NOMENCLATURE

\[c_f = \frac{2 \tau_w}{\rho u^2} \]
- skin friction coefficient;

\[c_p \]
- specific heat, J/(kg·K);

\[D \]
- curvature diameter, m;

\[d \]
- diameter, m;

\[d_1, d_2 \]
- wetted surface diameters of the tubes of annular or helical channel, m;

\[d_e \]
- equivalent diameter of the channels, m;

\[E = \frac{(u'^2 + v'^2 + w'^2)}{2} \]
- turbulence energy, m²/s²;

\[F \]
- flow section area, m;

\[g \]
- acceleration due to gravity, m/s²;

\[h \]
- channel height, m; enthalpy, J/kg;

\[h_* = \frac{q_w}{\rho u_*} \]
- characteristic enthalpy, J/kg;

\[K = \frac{(nu^2)(du/du)}{dy} \]
- acceleration parameter;

\[K = \frac{Gr_A}{Re^2} \]
- natural convection (bouyancy) parameter;

\[l \]
- channel length along the axial line; turbulence scale, m;

\[l_* = \frac{lu_*}{\nu} \]
- dimensionless turbulence scale;

\[l_t \]
- thermal turbulence scale, m;

\[P, p \]
- pressure, Pa;

\[q \]
- heat flux density, W/m²;

\[q^* = \frac{q_w}{\bar{h}u*} \]
- heat flux parameter;

\[R \]
- curvature radius, m;

\[r \]
- current radius, m;

\[r_o \]
- tube radius, m;

\[s \]
- twist pitch of the channel, m;

\[T \]
- temperature, K;

\[T_* = \frac{q_w}{\rho c_p u_*} \]
- characteristic temperature, K;

\[T^* = \frac{(T_w - T)}{T_*} \]
- dimensionless temperature;

\[u \]
- flow velocity, m/s;
\[u_* = \sqrt{\frac{\tau_w}{\rho}} \]
friction velocity, m/s;

\[u^+ = u/u_* \]
dimensionless velocity;

\[u, v, w \]
velocity components, m/s;

\[\overline{u'v'_+} = -\overline{u'v'}/u_*^2 \]
dimensionless turbulent shearing stresses;

\[\overline{u'T'_+} = \overline{u'T'}/u_*T_* \]
dimensionless turbulent axial heat transfer;

\[\overline{v'_+^2} = \overline{v'^2}/u_*^2 \]
dimensionless intensity of radial velocity oscillations;

\[v'T'_+ = -\overline{v'T'}/u_*T_* \]
dimensionless turbulent radial heat transfer;

\[x \]
longitudinal coordinate, distance from the heating origin, m;

\[x_+ = xu_*/v \]
dimensionless longitudinal coordinate;

\[y \]
transverse coordinate, m;

\[y^+ = yu_*/v \]
dimensionless transverse coordinate;

\[\alpha \]
heat transfer coefficient, W/(m²·K);

\[\beta = -1/\rho(\partial \rho/\partial T)_p \]
volumetric expansion coefficient, 1/K;

\[\Delta \]
maximal relative error;

\[\delta \]
boundary layer thickness, wall thickness, m;

\[\delta_{i,\alpha} \]
Kronecker delta;

\[\gamma \]
intermittence coefficient;

\[\varepsilon = \varepsilon^{3/2}/l \]
dissipation function;

\[\varepsilon_i \]
thermal dissipation function;

\[\varepsilon_t = -\overline{u'v'/(du/dy)} \]
turbulent viscosity, m²/s;

\[\varepsilon_q = -\overline{v'T'/(dT/dy)} \]
eddy diffusivity, m²/s;

\[\theta \]
angle of curvature, deg;

\[\kappa \]
universal constant;

\[\lambda \]
thermal conductivity, W/(m·K);

\[\mu \]
dynamic viscosity, Pa·s;

\[\nu \]
kinecatic viscosity, m²/s;

\[\xi \]
friction factor;

\[\Pi \]
wetted perimeter of the channel, m;

\[\rho \]
density, kg/m³;

\[\tau \]
shear stress, N/m²;

\[\varphi \]
angle, °, deg;
\[\psi = \frac{T_w}{T_f} \quad \text{temperature factor;} \]
\[\text{De} = \frac{Re}{d/D} \quad \text{Dean number;} \]
\[\text{Gr}_q = g \beta_q \frac{d^4 \rho^2}{\lambda \mu^2} \quad \text{Grashof number defined by the heat flux specified on the surface;} \]
\[\text{Gr}_A = g \beta A \left(\frac{dT_f}{dx} \right) \frac{1}{16v^2} \quad \text{Grashof number defined by the longitudinal gradient of the bulk temperature of the liquid;} \]
\[\text{Gr}_A = \frac{\text{Gr}_q}{4 \text{RePr}} \]

\[\text{Nu} = \frac{\alpha d_e}{\lambda} \quad \text{Nusselt number;} \]
\[\text{Pr} = \frac{\mu c_p}{\lambda} \quad \text{Prandtl number;} \]
\[\text{Pr}_t = \frac{\varepsilon}{\varepsilon_q} \quad \text{turbulent Prandtl number;} \]
\[\text{Re} = \frac{ud_e}{\nu} \quad \text{Reynolds number;} \]
\[\text{St} = \frac{\text{Nu}}{\text{RePr}} \quad \text{Stanton number.} \]

Subscripts:

\(o \) - refers to a straight channel;
\(1 \) - inner tube;
\(2 \) - outer tube;
\(\infty \) - in the external flow, in the stabilized flow region;
\(cr \) - laminar-turbulent flow transition;
\(cr1 \) - beginning of transition;
\(cr2 \) - end of transition;
\(f \) - in the flow;
\(in \) - at the inlet;
\(L \) - laminar;
\(T \) - straight tube, turbulent;
\(w \) - at the wall;
\[\psi = 1 \] - at constant physical properties;
\[(\bar{\cdot}) \] - averaging;
\[(\cdot') \] - oscillating component.

The remaining symbols are defined in the text.