International Journal of Energy for a Clean Environment

Index Volume 22, 2021

Page Range of Issues
- Issue 1: 1–112
- Issue 2: 1–104
- Issue 3: 1–100
- Issue 4: 1–111
- Issue 5: 1–122
- Issue 6: 1–146

Issue 1

What Are the Barriers That Prevent Its Adoption? Case Study of Battery Electric Vehicles
- A. Alkhalidi, R. Almahmood, H. Malkawi, & R.S. Amano

Energy Saving Analysis Using Energy Intensity Usage and Specific Energy Consumption Methods
- J. Espindola, F.N. Nourin, M.D. Qandil, A.I. Abdelhadi, & R.S. Amano

Process Optimization and Characterization of Manila Tamarind Seed Oil Extracted By the Soxhlet Method

Pragmatic Analysis on Performance and Emission and a Single-Zone Engine Model Development with Inedible Neem and Waste Vegetable Oil Biodiesel Blend (B10)
- A. Samanta & P.C. Roy

Energy Analysis: Ways to Save Energy and Reduce the Emissions in Wastewater Treatment Plants
- M.D. Qandil, A.I. Abbas, A.I. Abdelhadi, A.R. Salem, & R.S. Amano

Issue 2

Exergy Analysis of a CO2 Boil-Off Gas Re-Liquefaction System
- M. Ketfi & A. Ouadha

Comparative Thermoeconomic and Environmental Impact Analyses of Different Combined Cycle Power Systems
- I.H. Njoku & C. Oko

Friction Factor for Ducts of Sinusoidal Walls with a Layer of Porous Material
- L.M. Brondani & M.J.S. de Lemos

Effect of Design Parameters on the Performance of DSG Linear Fresnel Solar Power Plant
- M. Sofiane

Provision of Reliable Electricity to Primary Health Care Facilities in Nigeria — A New Focus of Interventions
- V.A. Ani

Issue 3

Fuel Characterization of Bio-Oil from Fast Pyrolysis of *Tectona grandis* in a Fixed Bed Reactor at Different Temperatures (400–700°C)
- P.O. Okekunle, A.D. Ogunsola, O.A. Babayemi, E.D. Abodunrin, & O.M. Daramola

Thermal and Economic Analyses of Different Glazing Systems for a Commercial Building in Various Moroccan Climates
- A. Lachheb, A. Allouhi, R. Saadani, A. Jamil, & M. Rahmoune

Phase Field Lattice Boltzmann Simulations of Water Droplet Transport in a Proton Exchange Membrane Fuel Cell Flow Channel
- M. Jithin, M.K. Das, & A. De

Investigation of the Hydraulic Flow Characteristics of a Common Rail Injector during
Operation Process in a Diesel Engine
W. Chen, Y. Li, Y. Wang, C. Zhang, Y. Lei, & T. Qiu

ISSUE 4

Fundamental Effect of Vibrational Mode on Vortex-Induced Vibration in a Brimmed Diffuser for a Wind Turbine
T. Kim, H. Nagai, N. Uda, & Y. Ohya

Water Turbines with a Brimmed Diffuser by Using Wind Lens Technology
K. Watanabe & Y. Ohya

Comparative Analysis of the Environmental Impacts of Renewable Electricity Generation Technologies in Rwanda
E. Hakizimana, U.G. Wali, D. Sandoval, & K. Venant

ANFIS-Based Maximum Power Point Tracking Using Genetic Algorithm Tuned Fractional-Order Proportional-Integral-Derivative Controller and On-Site Measured Climatic Data
M.S. Bouakkaz, A. Boukadoum, O. Boudebbouz, N. Boutassetta, I. Attoui, N. Fergani, A. Bouraiou, & A. Neçaibia

Review on Current Technologies: Struvite Formation, Control and Nutrient Recovery in Wastewater Treatment
F.N. Nourin & R.S. Amano

Thermal Efficiency of Solar Volumetric Receivers Using Constant and Variable Fluid Properties
M.J.S. de Lemos & R.R. Ribeiro

ISSUE 5

Stratification and Energy Losses in a Standby Cycle of a Thermal Energy Storage System
F.A. Rodrigues & M.J.S. de Lemos

Health Effect of Indoor PM_{2.5} and CO Emissions from Coal and Biomass Fired Domestic Appliances in Remote Rural China
J. Wu, F. Cheng, & D. Zhang

Performances and Economics of Heat Pump Water Heater
H. Sonawan & J. Hakkiki

Performance Prediction of Innovative Solar Air Collector (ISAC) with Phase Change Material Using the ANN Approach
N. Mehla, B. Singh, & A. Kumar

Effect of Pore Diffusion on the Gasification Characteristics of Coal Char under CO_2 Atmosphere
M. Shahabuddin, M.A. Kibria, & S. Bhattacharya

Green Energy Recovery from Waste in Thailand: Current Situation and Perspectives
K. Laohalidanond & S. Kerdsuwan

ISSUE 6

A Systematic Approach in Power Plant Performance Improvement through Exergy Analysis — A Case Study of Tamnar, Chhattisgarh, India
S. Yadav, S. Chakrabarti, & P. Bose

Experimental Investigation of Solar Energy-Aided Air-Handling Units Using a Double-Tube Double-Stage Heat Pipe Exchanger
S.A. Abdelrahman, M.M.K. Dawood, A.I. Shehata, & T. Nabil

Performances and Economics of Heat Pump Water Heater
H. Sonawan & J. Hakkiki

Energy, Economic, Environmental and Heat Transfer Analysis of a Solar Flat-Plate Collector with Ph-Treated Fe_{3}O_{4}/Water Nanofluid
Numerical Investigation of Hydrogen–Air Mixture Induction and Diesel Injection in a Single Cylinder 4-Stroke Compression Ignition Engine
A. Muthuveerappan, C. Ajay, & R. Manimaran

Estimation of Performance Parameter of Top-Lit Up-Draft Cookstove Using Locally Available Wood Feedstock

Index, Volume 22, 2021
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbas, A.I.</td>
<td>91</td>
</tr>
<tr>
<td>Abdelhadi, A.I.</td>
<td>15, 91</td>
</tr>
<tr>
<td>Abdelrahman, S.A.</td>
<td>35</td>
</tr>
<tr>
<td>Abodunrin, E.D.</td>
<td>1</td>
</tr>
<tr>
<td>Ajay, C.</td>
<td>99</td>
</tr>
<tr>
<td>Alkhafidi, A.</td>
<td>1</td>
</tr>
<tr>
<td>Allouhi, A.</td>
<td>15</td>
</tr>
<tr>
<td>Almahmood, R.</td>
<td>1</td>
</tr>
<tr>
<td>Amano, R.S.</td>
<td>1, 15, 83, 91</td>
</tr>
<tr>
<td>Ani, V.A.</td>
<td>83</td>
</tr>
<tr>
<td>Atoue, I.</td>
<td>63</td>
</tr>
<tr>
<td>Babayemi, O.A.</td>
<td>1</td>
</tr>
<tr>
<td>Bhattacharya, S.</td>
<td>85</td>
</tr>
<tr>
<td>Bose, P.</td>
<td>1</td>
</tr>
<tr>
<td>Bouakkaz, M.S.</td>
<td>63</td>
</tr>
<tr>
<td>Boudebbouz, O.</td>
<td>63</td>
</tr>
<tr>
<td>Boukaddour, A.</td>
<td>63</td>
</tr>
<tr>
<td>Boutassea, N.</td>
<td>63</td>
</tr>
<tr>
<td>Brondani, L.M.</td>
<td>51</td>
</tr>
<tr>
<td>Chakrabarti, S.</td>
<td>1</td>
</tr>
<tr>
<td>Chen, W.</td>
<td>77</td>
</tr>
<tr>
<td>Cheng, F.</td>
<td>33</td>
</tr>
<tr>
<td>Daramola, O.M.</td>
<td>1</td>
</tr>
<tr>
<td>Das, M.K.</td>
<td>43</td>
</tr>
<tr>
<td>Dawood, M.M.K.</td>
<td>35</td>
</tr>
<tr>
<td>de Lemos, M.J.S.</td>
<td>1, 51, 95</td>
</tr>
<tr>
<td>Ribeiro, R.R.</td>
<td>95</td>
</tr>
<tr>
<td>De, A.</td>
<td>43</td>
</tr>
<tr>
<td>Elsheikh, A.</td>
<td>31</td>
</tr>
<tr>
<td>Espindola, J.</td>
<td>15</td>
</tr>
<tr>
<td>Fergani, N.</td>
<td>63</td>
</tr>
<tr>
<td>Hakizimana, E.</td>
<td>47</td>
</tr>
<tr>
<td>Hakiki, J.</td>
<td>51</td>
</tr>
<tr>
<td>Jamil, A.</td>
<td>15</td>
</tr>
<tr>
<td>Jithin, M.</td>
<td>43</td>
</tr>
<tr>
<td>Karuppasamy, K.</td>
<td>31</td>
</tr>
<tr>
<td>Kersduwan, S.</td>
<td>103</td>
</tr>
<tr>
<td>Kefri, M.</td>
<td>1</td>
</tr>
<tr>
<td>Kibria, M.A.</td>
<td>85</td>
</tr>
<tr>
<td>Kim, T.</td>
<td>1</td>
</tr>
<tr>
<td>Kumar, A.</td>
<td>65</td>
</tr>
<tr>
<td>Lachheb, A.</td>
<td>15</td>
</tr>
<tr>
<td>Laohalidanond, K.</td>
<td>103</td>
</tr>
<tr>
<td>Lei, Y.</td>
<td>77</td>
</tr>
<tr>
<td>Li, Y.</td>
<td>77</td>
</tr>
<tr>
<td>Malkawi, H.</td>
<td>1</td>
</tr>
<tr>
<td>Manimaran, R.</td>
<td>99</td>
</tr>
<tr>
<td>Manokar, A.M.</td>
<td>31</td>
</tr>
<tr>
<td>Maurya, S.</td>
<td>129</td>
</tr>
<tr>
<td>Mehta, N.</td>
<td>65</td>
</tr>
<tr>
<td>Mesfin, S.</td>
<td>55</td>
</tr>
<tr>
<td>Muthupeerappan, A.</td>
<td>99</td>
</tr>
<tr>
<td>Nabil, T.</td>
<td>35</td>
</tr>
<tr>
<td>Nadanakumar, V.</td>
<td>31</td>
</tr>
<tr>
<td>Nagai, H.</td>
<td>1</td>
</tr>
<tr>
<td>Nefaib, A.</td>
<td>63</td>
</tr>
<tr>
<td>Njoku, I.H.</td>
<td>17</td>
</tr>
<tr>
<td>Nourin, F.M.</td>
<td>83</td>
</tr>
<tr>
<td>Nourin, F.N.</td>
<td>15</td>
</tr>
<tr>
<td>Ogunosola, A.D.</td>
<td>1</td>
</tr>
<tr>
<td>Ohy, Y.</td>
<td>1, 33</td>
</tr>
<tr>
<td>Okekunle, P.O.</td>
<td>1</td>
</tr>
<tr>
<td>Oko, C.</td>
<td>17</td>
</tr>
<tr>
<td>Ouadha, A.</td>
<td>1</td>
</tr>
<tr>
<td>Punniad, V.</td>
<td>55</td>
</tr>
<tr>
<td>Qandil, M.D.</td>
<td>15, 91</td>
</tr>
<tr>
<td>Qiu, T.</td>
<td>77</td>
</tr>
<tr>
<td>Rahmoune, M.</td>
<td>15</td>
</tr>
<tr>
<td>Rodrigues, F.A.</td>
<td>1</td>
</tr>
<tr>
<td>Roy, P.C.</td>
<td>53</td>
</tr>
<tr>
<td>Saadani, R.</td>
<td>15</td>
</tr>
<tr>
<td>Said, Z.</td>
<td>55</td>
</tr>
<tr>
<td>Salem, A.R.</td>
<td>91</td>
</tr>
<tr>
<td>Samanta, A.</td>
<td>53</td>
</tr>
<tr>
<td>Sandoval, D.</td>
<td>47</td>
</tr>
<tr>
<td>Sathyamurthy, R.</td>
<td>31</td>
</tr>
<tr>
<td>Sekhar, S.C.</td>
<td>31</td>
</tr>
<tr>
<td>Shahabuddin, M.</td>
<td>85</td>
</tr>
<tr>
<td>Sharma, A.K.</td>
<td>129</td>
</tr>
<tr>
<td>Shehata, A.I.</td>
<td>35</td>
</tr>
<tr>
<td>Shrivastava, D.</td>
<td>129</td>
</tr>
<tr>
<td>Singh, A.</td>
<td>129</td>
</tr>
<tr>
<td>Singh, B.</td>
<td>65</td>
</tr>
<tr>
<td>Singh, M.K.</td>
<td>55, 129</td>
</tr>
<tr>
<td>Sofiane, M.</td>
<td>65</td>
</tr>
<tr>
<td>Sonawan, H.</td>
<td>51</td>
</tr>
<tr>
<td>Sousa, A.C.M.</td>
<td>55</td>
</tr>
<tr>
<td>Sundar, L.S.</td>
<td>55</td>
</tr>
<tr>
<td>Uda, N.</td>
<td>1</td>
</tr>
<tr>
<td>Vedaraman, N.</td>
<td>31</td>
</tr>
<tr>
<td>Venant, K.</td>
<td>47</td>
</tr>
<tr>
<td>Vibhanshu, V.</td>
<td>129</td>
</tr>
<tr>
<td>Vijayabal, P.</td>
<td>31</td>
</tr>
<tr>
<td>Wali, U.G.</td>
<td>47</td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>77</td>
</tr>
<tr>
<td>Watanabe, K.</td>
<td>33</td>
</tr>
<tr>
<td>Wu, J.</td>
<td>33</td>
</tr>
<tr>
<td>Yadav, S.</td>
<td>1</td>
</tr>
<tr>
<td>Yadav, V.K.</td>
<td>129</td>
</tr>
<tr>
<td>Zhang, C.</td>
<td>77</td>
</tr>
<tr>
<td>Zhang, D.</td>
<td>33</td>
</tr>
</tbody>
</table>
absorption refrigeration, 17
activation energy, 85
adaptation, 1
adaptive neuro-fuzzy
inference system, 63
aeroelastic analysis, 1
air conditioner, 51
air handling unit, 35
air, 99
annual simulation, 15
ANOVA, 31
artificial neural network, 65
barriers, 1
biodiesel, 53
biological nutrient removal
(BNR), 83
biomass, 1, 33
bio-oil, 1
boiler feed pump, 1
boiler, 1
Box–Behnken design, 31
building performance, 15
CFD, 1
child health, 83
chi-square, 1
CO, 33
CO2 BOG, 1
canal gasification, 85
coal, 33
collector, 55
common-rail injector, 77
compressed air, 15
compression ignition engine, 99
computational fluid
dynamics, 99
concentrating solar power
(CSP), 95
condenser, 1
cookstoves, 129
cost, 55
diesel engine, 77
diffuser-type structure, 33
direct steam generation, 65
domestic appliances, 33
duct flow, 51
effectiveness, 35
efficiency, 1
efficiency, 55
electric vehicles, 1
electrical motors, 91
electricity, 83
emission model, 53
energy assessment, 15
energy intensity usage,
15
energy savings, 15, 91
engine performance, 53
environmental impact
assessment, 17, 47
environmental, 55
EOC, 53
evacuated tube, 65
exergetic efficiency, 53
exergy analysis, 1
FEM, 1
fractional-order proportional
integral derivative
controller, 63
fuel cell gas channel, 43
fuel properties, 1
gasifier, 129
hydration, 33
heating, 15
heating rate, 51
high-density ratio, 43
hydraulic flow, 77
hydrogen, 99
indoor air pollution, 33
injection pressure, 77
interventions, 83
investment selection, 17
kinetic study, 85
lattice Boltzmann, 43
levelized cost of electricity,
65
light emitting diode, 91
Industrial Assessment Center,
91
linear Fresnel plant, 65
lock-in, 1
Manila tamarind seed oil, 31
mass fraction, 99
maternal and neonatal
maximum power point
tracking, 63
MBF, 53
Moroccan climates, 15
mortality, 83
multiphase simulation, 43
natural gas combined cycle, 17
neem oil, 53
nitrogen, 83
onsite measured climatic
data, 63
operating cost, 51
optimization, 31, 65
optimum interstage
organic Rankine cycle, 17
Pareto chart, 1
phase change material, 65
phase-field model, 43
phosphorus, 83
pH-treated nanofluids, 55
PM2.5, 33
pore diffusion, 85
porous media, 1, 51, 95
power augmentation, 33
power plant generation, 47
pressure, 1
proposed energy
consumption, 15
public health, 83
public-private partnership,
103
pyrolysis, 1
radiation, 95
re-liquefaction, 1
renewable energy
technology, 47
renewable energy, 103
response surface
methodology, 31
ship, 1
single-zone model, 53
sinusoidal walls, 51
SOC, 53
solar air collector, 65
solar energy, 35, 51
solar photovoltaic, 83
solar thermal power plant, 65
solvent extraction, 31
specific energy consumption, 15
standard industrial classification, 15
standby cycle, 1
struvite, nutrient recovery, 83
sustainable energy, 83
swirl ratio, 99
Tectona grandis, 1
TGA, 85
thermal energy storage, 1
thermal nonequilibrium, 1
thermoeconomic analysis, 17
three-stone, 129
TLUD, 129
turbine, 1
turbulent flow, 51
utilization, 1
variable properties, 95
variable speed drive, 91
vibrational mode, 1
vortex shedding, 1
vortex-induced vibration, 1
waste heat, 51
waste management, 103
waste to energy, 103
waste vegetable oil, 53
wastewater treatment plant (WWTP), 83
water turbine, 33
wind lens, 1
wind–lens technology, 33
World Health Organization, 83