SUBJECT INDEX

A

absorption, radiation, 92, 94
accident management strategy, 115
Aclerman correction factor, 472
acoustic streaming, 281
accuracy
 estimation, 392
 predictions, 392
additives, 3
adhesion, platelet, 100
admittance
 characteristic, 236
 input, 235, 239
 tip, 239
air cooled
 cold plate, 203
 heat exchanger, 194
 heat sink, 200
air cooling, 200, 208
air industrial furnace, 87
air bubble injection, 175, 176, 311
air injection and dispersion, 430
air jet(s)
 impinging, 307
 non-impinging, 308
air side pin fin array, 200
algorithm(s)
 cascade, 235, 236
 cluster, 236
 condensing prediction, 471
 parallel, 236
SAMPLE, 63
SIMPLE, 392, 423
trajectory, 89
allometric law(s), 51, 56
ammonia refrigeration, 333
amplitude/wavelength ratio, 118
analogies
 Colburn-Chilton, 472
 general, 392
 heat/mass transfer, 321, 414
angle(s)
 cavity, 102
 cone, 103
 contact, 103
 inclination, 115
 mouth, 102, 109
 static constant, 109
 wedge, 101
annular
 diaphragms, 298
 grooved tubes, 298
 flow, 448
 grooved tubes, 298
apparent friction factor, 396
array(s)
 cold plate, 210
 finned, 211
 general, 210, 215, 406
 optimum geometry, 208
 optimization, 236-238
 parallel plate fin, 207, 208, 212, 215
 pin fin, 208
 square pin fins, 193
aspect ratio, fin, 239
augmentation
 bubble factor, 203
 duct flow, 409
factor, 202
forced convection, 405
general, 203, 204, 369
heat transfer, see augmentation of heat transfer
natural convection, 203, 204
ratio, 197, 202, 204
turbine blade cooling, 339
augmentation of heat transfer
active techniques, 379, 382, 383
general, 277, 278
induced flow, 279
injection, 278, 280
jet impingement, 279
mechanical aids, 278, 279
rotation, 279, 282
summary of, 277
vibration techniques, 280-282
world wide status, 279
general, 406
passive techniques
advanced, 278
general, 277
average(s)
phase, 320
temporal, 320
axi-symmetric, 115

B
back wall, reradiating, 89
bilinear transformation, 235
bi-metal tubes, 245
binary collisions, 433
biological "on-off" processes, 51
Blasius correlation, 471
formula, 449
bleed holes, 340
blood circulation, 51
boiling
 crisis, 113
film, see flow boiling
flow, see film boiling
heat transfer coefficient, 147
hysteresis, 139
incipience, 101
nucleate, see nucleate boiling
number, 170
pool, see pool boiling
subcooled flow, 12, 13, 147, 437, 440
thin film, 175
transition, see transition boiling
boundary layer
bubble, 328, 329
developing liquid, 118
development, 212, 311
disruption, 311
disturbances, 309
dynamics, 308
hydrodynamic, 278, 309, 311
laminar, 54, 436
partially developed, 311
renewal, 307, 311, 312
scaling, 53
stability analyses in, 313
thermal, 277, 282, 309, 311
turbulent, 414
Boussinesq approximation, 358
model, 392
Brinkman-Forchheimer model, 215
bubble(s)
boundary layer, 328, 329
clusters, 140
departure, 106, 118
embryo, 101
frequency, 312
generation, 101, 105, 436
injection, 283, 310
period, 101
inception, 101, 106
merger of, 105
movement, 106
non condensing, 197
cavity
conical, 101, 103
entrapment, 101
flooding, 115
general, 100
liquid/vapor interface in, 101
local distribution of, 103
mouth
angle, 102, 104
diameter, 101, 103
probability density function, 103
reservoir type, 104, 109
shape of, 120
side angle, 101
spherical, 102, 104

wedge angle, 101
cell(s)
donor, 92
interaction with photon bundles, 89
receptor, 92

channel(s)
choking in, 147
diamond, 147
geometry
blockage, 65
communicating, 381
louvered fin, 381
offset fin, 381
strip fin, 381
micro, 147

characteristic
admittance, 235
impedance, 235
Choanda effect, 302, 303

choking
heat flow, 235
in channels, 148
chopper wheels, 307, 310, 311
circuit densities, 208
circular duct flow, 406
circulation ratio, 334
cladding, 245
coatings, 246
Clausius-Clapeyron equation, 101, 108
Colburn-Chilton
analog, 472
equation, 472
Colburn correlation, 171
Colburn-Hougen
analysis, 476
method, 467, 471
compact two phase heat exchangers, 135
combined heat/mass transfer, 255
competing irreversibilities, 408
composition uncertainties, 392
computational
cells, 87
fluid dynamics (CFD), 431, 436
methodology
algorithms, 355, 358
background, 354, 355
computing power/unit cost, 353
concentration gradient(s), 324
condensate
drainage, 469, 455
film thickness, 469
condensation
correlations, 470, 471
effects of
circumferential temperature variation, 456
interface matter transfer, 457
film, 196
flow regimes, 469
gravity controlled, 469
laminar film, 199
low-finned tubes, in, 455
Nusselt theory, 455
on pin fins, 199
prediction algorithm, 471
shear controlled, 469
with non condensable gas, 471, 472
conduction, time dependent, 52
conjugate thermal transport, 59
capacitance, 114
constitutive laws, 448
contact
angle
general, 100, 102, 105, 109, 111, 112
hysteresis, 101
minimum side, 101
mouth, 101
static, 109, 111, 116
wedge, 101
melting, 52
pressure, 195
conservation equation, generic, 431
continuous phase velocity, 436
continuous porous strip, 255
controlling thermal resistance, 246
"cross-grooved" tube geometry, 248
correlation
bubble pumped, 194, 197, 202, 204
coefficients
Churchill-Chu, 196
Colburn, 158
Dittus-Boelter, 158
Gerstmann-Griffith, 197
Goldstein, 196
Markowitz-Bergles, 197
Nusselt, 199
Petukhov-Kirillov, 158
Protopopov, 158
Rohsenow, 198
Watwe, 198
Zuber, 198
forced, 54-56
models, 51-54, 152
natural, 51-54, 194-196, 201, 203, 204, 379, 380
uncertainties
free, 395
mixed, 391
convergence criteria, 94
convoluted free surface, 309
coolant extraction surface, 342
cooling of electronic equipment
air, 208
boiling heat transfer in, 227
cold plate
air cooled, 203
arrays, 210
downward facing, 197
finned, 209, 211
general, 211
dielectric coolants, 227, 230, 231
direct immersion, 227
efficiency, 217
general, 194, 205
high power density chips, 227, 232
indirect liquid systems, 208
liquid cooled, 195
 unfinned, 196
 water cooled, 201
liquid encapsulated module (LEM), 229, 230, 232
immersion, 228, 232, 233
microelectronic components, 193
natural convection, 217
performance, system level, 219 copper sleeves, 135

Correlations
Churchill-Chu, 196
Colburn, 158
Dittus-Boelter, 158, 184-186, 344
Gerstmann-Griffith, 197
Goldstein, 196
Liu-Winterton, 183, 185
Markowitz-Bergles, 197
Nusselt, 199
Petukhov, 184-186
Petukhov-Kirillov, 158
Protopopov, 158
Rohsenow, 198
Shah, 183-186
Watwe, 198
Zuber, 198
covered tubes, 135
critical heat flux (CHF)
correlation(s) for, 198, 326, 328
enhancement, 325
experiments, 326
flow boiling, 13, 14
general, 108, 110, 194, 198, 230, 231
helically cooled tubes, 14
limit, 204
non-uniformity factor, 328
post-CHF model, 151-157, 165
pre-CHF model, 151-156, 165
prediction, 326
onset of, 115
prediction of, 114
reduction, 114
subcooled, 440
value, 198
critical velocity, vapor jets, 110
cross flow, 55
crossed-string method, 92
cryogenic fluids, 117, 296
coupling, pressure/velocity, 392
curvature, dimensionless modified, 102
curved flow, 101, 400

D

deactivation of sites, 104
deflectors, flow, 231
deformation behavior, glass, 72
degradation of heat transfer, 168, 171
density wave type oscillation, 443, 445-447, 452
depth, sink mark, 71-75
desktop computers, 208
detachment
 point, 159
temperature, 153, 154
developing regime, 215
dewatering
general, 461
thermohydraulic, 461
diamond shaped
 channel, 147
cylinders, 301
 island(s), 302-304
diaphragmed tubes, 295
dielectric
 coolant, 209, 211
 liquids, 193
dielectrophoretic force, 283
diffuse radiation source, 92
diffusion coefficients, 472
dimensionless
 entropy generation, 406, 411
 modified curvature, 102
 view factor(s), 92
direct contact
 drying, 256
 heat transfer, 256
liquid cooling
general, 193
microelectronics, 193
mass transfer, 256
porous strip, 256
direct immersion cooling, 227
direct radiation exchange factor(s), 87
discrete heat sources, 207, 215
discretization techniques, 354
disjoining pressure, 108
dispersed
film boiling regime, 296
flow film boiling, 9
phase Reynolds stress, 436
spherical particles, 432, 433
two phase flow, 435
Dittus-Boelter correlation, 184, 186, 339
dominant thermal resistance, 245
doubly enhanced tubes, 247, 249
drift flux model, 445, 448
droplet
diameter, 175
formation frequency, 176
general, 175, 176
generator, 175-177
dry area fraction, 113, 116
drying
dielectric, 461
direct contact, 256
dryout
heater surface, 115
process, 115
dynamics, 256
moving porous strip, 255
superheated steam, 461
duct flow
augmented, 409
general, 405
irreversibility, 409
optimum, 406
dynamic
drying, 256
evaporation, 256

friction, 434
instabilities, 443, 448

E
effective heat transfer coefficient, 212
effectiveness, fin, 213, 215
efficiency
effective spray cooling, 180, 181
fin, 209, 214, 235, 236
electromagnetic radiation, 218
electrophoretic force, 282
electrostrictive force, 283
Elenbaas correlation, 208
emission
control strategies, 468
reductions, 474, 475
volatile organic vapors, 468
empirical configuration factor, 194
energy source point, 302
enhanced
condenser
performance, 468
technology, 468, 469
heat transfer, 311, 313
natural convection, 105
surfaces, 127
tube(s)
evaporation in, 135
general, 245, 467, 468
geometries, 252, 470
spirally ribbed, 469
enhancement
boiling heat transfer
film evaporation, 10
general, 227, 295-297
pool boiling, 7, 8
both sides, 245
bubble pumped, 202
condensation heat transfer, 296, 297
criteria, 7, 8
devices, 333
factor, 334
heat transfer
 during drying, 256
general, 147, 148, 168, 208, 212, 214, 295
geometries, historical evolution of, 246-252
inside, 245
mass transfer
 during drying, 256
general, 473
 natural convection, 214
 options, 214, 215
natural convection, 214, 215
passive techniques, 334
preferred geometry, 469, 470
pool boiling
 low finned structures, 7, 8
 ultrasonic techniques in, 7, 8
porous medium surface, 206
refrigeration capacity, 333
review papers, 10, 11
single phase flow
 additives, 5
 general, 474
 performance evaluation, 7, 8
 spirally grooved, 6
 turbulators, 6
 twisted tape inserts, 5, 6
strategies, 385, 388
surface, 205
thermal, 204
two phase flow
 boiling, 9
 condensation, 9
 internally finned tubes, 9
 microfins, 9
 twisted tapes, 9
ultrasonic, 230
vibration, 5
ensemble
 average, 431
definition, 432
enthalpy perturbations, 448
entrainment of vapor, 101, 105, 106
entropy
 concept, 406
dimensionless, 406-411
formulation, 59, 61
general, 51
generation, 51
minimization, 51
rate, 405-410
evaporation
 dynamics, 255, 256
 latent heat transport, 106, 107
 limit, 100, 101
 macrolayer, 116, 117
 microlayer, 107
 rate, 108, 112, 113
evaporator(s)
 flooded, 137, 333
 kettle, 137
 spray, 334, 336
expansion chamber, 201
extended Chen model, 158, 161, 162
external
 condensation, 301
 resistance, 201
F
falling film(s)
 ammonia, 334
general, 334
fan power, 383
Fanning friction coefficient, 448
“fan sink” heat exchanger, 193, 203
fatigue failure, 443
fibrous components, 215
film
boiling
 effect of radiation, 117
genral, 99, 100, 113, 116-120, 121, 280
 gravity feed system, 229
 heat flux, 116
 interfacial condition(s), 117
 saturated, 118
subcooled, 117, 118
condensation, 196
extraction holes, 339, 344
substrate thickness, 118
theory model, 128
rupture, 120
filter press, 462
fin
effectiveness, 203, 205
efficiency, 209, 214, 235, 236
optimum spacing, 210
spacing, optimum, 210
finite-difference(s)
analysis, 211
equations, 449
finite temperature irreversibility, 410
finned submerged condenser, 199
flat plate submerged condenser, 199
flip flop phenomenon, 302, 305
flooding evaporator, 137, 339
flooding cavity, 115
flow(s)
accelerating, 308
annular, 448
boiling
channel, 148
deflectors, 231
CHF in, 15, 16
general, 12-14, 144, 194, 227, 231, 436
heat transfer coefficients in, 167-173
measurements, 167
systems, 184
modeling limitations
complex geometry, 358, 359
complex physics, 362, 363
turbulence, 359, 362
uncertain physical understanding, 363
physics, 168
subcooled, 14, 15
circular duct, 406
disturbances, 308
divider, 301, 302
dynamic instabilities, 443
duct, 405
external tube, 308
fully developed, 382, 383
hydraulically fully developed, 383
impinging jet, 307
internal duct, 405
internal tube, 308
irreversibility level, 496
island(s), 301, 302
network(s), 301-303, 305
pattern(s), 301
oscillations, 323
pulsating, 307, 308, 311, 313, 320
regimes
laminar, 392, 405
mixed convection, 393, 397
multiphase, 431, 440
optimum, 405, 406, 408
secondary, 384
simultaneously developing, 397
slug, 448
slurry
bubbly vapor/liquid, 431
solid/liquid, 431, 430
streaklines, 303
thermally fully developed, 383
turbulent shear, 320
variable property, 397
visualization
general, 413, 415, 418
napthalene mass transfer, 413-416
oil/lampblack technique, 415, 416
studies, 301
fluctuations, thermal, 322
fluid(s)
ferro, 287-292
friction irreversibilities, 405-411
high viscosity, 60
magnetic, 288
non-Newtonian, 59
power law, 62
property uncertainties, 391-397
flush mounted
cold plate(s), 214
heat source(s), 87
surfaces, 213, 214
vibration, 280
fluorocarbon liquids, 228
food processing, 60
forced convection
augmentation, 406
general, 54-56
with pulsating heating, 54-56
fouling
gas side, 37
general, 295, 298
in enhanced surfaces, 7
thermal resistance, 246, 297, 299
fraction(s)
dry area, 113, 116
wet area, 115, 117
free surface distortions, 308
free stream turbulence, 312
freezing time, 52
frequency
bubble generation, 280
natural, 323
oscillations, 323
pulsation, 309, 323
sound, 280
vibration, 281
friction factor
apparent, 386
uncertainties, 384-385
full cone spray nozzles, 334
fully developed
flow, 382
limit, 208
fusion reactors, 325

G

Galerkin method, 309, 354
Galilean invainance, 362
gas
bubble injection, 310
entrapment, 103, 104
gas side fouling
cement plants, 45-48
gas-to-air heat exchangers, 46, 47
general, 37
preheater(s), 45, 46
waste heat boiler(s), 47, 48
Gauss-Seidel iteration, 355
generation, sink mark, 69-72
generic conservation equation, 431
generic method, 51
geometries
communicating, 381
louvered (fin), 381, 383
offset (fin), 381, 383
strip (fin), 381, 383
glass
deformation behavior, 72
pressure forming, 69, 70
global secondary flow fields, 413
"gob," molten glass, 69
Graetz
problem, 63
solution, 383
gravity controlled condensation regime,
471
grid
generation equations, 423
refinement studies, 354
grooved tubes, 137
ground water hydrology, 256
H
Hamaker constant, 108, 109
heat carrier condensation, 298
heat exchanger(s)
air side, 203
compact two phase, 135
diamond channel, 148
falling film, 278
"fan sink," 193, 203
gas-to-air, 43
liquid cooled, 194
microchannel, 143-146
parallel channel, 148
plate fin, 385, 386
scraped surface, 278
shell and tube, 145
tubular, 295
heat flow choking, 236
heat/mass transfer analogy, 414
heat flux, maximum, 110-114
heat recovery
clinker coolers, 44, 45
gas-to-air heat exchangers, 43, 44
general, 37, 43
preheaters, 43
waste heat boilers, 44
heat pipe(s), 219
heat sink(s)
air cooled, 198
discrete, 215
flush mounted, 207, 215
general, 87, 143
heat spreader(s)
effect of, 223
general, 220
motherboard location, 224
system enclosure location, 223
heat transfer
augmentation
duct flow, 409
forced convection, 405
general, 379
turbine blade cooling, 339
boiling in channels, 144
coefficients
Churchill-Chu, 196
Colburn, 158
Dittus-Boelter, 158, 184, 186, 344
flow boiling, 167, 168, 171, 173
Gerstmann-Grifith, 197
Goldstein, 196
Markowitz-Bergles, 197
Nusselt, 199
Petukhov-Kirillov, 158
Protopenov, 158
Rohsenow, 198
Watwe, 198
Zuber, 198
combined with mass transfer, 255
conjugate, 255
degradation, 167, 168, 171, 173
direct contact, 256
enhancement
during drying, 256
enhanced tubes, 14, 15
general, 168, 202, 204, 295, 421
magnetic field, 289, 291-293
history of, 18, 19
options, 264
pool boiling, 14
porous media, 255
refigerants, 13
subcooled flow boiling, 14, 15
mechanisms
enhanced natural convection, 105, 106
evaporation, 105
general, 105, 106
measurements, 168
mixture mechanisms, 168
natural convection, 105, 106
transient conduction, 105-107
microscale, 143
nucleate boiling, 198
turbine blade passages, 413
helical tubes, 295
Helmholtz
free energy, 101
unstable wavelength, 110
high efficiency heat exchangers, 299
high energy lasers, 143
high viscosity fluids, 60
history of heat transfer, 18, 19
homogeneous nucleation temperature, 101
honeycomb framework, 205
Huen's method, 259
hydraulic resistance, 297
hydraulically smooth regime, 405
hydrodynamic
 analysis, 105
 boundary layer, 278, 309, 310
 limit, 113, 121
 parameters, 121
 theory, 111, 113, 114
 vapor outflow, 110, 111, 114, 115
 Zuber analysis, 115
hydrodynamically controlled vapor curves, 113
hydrology, ground water, 256
hydrophilic surface, 101
hysteresis
 boiling, 101, 116
 effects, 138, 139
input admittance, 235
instabilities
 density wave type, 443
 dynamic, 443, 448
 Kelvin-Helmholtz, 110
 Ledinegg, 443
 pressure drop type, 443
 two phase flow, 443
instability
 boundaries, 445
 critical point of, 103
 Kelvin-Helmholtz, 110
 level, 408
 phenomena, 409
 pressure, 195
 trade-offs, 408, 409
instrumentation accuracy, 392
interface
 resistance, 200
 liquid/vapor, 105, 106, 108
interfacial
 area density, 436, 437
 drag coefficient, 433
 drag law, 432
 force density, 432, 433
internal resistance, 201
internally finned tubes, 9
interrupted fins, 386-388
inviscid
 flow theory, 433
 liquids, 110
irreversibilities
 competing, 408
 duct flow, 410
 finite temperature, 410
 flow, 406
 fluid friction, 405-411
 heat transfer, 408
 overall level, 405, 406
 thermodynamic, 405, 406, 411
isolated
 bubble regime, 106
 plate limit, 208
J
jet(s)
 formation, 105
 general, 307
 impinging, 308
 impingement angle, 340
 boiling, 232
 cooling, 111
 general, 277, 339
 non-impinging, 308
 pulsating, 308
 pulsed, 308, 312
 Reynolds number, 311
 submerged, 309
Jens-Lottes model, 158, 161, 162
jump conditions, 431

K
Kelvin-Helmholtz instability, 110
kettle evaporator, 137
kiln(s)
 dust, 44
 rotary, 38
kinetic
 Taylor scale, 321
 wave propagation phenomena, 446
knurled surface, 129
Kolmogorov scale, 321

L
laminar
 boundary layer thickness, 436
 flow, steady, 392
 film condensation, 199
 flow, 143
 internal flow, 12
 sublayer, 340, 436
lap top computer(s) 208, 209
large eddy simulation, 360
laser, high energy, 143
latent heat transport, 106, 107
lead/chip resistance, 200
Ledinegg instability, 443
lexon
 spacer, 211
 substrate, 196, 200
limit(s)
 bubble packing, 121
 evaporation, 121
 hydrodynamic, 121
 liquid accessibility, 121
 vapor removal, 121
linear
 cascade tunnel, 413
 transformation(s), 235
Linde high flux surface, 127
liquid
 crystal(s)
 calibration, 343
 coated surface, 342
 thermochromic, 340
 cooled cold plate, 195
 cryogenic, 117
 drag, 108
 fluorocarbon, 228
 encapsulated module (LEM), 229,
 230, 232
 immersion cooling, 228, 232, 233
 inviscid, 110
 jet impingement, 227
 heat exchanger, 194
 immersion, 193
 filled module, 194
 mass fraction, 61
 wettability, 110, 111
liquid/vapor interface, 101, 102, 105,
 106, 108
living systems, 51, 56
Lockhart-Martinelli flow parameter, 471
louvered geometry, 381
low finned structures, 9
low frequency oscillation, 443
low gravity studies, 115
Mach number
flow, 353
general, 355, 358
preconditioning, 353
m存在的layer
evaporation, 116, 117
thickness, 108
magnetic field(s)
enhancement, 291-293
general, 287-290, 292, 293
Rayleigh number, 291
rotating, 287-290
strength, 291, 292
magnetic fluids, 288
magnetization, saturation, 287, 288, 290
mass diffusion, 55
mass diffusivity, 129
mass flux oscillation, 446
mass transfer
coefficient(s), 413, 416, 418
combined with heat transfer, 255
direct contact, 256
general, 127
enhancement during drying, 256
porous media, 256
resistance, 471
mean time before failure, 195
mesh sleeves, 136
measurement accuracy, 392
micro
channel(s)
general, 144
grooves, 231
heat exchangers, 143-145
surfaces, 143, 144
convection, 106
gravity
condition(s), 120
effect(s) of, 115
layer
evaporation, 107
thickness, 107
micro/macro layer thickness, 120, 123
microscale
general, 321, 322
heat transfer, 143, 144
Stokes, 321
Taylor, 319, 321
thermal, 320
micronfin
general, 9
tube(s), 168, 169
micromachining processes, 143
mixed convection
correlation uncertainties, 391, 395
flow, 391, 396
mixture, zeotropic, 127, 171
mobile communications, 207
model, Brinkman-Forchheimer, 215
module(s)
liquid filled, 194
multichip, 195
mold filling process, 60
moldings, plastic injection, 70
molten glass "gob," 69
Monte Carlo
computer programs
correlation criteria, 94
general, 94
method, 87, 92
numerical technique(s), 89
results, 92
technique(s), 89
multiphase flow
air jet injection and dispersion, 430
analysis, 431
CFD techniques in, 431, 436
continuous phase velocity, 433
coring in, 430
dispersed phase
general, 433-435
Reynolds number, 436
two phase flow, 435
flow, 431, 432
interfacial work, 435
interior peaking in, 430
multidimensional
analysis, 431
phenomena, 431
two fluid models, 431, 437, 430, 440
one dimensional models of, 431
particle/wall collisions, 433-435
particle turbulent wall kinetic energy, 435
spherical vapor phase, 433
two fluid
closure laws, 440
model, 431, 433
two phase turbulence model, 436
velocity distribution, 430
volume fraction distribution, 430
wall peaking, 430
multiple horseshoe vortex system, 416
Murray-Gardner assumptions, 239

N

natural convection
augmentation, 203, 204
bubble pumped, 201
enhancement, 214
general, 5, 51, 380
neighboring sites, 106
nucleate boiling, 105
single phase, 215
turbulent, 196
with pulsating heating, 52, 53
nearest neighbor distance, 104
Navier-Stokes equations, 280, 309, 354-357, 359, 362, 421, 422
Newtonian substance, 406
non condensible gases, 467
non condensing bubbles, 197
non impinging
air jets, 308
submerged jets, 308
nonlinearites, Imbedded, 309
non-Newtonian fluids, 59
nozzle spray systems, 334, 335
nucleate boiling
fully developed, 106-110, 121
general, 99, 100, 103, 105, 113, 114, 116, 121, 127, 139, 143, 194, 197, 198, 280, 309
heat flux in, 110-114
orientation of heater, 106
partial, 103, 105-107, 120
regime(s), 105, 178, 280
rotation effect, 282
stable, 115
transition, 105, 106, 112, 114, 116
vapor structure, 105

nucleation
active sites, 105, 109, 113
active site density, 110
artificial, 230
bubbles in, 105, 436
frequency, bubble, 436
general, 101, 102
homogeneous, 101
inhibition of, 104, 105
models
Colburn/Thom, 152
Dittus-Boelter/Jens-Lottes, 161, 162
Dittus-Boelter/Jens-Lottes, 161, 162
extended CHEN, 158, 161, 162
general, 152
Jens-Lottes, 158, 161, 162
Petukhov-Kirillov/Thom, 162
Thom, 158
sites
active, 104-106, 109
deactivation of, 104, 105
density, 103-105, 120
initiation of, 104, 105
surface promotion, 230
temperature
homogeneous, 101
interference, 104

492
nucleii, preexisting, 102
numerical
 analysis
 general, 392, 393
 uncertainties in, 392
 methods, 354
 modeling, 353
Nusselt number uncertainties, 392

O

“Oasis” immersion cooling system, 195
offset (fin) geometry, 381, 383
“on-off” process, biological, 51
open weave fibrous composites, 215
optimization
 procedure, 239-241
 thermodynamic, 55
optimum
 duct flow, 406
 fin spacing, 210
 flow regime, 405, 409
 geometry, 208
 least material fin, 208
 thermodynamic, 411
oscillating turbulent flows, 319, 321
oscillation(s)
 amplitude, 446, 452
 density wave, 443, 445-447, 452
 flow, 323
 frequency, 323
 low frequency, 443
 mass flow, 446
 period of, 446, 447, 452
 pressure drop type, 443, 450-452
 self sustained, 380, 381
 thermal, 443, 450-452
 two phase flow, 443
 wall temperature, 446
overall thermal resistance, 246
overfeed ratio, 334

P

packing, bubble, 112

pagers, 207
parabolic internal flow problem, 392
parallel plate arrays
 general, 127, 207, 208, 212
 geometry, 209
 optimum fin spacing, 210
parallel plate fins, 212
 parametric calculations, 266
 penetration distance, 266
partially wetted surface, 112-114, 120
particle/wall collisions(s)
 force, 436
 general, 433, 434
passage vortex system, 416
passive enhancement techniques, 333
passive immersion cooled module(s)
 (PIM)
 air cooled, 194, 203, 204
 flat cold plate, 199
 general, 193, 200, 204
 horizontal orientation, 197, 199,
 201, 203, 205
 internally finned, 199
performance
 envelope, 195
 map(s), 196, 199, 203-205
 reflux, 200
 test module, 200
 vertical orientation, 197, 200, 202,
 203, 204
perforated sleeves, 136
performance
 envelope, 195
 general, 199
 map(s), 196, 199, 203-205
 thermal, 203
periodic boundary layer removal, 309
periodic ribs, 339
personal digital assistants (PDA’s), 218
perturbation methods, 311
phase
 average, 320
 change processes, 99
 enthalpies, 61
locking, pressure wave, 301
separation indicator function, 431,
432
photon bundles
cell(s)
 entry to, 92
 interaction, 89
discrete energy units, 89
emission
 diffuse, 89
general, 89
 random, 89
surface interaction, 89
trajectory
algorithm, 89
general, 89
pi-network, 235
“pie” segment, 115
piezoelectric droplet generator, 175,
177
pin fin
arrays
 air side, 200
 general, 207, 208, 215
condensation on
general, 196
 square, 193
submerged condenser, 193
pitch to chord length ratios, 414
plain fins, 385, 387
plain sleeves, 135
plasma facing wall surfaces, 325
plastic injection moldings, 70
plate fin heat exchangers
 interrupted fins, 385, 386
 plain fins, 385
 wavy fins, 386
platelet adhesion, 190
plunger mold, 70, 71
Poisson distribution, 103
polymer
 flows, 65
 processing, 59, 60
pool boiling
conditions, 115
CHF in, 15
effect of dissolved gas, 101
general, 8, 9, 99, 100, 105, 110,
 111, 127, 135, 227, 228, 230,
 230, 278
heat transfer, 14
horizontal surface, 105
link to forced boiling, 113
low finned structures, 8, 9
subcooled flow boiling, 14, 15
tests, 135
transition to, 113
vibration techniques, 8
porous medium
general, 51, 411
heat transfer surface, 278, 280
stretching, 411
polymer particles, 303
porous strip
 continuously moving, 255, 266
 direct contact
 heat transfer, 255
 mass transfer, 255
 wet region, 255
portable communications system(s), 217
 cellular phones, 218
 lap top computer(s), 218, 219
 literature, 218
 pager(s), 218
personal digital assistants (PDA’s),
 218
solid conduction paths in, 222
two way radios, 218
wireless data communications, 218
Portland cement
composition of raw materials, 40
flow rate(s), 40, 41
manufacture, 37-39
plants
 number of, 39
primary fuels
 chemical composition, 42
 general, 40
particle density, 42
particle size distribution, 42, 43
type of fuels, 39
post-CHF model, 151-157, 165
potential flow theory, 308
power dissipation level(s), 406
power law fluid, 62
pre-CHF model, 151-156, 165
prediction uncertainties, 431
press forming, glass
general, 69, 70
pressure duration effect, 73
pressure
 disjoining, 108
drop type oscillations, 448, 450-452
 wave phase locking, 301
pressure-velocity gradient, 392
propagation of errors, 393
pseudo
droplet diameter, 156
time term, 357
pulsating
 air jets, 307, 308
circular jets, 307
 flow problems, 309
 flow(s), 308, 311
 frequency, 307, 311, 323
 heating, 52-54
 jet flows, 307, 308, 310, 311, 313
 planar jets, 307
 stagnation flow(s), 307
 submerged water jets, 307
 water jets, 308
pulsation(s)
cycles, 310
flow, 309, 311
frequencies, 309, 311, 313
low frequency, 310
period, 309
sinusoidal flow, 310
pulse
 combustion, 323, 324
 combustor tailpipe, 319, 323, 324
 velocity, 311
Q
quality of vapor, 148
R
radiant energy exchange problem, 87
radiating plane, infinite, 87, 89
radiation
 absorption, 92, 94
 back wall
 non-conducting, 92
 reradiating, 92
 contribution(s), 89
diffuse source, 92
direct
 exchange factor(s), 87
 radiation source, 87
enclosed configuration, 94
exchange factor evaluation
crossed-string, 92
graphical, 92
ramming effect, 301
random turbulence fluctuations, 310
ratio
 amplitude/wavelength, 118
 pitch to chord length, 414
Rayleigh number, magnetic field, 291
reattachment
 general, 384
 line, 417
 peaks, 418
 phenomena, 340
reciprocating migration, 303
reciprocity, 235
recirculation, 384
reflection relationship, 235, 237, 238
refrigerant, heat transfer to, 13
refrigeration
 ammonia system, industrial, 335
 enhancement for capacity, 333
 film, 334
regimes
developing, 215
hydrally smoothly, 406
isolate bubble, 106
laminar flow, 405
nucleate boiling, 178
optimum flow, 405, 406, 408, 409
thermodynamic optimum, 409
transition, 178
turbulent flow, 409
regeneration analysis, 205
regression analysis, 393
relative roughness, 405, 406, 409
radiator, 89
radiator ing
back wall, 89, 94
view factors, 89
reservoir type cavities, 104
resistance
controlling thermal, 246
convective, 246
dominant thermal, 247
external, 203
fouling, 246
interface, 203, 247
internal, 201
lead/chip interface, 200
mass transfer, 471
overall thermal, 246
thermal, 116, 127, 128, 131, 133, 134, 194, 197, 201, 227, 246, 163, 264
tube wall, 246
respiration, 51
restructuring coefficients, 165
resonance, 231
review papers, 10, 11
Reynolds stress
data, 437
general, 320
shear induced, 435
rib(s)
broken, 340
turbulated channels, 344, 345
turbulators, 215
V-shaped, 340
ripples, 118
rotary kiln, 38
rotating magnetic field(s), 287, 288
roughness
relative, 405, 406, 409
surface, 405, 406, 409, 410
rupture, film, 120
S
salt deposits, 298
SAMPLE algorithm, 63
saturation
level, zone-array, 89
magnetization, 287, 288, 290
scale analysis, 52-55
scatter diagram, 161, 163, 165
Schmidt number, 414
secondary
flows, 384
flow vorticity, 415
motion, 380
source, 89
self sustained oscillations, 380
semi-mechanistic
approaches, 116, 117
correlations, 118
sensitivity studies, 392
sequential perturbation method, 310
separated flow model, 447
separation
bubble, 302, 303
general, 384
vortices, 301, 302
shear controlled condensation regime, 471
shear induced Reynolds stress, 435
shell and tube heat exchangers
condensers, 467
flooded evaporator, 333
general, 145, 381
Sandwood number, 414, 417, 418
silicon chip heaters, 194
SIMPLE algorithm, 392, 423
sinusoidal flow pulsations, 309
sink mark (glass)
 behavior, 72
depth, 71-75
generation, 69-72
pressing duration effect, 73
relation to roughness of mold, 74
relation to temperature, 73
single phase
 enhancement
 additives, 5
 performance evaluation, 7, 8
 spirally grooved tubes, 6
turbulators, 6
twisted tape inserts, 5, 6
vibration, 5
friction factor, 449
natural convection, 215
single array elements
 series, 235
 shunt, 235
sintered materials, 215
sintered surface, 130
six equation model, 152, 153
skin friction, 321
sleeve(s)
 mesh, 135
 perforated, 135
 plain, 135
slip ratio, 448
slot perforated plates, 302
slurry flows
 bubbly vapor/liquid, 431
 solid/liquid, 431, 430
slug film boiling, 296
slug flow, 448
small channels, 384
solidification, 52, 59, 60, 66, 67
solidified layer thickness, 65
solid/liquid interface, 67
sound, 380
source-to-sink arrangement, 94
spectral methods, 308
spirally indented enhanced tubes, 474
spirally grooved tubes, 6
spirolators, 278
spray systems
 air jet assisted, 175, 176
efficiency, 180, 181
evaporator, 334, 336
full cone nozzles in, 334
general, 175, 176, 333
nozzles in 334-336
optimization of, 335, 336
sputter deposition, 145
square pin fins, 193
stability
 criteria, 102
 map, 313
staggered
 grid, 63
 pressure gradient, 392
tube bundles, 301
stagnation
 flow, 309
 line, 308, 309, 312, 313
state variable(s), 432
static contact angle, 116
stationary linear cascade tunnel, 416
statistical
 comparisons, 161, 162
 measures, 158
 results, 165
steady secondary motion, 380
Stefan-Maxwell equation, 128
Stokes scale, 321
streaming, 381, 383
strip (fin) geometry, 381, 383
Strouhal number, 305, 311, 312
structured surfaces, 231
structures, porous, 215
subcooled
 boiling, 115, 184, 325, 437, 440
 film boiling, 117
subcooling
 air cooled, 200
 augmentation factor, 202
data summary, 195
effect of, 198
finned, 195, 199
flat plate, 196-199
general, 193-195
liquid, 117
pin fin, 196
temperature, 203
water, 118
submerged jets, 309
superheat
 inception, 120
 incipience, 101-103, 198
 overshoot, 198
 required for nucleation, 101
 surface, 101, 144, 147
 wall, 101, 103-106, 108, 109, 113,
 115-118, 120
superheated
 liquid layer, 106, 107
 steam drying, 463
surface(s)
 boiling, 298
 diamond knurled, 334
 enhancement, 215
 high flux porous, 334
 hydrophilic, 101
 inclined, 115
 knurled, 129, 334
 Linde high flux, 127
 microchannel, 143-146
 partially wetted, 112-114, 120
 roughness, 74, 215, 405, 406, 409,
 410
scraping method, 278
sintered, 130
structured, 231
superheat, 100, 101
vibration, 280
well wetted, 112-114, 120
wettability, 108, 110, 111
wetting, 108
Wolverine Turbo-B, 127
swirl flow
 general, 325, 326
 multiplication factor, 327
 parameter, 425
T
tape carrier package, 219
Taylor-Görtler vortices, 418
Taylor
 scale, 319, 322
 wavelength(s), 110, 118
temporal average, 320
temperature
 dependent viscosity, 59
 homogeneous nucleation, 101
 incipient nucleation, 102
 overshoot effects, 230, 231
temporary hardness salts, 298
Tennekes model, 322
threshold performance map, 199
thermal
 boundary layer, 212, 277, 282
 conduction module (TCM), 229,
 232
 control, 208
 enhancement, 214
 fluctuations, 320
 fouling resistance, 299
 hysteresis, 230
 layer
 description, 106
 general, 108
 resistance, 116, 227
 scale, 321, 322
 system
 chaos, 309
 thickness, 108
 management, 193, 196
 oscillations, 443, 450, 452
 performance, 203
 resistance(s), 194, 197, 201, 207,
 208, 211, 212, 214, 246, 263,
 264
thermochromic liquid crystals, 340
thermodynamic
irreversibility, 405, 406, 411
optimum, 411
optimum regime, 409
optimization, 55
thermohydraulic drying, 465
thin film
boiling, 175
vaporization, 129
Thom model, 158
threshold value, 446, 447
time dependent conduction, 52
tracer method, 301, 306
trade-offs, irreversibility, 408, 409
trajectories, photon bundle, 89
transient thermal-hydraulic codes, 151
transport processes during drying, 256
transient
conduction, 117
liquid crystal technique, 339, 340
liquid/solid contacts, 117
transition boiling
curves, 116
data
general, 116
steady state, 116
general, 99, 100, 113, 116, 117, 121
reviews of, 116
trapped vapor, 100
tube-fin heat exchangers
interrupted fins, 387, 388
plain, 387
wavy, 387
tube(s)
annular grooved, 295
axially grooved, 334
bi-metal, 247, 252
burnished, 334
claddings, 247
coatings 247, 252
“cross-rifled”, 248
diamond knurled, 334
diamond shaped, 301, 302, 306
diaphragmed, 295
dimples on, 247
doubly enhanced, 247, 249
enhanced geometries, 470
enhanced operation, 135
evaporator, 249
grooved, 135
helical, 295
high flux porous surface, 334
integral fins, 247, 248
knurled, 334
microfin, 168, 169
seamless, 247-249
seamless extruded, 249, 250
“skive” fin, 251
spirally indented, 474
spirally ribbed, 470
welded, 249
tube bank(s)
circular, 301
in line, 301
staggered, 301
vibration, 280
tube bundle(s)
in line, 333
mini, 135
single, 135
smooth, 135, 334
staggered. 135, 333
structured, 135
wire wrapped, 138
tubular heat exchangers, 295
turbine blade(s)
cascade, 415
cooling, 339
geometry, 339
impingement, 340	urbulator(s)
general, 6
ribbed, 215, 340
twisted tape, 3, 6, 9, 335, 336, 474
turbulence
dynamics, 320, 321
free stream, 312
general, 381, 382
levels, 340
microstructure, 321
model(s), 413, 436, 437
promotors, 339
velocity field, 436
turbulent
dispersion coefficient, 433
flow(s)
oscillating, 319, 321
shear, 320
velocity fluctuations in, 323
wall kinetic energy, 435
turbulizer(s)
equipped tubes, 300
general, 296
twisted tape inserts
general, 3, 6, 9, 325, 326, 335, 336, 421, 422, 474
pitch, 422
single phase flow, 5, 6
in square duct, 421, 422
two phase
flow
boiling, 9
condensation, 9
general, 143
internally finned tubes, 9
instabilities, 443
microfins, 9
oscillations, 443
heat transfer, 145
heat transfer coefficient, 145
two way radio(s), 218
U
ultrasonic
enhancement, 230
techniques, 8
vibration, 280
uncertainties
composition, 392
effect of, 391
fluid property, 391, 397
friction factor, 394, 395
in mixed convection, 394, 395, 396
in numerical analysis, 391
Nusselt number, 394, 395
uncertainty
analysis, 310, 391, 392, 396
overall, 170, 393
prediction, 431
universal velocity profile, 129
unstable region, 446
unsteady flow, 380
unstructured
grids, 358, 359
meshes, 359
V
vapor
bulge, 119
bubble(s), 100
blanketing, 198
column(s), 106
embryo, 101, 102
entrainment, 103, 104
escape
rate, 114
velocity, 123
film
collapse, 118
general, 118
liquid interface, 101, 102, 105, 106, 108
mushroom, 106, 110
nucleus, 100, 102
outflow
hydrodynamics, 110, 115
process, 115
pockets, 334
quality, 148
removal
limit, 121
mechanism, 115
rate, 113
stem(s)
diameter, 108, 109, 112, 114
extinction, 113
formation, 113
general, 106, 109, 110, 112-114
merger of, 113
model, 113, 114
shear, 471
vapor space condensation, 194, 197, 202-204
vaporization
rate, 129
thin film, 129
variable property flow, 392
velocity fluctuations, turbulent, 323
vibration
fluid, 280, 281
frequency, 281
self excited, 303
surface, 280, 281
techniques, 5, 8
tube, 280
ultrasonic, 280, 281
viscosity, temperature dependent, 59
viscous heat dissipation, 62, 66
void fraction(s)
data, 437
direct, 92
distribution, 437, 430
general, 87, 94, 111, 112, 114, 121, 199, 201, 202, 448
profile(s), 108, 439
volatile organic vapors (VOC)
control, 476
emission control strategies, 468, 476
emmission(s), 468, 476
enhanced condenser technology, 468
general, 467
reduction, 476
von Karman-Polhausen techniques, 309
von Karman vortices, 305
vortex
counter rotating, 417
formation, 312, 313
generation, 308, 309
map, 308
structure(s), 307
system, multiple horseshoe, 416
passage, 413, 418
Taylor-Gortler, 418
vortices, separation, 301, 302
vorticity/velocity method, 280

W

wall
jet interaction, 340
superheat, 101, 103, 104-106, 108, 109, 113, 115-118, 120, 144, 147
temperature oscillations, 446
void fraction, 108, 111-114
water
cooled
immersion cooling module, 196
cold plate, 201
hardness, 300
subcooling, 118
wavy fins, 386, 387
wedge angle, 101
welded tubes, 249
wet area fraction, 116, 117
wet region, porous strip, 255
wettability
degree of, 111
liquid, 110, 111
surface, 110, 111
wire
meshes, 215
wrapped tubes, 135
Wolverine Turbo B surface, 127

X

Y
Z
zeotropic mixture, 127, 171
zone area, saturation level, 94
Zuber-Findlay model, 449