

with
W = IK×K and U = V = Ṽ T

K BT/2
0 MT HT R−1/2

F .

Together with the notation

B̃1/2
0 = B1/2

0 ṼK ,

B̃0 = B1/2
0 ṼK Ṽ T

K BT/2
0 ,

B̃1/2
F = MB̃1/2

0 = MB1/2
0 ṼK ,

B̃F = MB1/2
0 ṼK Ṽ T

K BT/2
0 MT ,

the Sherman-Morrison-Woodbury formula leads to the following solution of (9):

θ̃K = I − Ṽ T
K BT/2

0 MT HT
(
RF + HMB1/2

0 ṼK Ṽ T
K BT/2

0 MT HT
)−1

× HMB1/2
0 ṼK

(
I − B̃T/2

F HT
(
RF + HB̃F HT

)−1

HB̃1/2
F

)

× B̃T/2
F HT R−1

F

(
yF −HxB

F

)

∆xF = MB1/2
0 ṼK θ̃K = B̃1/2

F θ̃K

= B̃1/2
F

(
I − B̃T/2

F HT
(
RF + HB̃F HT

)−1

HB̃1/2
F

)

× B̃T/2
F HT R−1

F

(
yF −HxB

F

)

=
(
B̃F − B̃F HT

(
RF + HB̃F HT

)−1

HB̃F

)

× HT R−1
F

(
yF −HxB

F

)

= B̃F HT
(
RF + HB̃F HT

)−1 (
yF −HxB

F

)
.
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The above relation gives the 4D-Var update formula attF :

xA
F = xB

F + B̃F HT
(
RF + HB̃F HT

)−1 (
yF −HxB

F

)
. (10)

A comparison between (10) and (6) reveals that the 4D-Var update (10) is equivalent to a suboptimal Kalman filter
update (10) at timetK = tF with

KF = B̃F HT
(
RF + HB̃F HT

)−1

.

Consequently the analysis covariance associated with the 4D-Var estimate is

ÃF = B̃F − B̃F HT
(
RF + HB̃F HT

)−1

H B̃F

= B̃F − B̃F HT R−1/2
F

(
I + R−1/2

F HB̃F HT R−1/2
F

)−1

R−1/2
F H B̃F

=
(
B̃−1

F + HT R−1
F H

)−1

,

where the last relation follows from another application of the Sherman-Morrison-Woodbury formula whenB̃F is
invertible.

Finally, consider the “initial perturbations”

X̃0 = B1/2
0 ṼK . (11)

The system (9) can be rewritten in the following equivalent form

X̃T
0

(
B−1

0 + MT HT R−1
F HM

)
X̃0 · θ̃K = X̃T

0 MT HT R−1
F

(
yF −HMxB

0

)
(12)

∆x0 = X̃0 θ̃K

∆xF = M∆x0 = MX̃0 θ̃K .

Thus the suboptimal 4D-Var solves the original system (7) by projecting it onto the subspace spanned byX̃0.

2.3 EnKF Solution for a Small Ensemble

Consider now a standard formulation of the EnKF withK ensemble members. Let〈x〉 denote the ensemble mean and
x′(i) = x(i)− 〈x〉, i = 1, · · · ,K, denote the deviations from the mean. The initial set ofK ensemble perturbations
are drawn from the normal distributionN (0,B0). Equivalently, they are obtained via a variable transformation from
the standard normal vectorsξi as follows:

x′0(i) = B1/2
0 ξi, i = 1, · · · ,K ; ξ =

[
ξ1, · · · , ξK

]
∈ (N (0, 1)

)n×K
. (13)

The perturbations are propagated to the final time via the tangent linear model (this holds true for perturbations of any
magnitude for the linear model dynamics assumed here)

x′F (i) = M · x′0(i), i = 1, · · · , K.

Denote the scaled random vectors by

v̂i =
1√

K − 1
ξi, i = 1, · · · ,K ; V̂ =

[
v̂1, · · · , v̂K

]
=

1√
K − 1

ξ,

and the matrix of the scaled initial perturbations by
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X̂0 =
1√

K − 1

[
x′0(1), · · · ,x′0(K)

]
(14)

= B1/2
0

[ ξ1√
K − 1

, · · · ,
ξK√
K − 1

]

= B1/2
0

[
v̂1, · · · , v̂K

]
.

The ensemble covariance is

B̂0 =
1

K − 1

K∑

i=1

x′0(i)x
′
0(i)

T = X̂0 · X̂T
0 (15)

B̂1/2
0 = X̂0 = B1/2

0 V̂ ,

and, for a perfect and linear model,

X̂F = M · X̂0, B̂F = X̂F · X̂T
F , B̂1/2

F = X̂F = MB1/2
0 V̂ . (16)

The EnKF analysis updates each member using the formula

xA
F (i) = xB

F (i) + B̂F HT
(
HB̂F HT + RF

)−1 (
yF (i)−HxB

F (i)
)
, i = 1, · · · ,K.

HereyF (i) is the observation vectoryF plus a random perturbation vector drawn from the same probability distribu-
tion as the observation noise. The ensemble mean values are updated using

〈xA
F 〉 = 〈xB

F 〉+ B̂F HT
(
HB̂F HT + RF

)−1 (
yF −H〈xB

F 〉
)
. (17)

Comment 4. Other popular approaches to initialize the ensemble are the breed vectors, the total energy singular
vectors, and the Hessian singular vectors [42]. For a linear system the breed vectors are (linear combinations of) the
eigenvectors associated with the dominant eigenvalues

M vi = λi vi, i = 1, · · · ,K.

Let C0 andCF be two positive definite matrices. The total energy singular vectors are defined with respect to the
“energy” norms defined by these matrices att0 andtF , respectively:

MT CF M vi = λ′i C0 vi, i = 1, · · · ,K.

The Hessian singular vectors are the generalized eigenvectors associated with the dominant generalized eigenvalues
of the following problem:

MT CF M vi = λi∇2J vi = λ′′i
(
B−1

0 + MT HT R−1
F HM

)
vi, i = 1, · · · ,K.

Note that the breed and total energy singular vectors are based only on the model dynamics; the Hessian singular
vectors account also for the initial uncertainty (throughB0) and for the observation operatorH. None of them accounts
for the datayF . The 4D-Var Lanczos vectors account for the model dynamics, the observation operators, and the data.
The cost of computing them is comparable to the cost of computing the Hessian singular vectors over the same time
window.
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2.4 Comparison of 4D-Var and EnKF Solutions

2.4.1 4D-Var Solution as a Kalman Update

A comparison of (10) and (17) reveals an interesting conclusion. The suboptimal 4D-Var (in the linear case, with
one observation time) leads to a Kalman-like update of the state at the final time. The difference between the 4D-Var
update (10) and the EnKF mean update (17) is in the approximation given to the background covariance matrices. In
the EnKF case

B̂1/2
F = MB1/2

0 V̂ ,

while in the 4D-Var case
B̃1/2

F = MB1/2
0 Ṽ ,

whereṼ are the orthonormal directions computed by the Lanczos algorithm applied to the preconditioned system (9).
The standard EnKF initialization (13) is based on the random vectorsξ sampled from a normal distribution. If the

vectorsξ are chosen such that
1

K − 1
ξξT = V̂ V̂ T = Ṽ Ṽ T , (18)

then the covariances are the same

B̂F = MB1/2
0 V̂ V̂ T B1/2

0 MT = MB1/2
0 Ṽ Ṽ T B1/2

0 MT = B̃F ,

and the EnKF analysis mean (17) coincides with the 4D-Var analysis (10). An ensemble satisfying (18) will be called
anequivalent initial ensemble.

2.4.2 EnKF as an Optimization Algorithm

EnKF looks for an increment in the subspace of ensemble deviations from mean

〈xA
F 〉 = 〈xB

F 〉+ X̂F · θ̂,

where the vector of coefficientŝθ is obtained as the minimizer of the function [43]:

J ens(θ̂) =
1
2
θ̂T θ̂ +

1
2

(
dB

F −HX̂F θ̂
)T

R−1
F

(
dB

F −HX̂F θ̂
)

(19)

with
dB

F = yF −H〈xB
F 〉.

The optimality condition∇θ̂J ens = 0 is equivalent to the linear system

(
IK×K + X̂T

F HT R−1
F HX̂F

)
· θ̂ = X̂T

F HT R−1
F dB

F . (20)

Using the Sherman-Morrison-Woodbury formula to “invert” the system matrix in (20) leads to the following closed
form solution:

θ̂ = X̂T
F HT

(
RF + HX̂F X̂T

F HT
)−1

· dB
F (21)

〈xA
F 〉 = 〈xB

F 〉+ X̂F · θ̂
= 〈xB

F 〉+ B̂F HT
(
RF + HB̂F HT

)−1 (
yF −H〈xB

F 〉
)
.

This confirms that the EnKF analysis formula provides the minimizer for (19).
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Using (15)–(16), the system (20) becomes
(
IK×K + X̂T

0 MT HT R−1
F HMX̂0

)
· θ̂ = X̂T

0 MT HT R−1
F dB

F (22)

∆〈xF 〉 = 〈xA
F 〉 − 〈xB

F 〉 = X̂F · θ̂ = MB1/2
0 V̂ · θ̂

∆〈x0〉 = 〈xA
0 〉 − 〈xB

0 〉 = X̂0 · θ̂ = B1/2
0 V̂ · θ̂

We can rewrite (22) as

X̂T
0

(
B̂#

0 + MT HT R−1
F HM

)
X̂0 · θ̂ = X̂T

0 MT HT R−1
F dB

F (23)

∆〈xF 〉 = MX̂0 · θ̂
∆〈x0〉 = X̂0 · θ̂,

whereB̂#
0 is the pseudo-inverse of the initial ensemble background covariance

B̂0 = X̂0X̂T
0 , X̂0 = UΣV T , B̂#

0 = UΣ−2UT .

A comparison of the EnKF system (22) with the 4D-Var system solved byK Lanczos iterations (12) reveals that the
two formulas are nearly identical. EnKF solves a modified 4D-Var problem, with the inverse of background covariance
replaced by the pseudo-inverse of the ensemble background covariance; the system is solved via a reduction over the
ensemble subspace.

Note that a reduction of the original 4D-Var system (7) onto the subspace of randomly sampled ensemble devia-
tions does not give correct results since

X̂T
0

(
B−1

0 + MT HT R−1
F HM

)
X̂0 ≈ n− 1

K − 1
IK×K + X̂T

0 MT HT R−1
F HMX̂0

which is (considerably) different than the system matrix in (22).
Loosely speaking, an important difference between 4D-Var and EnKF is the choice of subspace where the full

system is reduced. In 4D-Var the subspace is carefully chosen by the iterative procedure, while in EnKF this subspace
is chosen randomly in the first step, and is given by the assimilation history in subsequent steps.

2.5 Statistical Properties of the Equivalent Initial Ensemble

We now consider the construction of an equivalent initial ensemble, i.e., the choice of vectorsξ such that (18) holds.
A first idea is to use the initial perturbations (11), i.e., to replace the random vectors by the scaled Lanczos directions:

ξ =
√

K − 1 · Ṽ , (24)

x′i = B1/2
0 ξi =

√
K − 1 ·B1/2

0 ṽi, i = 1, · · · ,K.

Note that the initial perturbations in the regular EnKF have zero mean. The Lanczos orthonormal directionsṽi are
independent, and therefore their ensemble mean is nonzero,

〈ṽ〉 =
1
K

K∑

i=1

ṽi =
1
K

Ṽ · 1K 6= 0.

Consequently, the ensemble (24) is biased and performs an adjustment of the initial mean state. The bias can be
removed by constructing a double-sized ensemble of symmetric perturbations usingξ ∈ Rn×2K as follows:

ξi =

√
K − 1

2
ṽi, ξK+i = −

√
K − 1

2
ṽi, i = 1, · · · ,K. (25)
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The mean is zero and the equivalence property (18) holds exactly

1
K − 1

ξ ξT =
[

1√
2
Ṽ ,− 1√

2
Ṽ

]
·
[

1√
2
Ṽ ,− 1√

2
Ṽ

]T

= Ṽ Ṽ T .

The existence of an equivalent initial ensemble completes the proof of Theorem 1.
In practice one seeks to avoid the construction of large ensembles, which are computationally expensive. We now

discuss other approaches to generate unbiased initial ensembles with a smaller number of members, and for which the
equivalence property (18) holds within some approximation margin.

1. Remove the bias by subtracting the mean from each Lanczos direction.

ξi =
√

K − 1 ·
(

ṽi − 1
K

Ṽ 1K

)
, i = 1, · · · ,K. (26)

In this case the resulting initial ensemble covariance is

B̂0 = B1/2
0 Ṽ

(
IK×K − 1

K
1K 1T

K

)
Ṽ T B

1/2
0 . (27)

Alternatively, the bias can be removed by adding one additional ensemble member initialized using

ξi =
√

K − 1 · ṽi, i = 1, · · · ,K; ξK+1 = −
√

K − 1 · Ṽ · 1K . (28)

In this case the initial ensemble covariance reads

B̂0 = B1/2
0 Ṽ

(
IK×K + 1K 1T

K

)
Ṽ T BT/2

0 . (29)

2. The orthonormal Lanczos directions do not provide a random sample. In order to preserve the statistical inter-
pretation of the EnKF, the initialization can be performed by a random samplingof the Lanczos subspace:

ζ ∈ (N (0, 1)
)K×K

, ξ = Ṽ · ζ. (30)

With this choice the initial ensemble is unbiased, and the equivalence property (18) holds in a statistical sense:

E [ξ] = Ṽ ·E [ζ] = 0n×K ,

E
[

1
K − 1

ξ ξT

]
= Ṽ ·E

[
1

K − 1
ζ ζT

]
· Ṽ T = Ṽ · Ṽ T .

3. A HYBRID APPROACH TO DATA ASSIMILATION

The above analysis reveals a subtle similarity between the 4D-Var and EnKF analyses for the linear case with one ob-
servation window. If the initial ensemble is constructed using perturbations along the directions chosen by the 4D-Var
solver, the EnKF yields the same mean analysis as the 4D-Var yield. This result motivates a hybrid assimilation algo-
rithm, where 4D-Var is run for a short window; the 4D-Var search directions are used to construct an initial ensemble,
and then EnKF is run for a longer time window. The procedure can be repeated periodically, i.e., additional short
window 4D-Var runs can be used from time to time to regenerate the ensemble directions. A version of the proposed
hybrid algorithm could be based on using distinct observation sets in the 4D-Var and in the EnKF calculations.
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3.1 The Hybrid Algorithm

We now describe in detail the hybrid data assimilation algorithm; even if the motivation comes from a linear analysis,
the algorithm below can be applied to nonlinear systems as well.

1. Starting fromx(0)
0 = xB

0 , run 4D-Var for a short time window. The iterative numerical optimization algorithm

generates a sequence of intermediate solutionsx(j)
0 for each iterationj = 1, . . . , `.

2. ConstructSt0 , a matrix whose columns are the normalized 4D-Var differences between adjacent iterations:

St0 =


 x(j)

0 − x(j−1)
0∥∥∥x(j)

0 − x(j−1)
0

∥∥∥




j=1,...,`

∈ Rn×`. (31)

In the linear symmetric case the solution increment belongs to the subspace spanned by the Lanczos vectors.
In the nonlinear case the solution increment belongs to the subspace spanned by successive search directions.
Therefore, the normalized differences between adjacent iterations play the role of the Lanczos vectors in the
general case. Note, however, that they are not orthogonal.

3. Perform a singular value decomposition ofSt0 :

St0 = UΣV T , (32)

and retain only the firstK right singular vectorsu1, . . . uK that correspond to the largestK singular values
σ1, . . . , σK . The directions̃vi = ui, i = 1, · · · ,K, are used in (24) to generate the initial EnKF ensemble.

Alternatively, a less expensive Gram-Schmidt procedure can be used to orthogonalize the columns ofSt0 ; in
this case one chooses (the first)K directions out of the set of̀orthogonal vectors.

4. EnKF initialized as above is run for a longer time period, after which the ensemble is reinitialized using another
short window 4D-Var run.

We next discuss qualitatively several aspects of the proposed hybrid approach.

3.2 The 4D-Var Perspective on the Hybrid Approach

The proposed hybrid method is computationally less expensive than the full-fledged 4D-Var, as only short assimilation
windows are considered, and only a relatively small number of iterations is performed. Instead of solving the 4D-Var
problem to convergence over the entire assimilation window, one solves it suboptimally over a short time subwindow;
the less expensive hybrid EnKF then carries out the data assimilation for the entire length of the assimilation window.
From a computational standpoint the hybrid algorithm is an ensemble filter, with intermittent short 4D-Var runs used
to regenerate the ensemble subspace.

A practical question is how to choose the length of the short 4D-Var windows in relation to the total length of the
assimilation window. The answer is likely to depend on the particular dynamics of the underlying model. Therefore, a
practical implementation would require an algorithm to monitor the performance of the ensemble filter, and to decide
on-line when to regenerate the ensemble subspace by running a new 4D-Var. A theoretical basis for such an adaptive
approach is not available, and needs to be the focus of future research.

3.3 The EnKF perspective on the Hybrid Approach

The hybrid method is expected to perform better than the randomly initialized EnKF due to the special sampling of
the initial error space. Note that the application of the hybrid method requires the 4D-Var machinery to be in place
(and in particular, requires an adjoint model). The infrastructure is thus more complex than that required by regular
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EnKF; the complexity is similar to the case where the total energy singular vectors (or the Hessian singular vectors)
are computed and used to initialize the ensemble.

Another popular approach to initialize the EnKF is to place the initial perturbations along the “bred vectors”
(BVs) [44]. The bred vectors share similar properties with the Lyapunov vectors [45, 46]; they have finite amplitude,
finite time, and have local properties in space. The BVs capture the maximum error growth directions in the model.
For example, for linear systems, the bred vectors are (well-approximated by) linear combinations of the dominant
eigenvectors. While the bred error subspace depends only on the model dynamics, the hybrid subspace takes into
account both the model dynamics and the data over the short 4D-Var window. In this regard the hybrid initialization
has the potential to provide better results than the bred vector initialization.

Other methods of formulating/initializing the EnKF using special basis vectors have been proposed in the liter-
ature, including the use of an internal coordinate system [43], and the use of orthogonal bases [19, 47]. In [48], the
author has generated EnKF ensembles initialized with rescaled breeding random perturbations (BGV), balanced ran-
dom perturbations (BAL), and “gridpoint” random perturbations (RDM). Numerical experiments have revealed that
the corresponding error covariance matrices have similar structure.

A comprehensive comparison of the hybrid approach with other initialization methods is outside the scope of this
paper; future research will elucidate the similarities and differences.

In a longer run the error subspace sampled by (any flavor of) EnKF is given by the previous analyses. Thus, over
a long assimilation time window, the differences between the analyses given by different versions of EnKF will likely
fade away. The hybrid method periodically resamples the error space. (Note that this is also a common practice with
particle filters.) The resampling involves a short 4D-Var run over thenextsmall time interval. At the resampling time
the two filters take very different approaches. While the regular EnKF continues with an error subspace constructed
based onpast dynamics and past data, the hybrid EnKF chooses a subspace based onfuture dynamics and future data.
Past information is used in the form of the background covariance matrix. Due to this look-ahead property the hybrid
EnKF has the potential to perform better than the regular EnKF.

Note that 4D-Var plays the role of an auxiliary process to initialize EnKF. It identifies a subspace of large errors;
concentrating the computational effort to this subspace decreases the sampling error. Note that identifying a particular
subspace does not change the prior probability density. The EnKF data assimilation procedure (by itself) continues
to follow the fundamental rules of Bayes statistics. The choice of the EnKF initialization comes down to selecting a
subspace where to represent the errors, and building a reduced rank filter in that subspace. All choices are consistent
with the Bayesian view in the sense that they lead to the full Bayesian approach in the limit of the subspace dimension
approaching the state space dimension. Different choices, however, affect the accuracy of the resulting (approximate)
analysis when the subspace dimension is small.

A practical question is whether it is possible to optimally combine the regular subspace, which contains past
information, with the hybrid subspace, which contains future information. For example the random sampling (30)
could involve2K basis vectors from both subspaces. Future research is needed to fully answer this question.

4. NUMERICAL EXPERIMENTS

We now illustrate the proposed hybrid data assimilation algorithm using a nonlinear test problem. The performance
of the hybrid approach is compared with the regular EnKF as well as with the EnKF with the breeding initialization.
While it is difficult to extrapolate the results from simple test problems to complex systems (where variational and
ensemble algorithms show similar performance [49, 50]), the numerical results are encouraging and point to the
potential usefulness of the hybrid approach.

The nonlinear test is carried out with the Lorenz-96 model [51]. This chaotic model hasn = 40 states and is
described by the following equations:

dxj

dt
= −xj−1 (xj−2 − xj+1)− xj + F , j = 1, . . . , n, (33)

x−1 = xn−1, x0 = xn, xn+1 = x1.

The forcing term isF = 8.0. The Lorenz-96 model has been used to compare 4D-Var and 4D EnKF in [52].
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The conventional EnKF method implementation follows the algorithm described in [53]. We compare the follow-
ing methods:

1. EnKF-Regular: sample normal random numbers to form the perturbation ensemble, then add the perturbations
ensemble to the initial best guess (the background initial condition in the first window).

2. EnKF-Breeding. The “breeding” technique described in [44] is used to capture the maximum error growth
directions of the system. The initial ensemble perturbations are set along the bred vectors.

3. EnKF-Hybrid. A 4D-Var assimilation is run in a short window of 0.1 time units with five observations. The
directions generated by the L-BFGS numerical optimization routine are used to initialize the hybrid ensemble as
explained in Section 3. This ensemble regeneration procedure is repeated periodically for every 50 observations.
The initial bias is removed by subtracting the mean (26).

The 40 components of the state are first drawn from a uniform distribution in[−2, 2], and a spin-up run of 10 time
units is performed. The state of the model at the end of the spin-up phase is the reference initial condition; the
reference solution is obtained by integrating (33) through the 10 time units simulation window using Matlab’s ode45
with tight relative and absolute tolerances (RelTol = AbsTol = 10−9). Synthetic observations are obtained every
0.02 time units from the reference solution, with added normal random noise. The standard deviation of the noise is
σobs

i = 0.005xreference
i . We consider two test cases, as follows:

1. the “dense data” case includes observations of all 40 states, while

2. the “sparse data” case includes observations of every third state only, i.e., of states1, 4, 7, . . . , 37, 40.

The discrete model advances the state in time increments of 0.02 time units, which corresponds to four time
steps of the underlying fourth-order Runge-Kutta numerical integration scheme. The difference between the fixed
step Runge-Kutta solution and the variable step, tight tolerance reference solution represents the model error.

The background correlation is a weighted average between the identity matrix and an exponential decay correlation
matrix.

B0(i, j) = σb
i · σb

j ·
(

0.1 δi,j + 0.9 exp
(
−|i− j|2

L2

))
, i, j = 1, . . . , n, (34)

whereδi,j is the Kronecker delta symbol,L = 4, andσb
i = 0.03 (x0)i. This is very similar with the one chosen in

[54].
The background state is the reference initial condition, plus a perturbation drawn from the corresponding unbi-

ased normal distribution. A more informative background covariance matrix for 4D-Var can be constructed using the
ensemble information from the previous assimilation window.

For EnKF, we use both covariance inflation and covariance localization mechanism with the following setups. The
EnKF background covariance matrix at the initial time is (34), and is used to generate the background ensemble. A
covariance inflation with a factor ofα = 1.05 is included at each cycle to alleviate the filter divergence problem. The
tests use ensembles with different numbers of members. The same inflation and localization strategy is applied for the
breeding and hybrid filters.

The hybrid filter runs EnKF for a long assimilation window of one time unit. After one time unit, a new short
window 4D-Var run is performed, the ensemble is reinitialized, and EnKF is used to perform data assimilation for the
subsequent long window. The EnKF ensemble reinitialization process uses the mean state computed from the end of
the previous long window. The 4D-Var runs for reinitializing the ensemble directions use short windows of length 0.1
time units. Each short window contains five observations. The optimization stops after a number of iterations equal
the number of ensemble members plus one, and L-BFGS stores 10 vector pairs. The intermediate solutions generated
by the optimization are saved asx

(j)
0 , and relation (31) is used to construct the subspace spanned by successive search

directionsx
(j)
0 − x

(j−1)
0 . We then apply (32) to identify the error reduction directions and use these directions to

initialize the EnKF ensemble as shown in (24).
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The breeding EnKF implementation follows the description in [44], where the perturbations are propagated with
the system for one time unit and rescaled. The propagation and rescaling are carried out 10 times in succesion.

Both the breeding and the hybrid filters regenerate the EnKF ensemble directions every two time units, i.e., at
simulation times 2, 4, 6, and 8 units.

The full-fledged 4D-Var run uses assimilation windows that are one time unit long, and processes all 50 observa-
tions within this window. The L-BFGS optimization stores the last 10 vector pairs, and stops when both the projected
gradient norm and the cost function values have decreased by a factor of 1000. The number of iterations is larger in
the first window, but decreases after the spin up period.

To assess the accuracy of each assimilation method we use the following relative error metric:

Err =

√√√√√
∑n

i=1

(
xanalysis

i − xreference
i

)2

∑n
i=1

(
xreference

i

)2 . (35)

The analyses relative errors for the dense and the sparse data test cases are shown in Figs. 1 and 2, respectively.
Table 1 shows the computational times of various methods for the two test cases. The Matlab code is not optimized,
and therefore the results can only be interpreted in a qualitative sense. In particular the cost of 4D-Var, based on direct
nonlinear minimization, is very large. The 4D-Var CPU time can be considerably improved by tuning the code, and
by using advanced algorithms such as sequential quadratic programming (solving a sequence of incremental 4D-Var
problems) and preconditioning.

In the “dense data” scenario the numbers of ensemble members are chosen such that the total CPU times are
similar for all methods. The relative errors of the corresponding analyses are shown in Fig. 1. We notice that the
performance of all ensemble members is roughly similar in terms of accuracy. However, the hybrid filter achieves this
accuracy using only nine ensemble members. This is a promising result, especially for practical large models where
only a small ensembles are feasible.

In the “sparse data” scenario all methods use 15 ensemble members. EnKF is the fastest, while the breeding and
the hybrid methods have about the same CPU time in this setting. The relative errors of the corresponding analyses are
shown in Fig. 2; as expected, the errors are larger than in the “dense data” scenario. The performance of the methods
is similar except for the last two time units, where EnKF is slightly less accurate. We notice an actual increase in
error after resampling at time 8 units for both the hybrid and the breeding approaches. This indicates that the new
directions computed at this particular point are not of sufficient quality. In this case keeping the old ensemble (like
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FIG. 1: Relative errors for EnKF, Breeding, Hybrid, and 4D-Var analyses in the “dense data” test case (all state
components are observed; observation error std is 0.005 times the reference solution).
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FIG. 2: Relative errors for EnKF, Breeding, Hybrid, and 4D-Var analyses in the “sparse data” test case (every third
state components are observed; observation error std is 0.005 times the reference solution).

TABLE 1: Computational times for different data as-
similation methods on the two scenarios. One CPU
time unit is the wall-clock time needed to perform one
Lorenz-96 model integration for the entire simulation
interval

Method Dense data Sparse data
Nens CPU time Nens CPU time

EnKF 20 22.2 15 16.7
Breeding 14 19.6 15 21.1
Hybrid 8 20.4 15 21.8
4D-Var — 260 — 280

EnKF does) would be a better strategy. More research is needed to find algorithms that integrate the look-ahead
directions computed by breeding or 4D-Var with the old (EnKF) directions for improved analysis.

The numerical tests in the Lorenz ’96 chaotic nonlinear case show the hybrid method provides similar analyses
as the regular EnKF but requires fewer ensemble members. The hybrid solution takes significantly less computational
time than the full 4D-Var solution. The relative costs of running additional ensemble members, versus running short
4D-Var sequences, determines the relative performance of the two approaches.

5. SUMMARY

This work takes a subspace perspective on different data assimilation methods. Based on this it establishes the equiv-
alence between the EnKF with a small ensemble and the suboptimal 4D-Var method in the linear Gaussian case, and
for a single observation time within one assimilation window.

The subtle relationship between these two methods motivates a new hybrid data assimilation approach: the di-
rections identified by an iterative solver for a short window 4D-Var problem are used to construct the EnKF initial
ensemble. The proposed hybrid method is computationally less expensive than a full 4D-Var, as only short assimila-
tion windows are considered, and only a relatively small number of iterations is performed. The hybrid method has
the potential to perform better than the regular EnKF due to its look-ahead property. While the regular EnKF uses
an error subspace that is either randomly chosen, or constructed based on past dynamics and past data, the hybrid
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EnKF uses a subspace based on future dynamics and future data. The cost for the hybrid method is the more complex
infrastructure required including an adjoint model.

Numerical tests show that the proposed hybrid approach provides an analysis accuracy similar to the regular
EnKF, but uses a smaller number of ensemble members. For the same number of members, the overall increase in
computational cost over regular EnKF is moderate, as short window 4D-Var problems are solved infrequently, and
only a small number of iterations is performed each time. The hybrid method requires that a model adjoint is available.
The proposed approach brings together two different families of methods, variational and ensemble filtering. More
detailed tests on complex systems will be performed to further understand the properties of hybrid data assimilation
approaches. Future work is also needed to improve the computational efficiency of the hybrid method.

Several extensions of the present work are possible and needed in order to make the hybrid approach useful in real
calculations. A theoretical basis for choosing the length of the short 4D-Var windows in relation to the total length
of the assimilation window, and for deciding on-line when to regenerate the ensemble subspace by running a new
4D-Var, is needed. Moreover, one should investigate the possibility to optimally combine the regular subspace, which
contains past information, with the hybrid subspace, which contains future information, and to assess the implications
of this approach.
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