MULTIPHASE SCIENCE AND TECHNOLOGY
CONTENTS, VOLUME 32, 2020

Issue 1

Special Issue: 10th International Conference on Multiphase Flow

Guest Editors: Oscar Rodriguez & Jader Barbosa

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface: 10th International Conference on Multiphase Flow 2019</td>
<td>O.M.H. Rodriguez & J.R. Barbosa</td>
</tr>
<tr>
<td>Transient Gas/Liquid Two-Phase Flow in a Pipeline-Riser System after the Change of Inlet Flow Rates</td>
<td>S. Zou, W. Liu, Q. Xu, X. Xie, & L. Guo</td>
</tr>
<tr>
<td>Degreasing Technology with Ozone Micro-Bubbles Generated by a Venturi Tube</td>
<td>Y. Ruoyi, K. Fujii, A. Kaneko, Y. Abe, & M. Ike</td>
</tr>
<tr>
<td>Effect of Gas Content on the Cavitating and Non-Cavitating Performance of an Axial Three-Bladed Inducer</td>
<td>T. Magne, R. Paridaens, F. Ravelet, S. Khelladi, F. Bakir, P. Tomov, & L. Pora</td>
</tr>
</tbody>
</table>

Issue 2

Special Issue: 10th International Conference on Multiphase Flow, Part II

Guest Editors: Oscar Rodriguez & Jader Barbosa

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Wetting in Multi-Phase Pipe-Flow</td>
<td>J.R. Bentzon, A. Vural, K.L. Feilberg, & J.H. Walther</td>
</tr>
<tr>
<td>Enhancing Performance of Selective Catalytic Reduction (SCR) System by Combining Ammonia Direct Injection System (ADIS) and the IsoSwirl™ Mixer</td>
<td>A. Tabikh, L. Spagnolo, J. Zhou, N. Rafidi, & L. Czarnecki</td>
</tr>
</tbody>
</table>

Issue 3

Geoff Hewitt: They Don’t Make Them Like Him Anymore

J.R. Barbosa

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancement in Spray Atomization and Droplet Dispersal by Insertion of Perforated Plate in Swirl Air Stream</td>
<td>S. Sharma, K. Ghate, S. Sahu, & T. Sundararajan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble Tracking Simulations Using Simple Models for Fluctuating Bubble Motion</td>
<td>221</td>
</tr>
<tr>
<td>L. Amaya</td>
<td></td>
</tr>
<tr>
<td>Modeling of Primary and Secondary Atomization with Simplex Atomizers</td>
<td>237</td>
</tr>
<tr>
<td>K. Ghate, G. Muthuselvan, & T. Sundararajan</td>
<td></td>
</tr>
<tr>
<td>Smooth Interface Compression: An Improved Algebraic VOF Method to Model Flows Dominated by Capillary Forces</td>
<td>259</td>
</tr>
<tr>
<td>W. Rohlfis, P. Figueiredo, & P. Pischke</td>
<td></td>
</tr>
<tr>
<td>A Study of Particle Deposition on a Ribbed Duct Wall with the Effect of Particle Concentration</td>
<td>295</td>
</tr>
<tr>
<td>J. Somjun & P. Kaewpho</td>
<td></td>
</tr>
<tr>
<td>A Correlation for Pressure Drop Prediction for Solid-Liquid Slurry Flows through Horizontal Pipelines</td>
<td>311</td>
</tr>
<tr>
<td>M.K. Gopaliya & D.R. Kausal</td>
<td></td>
</tr>
<tr>
<td>Effects of Fluid Properties on Pressure Drops of Two-Phase Flows in Horizontal U-Bends</td>
<td>325</td>
</tr>
<tr>
<td>K. Hayashi, J. Kazi, N. Yoshida, & A. Tomiyama</td>
<td></td>
</tr>
<tr>
<td>Index, Volume 32, 2020</td>
<td>341</td>
</tr>
</tbody>
</table>
Abe, Y., 47
Aman, Z.M., 113
Aouinet, H., 181
Bakir, F., 81
Barbosa, J.R., v, 173
Bellakhal, G., 181
Bentzon, J.R., 137
Chahed, J., 181
Czarnecki, L., 155
Erlandsen, S.M., 93
Feilberg, K.L., 137
Figueiredo, P., 259
Fujii, K., 47
Ghate, K., 203, 237
Girardi, V., 93
Gopaliya, M.K., 311
Guo, L., 25
Guo, Y., 93
Gupta, V.K., 61
Hayashi, K., 221, 325
Hoffman, M., 113
Ike, M., 47
Kaewpho, P., 295
Kaneko, A., 47
Kaushal, D.R., 311
Kazi, J., 325
Khiware, A., 61
Khalteni, S., 81
Knopf, R., 113
Kollbottn, L., 93
Kurimoto, R., 221
Liu, W., 25
Magne, T., 81
Moreira, R.P.M., 93
Muthuselvan, G., 237
Paridaens, R., 81
Paris, C.B., 113
Pesch, S., 113
Pischke, P., 259
Pora, L., 81
Radmehr, A., 113
Radfidi, N., 155
Ravelet, F., 81
Rodriguez, O.M.H., v
Rohlf, W., 259
Ropelato, K., 93
Ruoyi, Y., 47
Sahu, S., 203
Sanyal, J., 61
Schlüter, M., 113
Sedrez, T., 1
Sharma, S., 203
Shirazi, S.A., 1
Somjum, J., 295
Spagnolo, L., 155
Srikanth, K.V.S.S., 61
Sundararajan, T., 203, 237
Tabikh, A., 155
Tomayama, A., 221, 325
Tomov, P., 81
Vural, A., 137
Waltner, J.H., 137
Xie, X., 25
Xu, Q., 25
Yoshida, N., 325
Zhou, J., 155
Zou, S. 25
air core dynamics, 237
air velocity fluctuations, 203
ammonia direct injection system (ADIS), 155
ammonia injection grid (AIG), 155
annular flow, 325
anti-diffusion schemes, 259
aspect ratio, 221
autonomous inflow control devices, 93
axial inducer, 81
bend pressure drop, 325
boundary sublayer, 295
bubbly flow, 181, 325
cavitation, 61, 81
CFD, 137, 311
computational fluid dynamics, 93
correction function, 181
degassing, 81
degreasing, 47
dissolved CO2, 81
drag force coefficient, 181
drag model, 221
droplet size, 137
duration time, 25
elbows in series, 1
ellipsoidal bubble, 221
endoscopic imaging, 113
energy dissipation rate, 113
erosion, 1
Euler-Euler, 137
flow pattern, 325
flow regime transition, 25
fluctuating bubble path, 221
forces acting on particles, 1
gas bubble size, 1
gas–gas mixing, 155
Geoff Hewitt, 173
hydraulic flip, 61
inlet flow rates, 25
interface advection, 259
interface compression schemes, 259
IsoSwirlTM mixer, 155
large-scale experiments, 113
liquid holdup, 137
medium gas volume fraction, 181
mesh diameter, 203
microbubble, 47
multi-fluid flows, 259
multiphase flow, 1, 173
multiphase free jet, 113
multiphase, 137
NPSH, 81
numerical simulation, 181, 221
oil blowout, 113
oil fate, 113
oil, 137
OpenFOAM, 259
overset mesh, 61
ozone, 47
partial flow rates, 81
patented swirling, 155
perforated plate, 203
pipeline–riser system, 25
pipelines, 311
plug flow, 325
pressure drop, 311
primary breakup, 237
pseudo-transient, 61
reservoir simulation, 93
roughness wall, 295
Sauter mean diameter, 113
scale-up, 113
secondary breakup, 237
selective catalytic reduction (SCR), 155
S-gamma, 137
shape factor, 181
simplex atomizer, 237
simulation, 311
slug flow, 325
slurry flows, 311
solidity ratio, 203
spray modeling, 237
spray, 203
STAR–CCM+, 173
subsea oil spill, 113
surface wetting, 137
technology mixer, 155
transient behavior, 25
tribute, 173
turbulent diffusion, 61
turbulent droplet breakup, 113
two-phase flow, 81, 295
Venturi tube, 47
visualization, 47
volume-of-fluid method, 259
water coning, 93
water-wetting, 137