NOMENCLATURE

\(a \) – thermal diffusivity, \(m^2/s \)
\(A_c \) – area of the undisturbed flow, \(m^2 \)
\(A_v \) – reduced area, \(m^2 \)
\(d_i \) – maximum dimension of the oval profile of the rod, \(m \)
\(d_h \) – hydraulic diameter, \(m \)
\(D_i \) – effective coefficient of diffusion
\(F \) – open area of the bundle, \(m^2 \)
\(F_{rods} \) – total cross-sectional area of rods in the bundle, \(m^2 \)
\(G, g \) – flow rate of the coolant, \(kg/s \)
\(i, h \) – acceleration due to gravity, \(m/s^2 \)
\(I \) – momentum transfer, \(kg/(m^2\cdot s) \)
\(l \) – diffusion length, \(m \)
\(m \) – distinctive length, \(m \)
\(m_k \) – bundle porosity with respect to the coolant, \(F/F_{rods} \)
\(n \) – number of rods in the bundle
\(p_{k} \) – pressure in the cell, \(N \)
\(\text{rem} \) – root-mean-square;
\(s \) – rod spacing, \(m \);
\(T, t \) – temperature, \(K \)
\(\text{pitch of the wire wrapping, m} \)
\(u \) – flow velocity, \(m/s \)
\(x \) – bundle length, \(m \)
\(Q, q \) – heat flux, \(W/m^2 \)
\(y_{kx} \) – width of the velocity profile, \(m \)
\(\alpha \) – heat transfer coefficient, \(W/(m^2\cdot K) \)
\(\beta_p \) – coefficient of interchannel mixing
\(\beta_v \) – coefficient of volumetric expansion
\[\delta_{k,n} \quad \text{characteristic momentum mixing length} \]
\[\Delta h \quad \text{pressure difference on the Pitot tube, N} \]
\[\varepsilon_q, \mu_q \quad \text{thermal diffusivities, m/s} \]
\[\varepsilon_c, \mu_c \quad \text{turbulent viscosities, m/s} \]
\[\varepsilon \quad \text{blockage ratio of the flow area, } \varepsilon = A_n/A_c \]
\[\varphi \quad \text{angle, } ^\circ \]
\[\chi \quad \text{shape factor} \]
\[\lambda \quad \text{thermal conductivity of the coolant, W/(m\cdot K)} \]
\[\nu \quad \text{kinematics viscosity, m}^2/\text{s} \]
\[\Pi_{k,n} \quad \text{length of the gap in which the cells interact, m} \]
\[\rho \quad \text{density, kg/m} \]
\[\tau \quad \text{shear stresses, N/m} \]
\[\xi \quad \text{resistance coefficient of the bundle} \]
\[\psi \quad \text{relative heat transfer coefficient} \]
\[\zeta \quad \text{resistance coefficient of the spacer grid} \]
\[\text{Fr}_m \quad \text{dimensionless number, characterizing the} \]
\[\quad \text{intensity of the flow swirl in the bundle of rods} \]
\[\quad \text{with a wire wrapping (modified Froude number)} \]
\[\quad \text{Fr}_m = T^2/d_{h,d_v} \]
\[\text{Pr} \quad \text{Prandtl number, (Pr = } \mu c_p/\lambda) \]
\[\text{Nu} \quad \text{Nusselt number, (Nu = } \alpha d_h/\lambda) \]
\[\text{Ra} \quad \text{Rayleigh number, (Ra = } g \beta \Delta T b^3/\nu a) \]
\[\text{Re} \quad \text{Reynolds number, (Re = } u d_h/\nu) \]
\[\text{Le} \quad \text{Lewis number, (Le = } \rho c_p D_v/\lambda) \]
\[\text{St} \quad \text{Stanton number, (St = } \alpha/c_p \rho u) \]

Subscripts and superscripts

\[\infty \quad \text{in the free flow} \]
\[\text{ad} \quad \text{adiabatic} \]
\[b \quad \text{bundle} \]
\[c \quad \text{calculated} \]
\[ch \quad \text{channel} \]
\[cr \quad \text{critical} \]
\[en \quad \text{entrance} \]
\[ex \quad \text{experiment} \]
\[f \quad \text{conditions as to the flow temperature} \]
\[i \quad \text{cell number} \]
\[is \quad \text{isolation conditions} \]
j — surface number

k, n — between the cells k and n

lar — laminar

q — heat

r — rough

ran — random

rem — root-mean-square

ss — self-similar

sg — spacer grid

sh — shell

sm — smooth

st — stabilization

$syst$ — systematic

t — tube

ts — two-sided

w — conditions at the wall

τ — friction

Abbreviations

DARS — Lithuanian abbreviation for calculation of gas-cooled reactors

FA — fuel assembly

MVL — maximum velocity line

N — normal

PMV — point of maximum velocity

PN — principal normal

SG — spacer grid