REFERENCES

52. Gates, J. A. and Wood, R. H., Densities of Aqueous Solutions of NaCl, MgCl₂, KCl, NaBr, LiCl, and CaCl₂ from 0.05 to 5.0 mol·kg⁻¹ and 0.1013 to 40 MPa at 298.15 K, *J. Chem. Eng. Data.*, 1985, 30, No. 1, pp. 44–49.

REFERENCES

73. Spitzer, J. J., Singh, P. P., Olofsson, I. V., and Hepler, L. G., Apparent Molar Heat Capacities and Volumes of Aqueous Electrolytes at 25°C: Cd(ClO4)2, Ca(ClO4)2, Co(ClO4)2, Mn(ClO4)2, Ni(ClO4)2, Zn(ClO4)2, J. Solut. Chem., 1978, 7, No. 8, pp. 623–629.

76. Spitzer, J. J., Olofsson, I. V., Singh, P. P., Hepler, L. G., Apparent Molar Heat Capacities and Volumes of Aqueous Electrolytes at 298.15 K: Ca(NO3)2, Co(NO3)2, Cu(NO3)2, Mg(NO3)2, Mn(NO3)2, Ni(NO3)2, and Zn(NO3)2, J. Chem. Thermodyn., 1979, 11, No. 3, pp. 233–238.

REFERENCES

132. Plotnosta’ Vodnykh Rastvorov Karyusonata Kaliya v Oblasti’ Dvukhazago Ravnovesiya Par-Zhidkost’ pri Temperaturakh ot 298.15 do 673.15 K Kontsentratsiyakh do 50 mas%. Tablitsy Rekomendue-mykh Spravochnych Danykh (Density of Aqueous Potassium Carbonate in the Field of Two-Phase
REFERENCES

Vapor–Liquid Equilibrium at Temperatures from 298.15 to 673.15 K and Concentrations of up to 50 wt. %: Tables of Recommended Data), GSSD, p. 241–87.

133. Puchkov, L. V., Kurochkina, V. V., and Matveeva, R. P., Plotnosta’ i Davlenie Nasyshechnogo Para Vodnykh Rastvorov K₂CO₃ pri Temperaturakh do 315°C (Density and Pressure of the Saturated Vapor of K₂CO₃ Aqueous Solutions at Temperatures as High as 315°C), Available from VINITI, 1976, No. 3476–767.

173. Major, V., Inglese, A., and Wood, R. H., Volumetric properties of LiCl(aq) from 0.05 to 3.0 mol·kg$^{-1}$, 322 to 550 K and 0.8 to 32.6 MPa, J. Chem. Thermodyn., 1989, 21, No. 3, pp. 321–329.

178. Majer, V., Hui L., Crovetto, R., and Wood, R. H., Volumetric Properties of Aqueous 1–1 Electrolyte Solutions near and above the Critical Temperature of Water. II. Densities and Apparent Molar Volumes of LiCl (aq) and NaBr (aq) at Molalities from 0.0025 mol·kg⁻¹ to 3.0 mol·kg⁻¹. Temperatures from 604.4 K to 725 K and Pressures from 18.5 MPa to 38.0 MPa, *J. Chem. Thermodyn.*, 1991, 23, No. 4, pp. 365–378.

195. Majer, V., Inglese, A., and Wood, R. H., Volumetric Properties of NaBr (aq, m = 0.05 to 3.0 mol·kg, T = 322 to 550 K, P = 0.8 to 32.6 MPa), J. Chem. Thermodyn., 1989, 21, No. 4, pp. 397–4067.

REFERENCES

REFERENCES

REFERENCES 346

REFERENCES

REFERENCES

496. Spitzer, J. J., Oflofsson, I. V., Singh, P. P., and Hepler, L. G., Apparent Molar Heat Capacities and Volumes of Aqueous Electrolytes at 298.15 K: Ca(NO3)2, Co(NO3)2, Cu(NO3)2, Mg(NO3)2, Mn(NO3)2, Ni(NO3)2, and Zn(NO3)2, J. Chem. Thermodyn., 1979, 11, No. 3, pp. 233–238.

REFERENCES

516. Myasnikova, V. F., Drakin, S. I., and Karapet’yants, M. Kh., Heat Capacity of RbCl, CsCl, Sr(NO₃)₂, Ga(NO₃)₃, In(NO₃)₃, Y(NO₃)₃ Aqueous Solutions, Available from VINITI, 1969, No. 852.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES 364

REFERENCES

REFERENCES

