NOMENCLATURE

\(D_{\text{out}}, D_{\text{in}} \) outer and inner diameters of tubular specimens
\(D_o, D_\alpha \) strain and stress deviators, respectively
\(E \) Young’s modulus
\(F_o, F, F_c \) original, current, and limiting (in the neck) cross-sectional areas of a specimen
\(G \) shear modulus
\(h \) thickness of a flat specimen or of the wall of a tubular specimen
\(I_{1}', I_{2}', I_{3}' \) the first, second, and third invariants of the stress deviator
\(I_{1}, I_{2}, I_{3} \) the first, second, and third invariants of the stress tensor
\(I, k_o \) parameters of the stress state rigidity: \(I = 3k_o \), \(k_o = \frac{\sigma_o}{\sigma_i} \)
\(K_o \) bulk modulus
\(M_T, M_b \) twisting and bending moments
\(N \) axial load
\(p \) pressure of the working medium (gas or liquid)
\(S_{1c}, S_{2c}, S_{3c} \) ultimate principal normal stresses calculated from real dimensions of a specimen at the instant of fracture
\(s, s_c \) current and ultimate reduction of the specimen cross-sectional area,
\(s = \ln F_o/F; s_c = \ln F_o/F_c \)
\(T_\sigma, T_\sigma \) strain tensor and stress tensor
\(T_\sigma^o, T_\sigma^o \) spherical strain tensor and spherical stress tensor
\(\gamma_{12}, \gamma_{23}, \gamma_{31} \) principal shear strains
\(\gamma_{xy}, \gamma_{yz}, \gamma_{zx} \) shear strains in the planes \(xy, yz, \text{and } zx \)
\(\gamma_{x\theta}, \gamma_{y\theta}, \gamma_{z\theta} \) shear strains in tubular specimens in the planes \(x\theta, y\theta, \text{and } z\theta \)
\(\gamma_{\text{max}} \) maximal shear strain
\(\gamma_{\text{oct}} \) octahedral shear strain
\(\gamma_i \) shear strain intensity
\(\dot{\gamma}_i \) shear strain rate intensity
\(\gamma_u \) uniform limiting shear strain in pure torsion
\(\gamma_{\text{shu}}, \gamma_{\text{sho}}, \gamma_{\text{rzu}} \) limiting shear strains in tubular specimens under multicomponent loading
\(\gamma_{\text{max}}, \gamma_{\text{oct}} \) ultimate values of maximal strains and octahedral strains
\(\gamma_{uu} \) ultimate value of the shear strain intensity
\(\gamma_{\text{cm}} \) maximal ultimate shear strain in the site of fracture
\(\gamma_a \) amplitude value of the shear strain
\(\delta \) relative elongation after fracture in uniaxial tension
\(\varepsilon_1, \varepsilon_2, \varepsilon_3 \) principal linear strains
\(\varepsilon_x, \varepsilon_y, \varepsilon_z \) strains in the \(x, y, \text{and } z \) directions
\(\varepsilon_{\theta}, \varepsilon_{\phi}, \varepsilon_r \) axial, circumferential, and radial strains in tubular specimens
\(\varepsilon_o \) mean strain
\(\dot{\varepsilon}_1, \dot{\varepsilon}_2, \dot{\varepsilon}_3 \) strain rates
\(\varepsilon_i \) strain intensity
\(\dot{\varepsilon}_i \) strain rate intensity
\(\varepsilon_a \) amplitude strain value under cyclic loading
\(\varepsilon_{ia} \) amplitude strain intensity value under cyclic loading
\(\varepsilon_u \) uniform limiting strain in uniaxial tension
\(\varepsilon_{1u}, \varepsilon_{2u}, \varepsilon_{3u} \) uniform limiting principal plastic strains at a complex stress state
\(\varepsilon_{tu}, \varepsilon_{th}, \varepsilon_{tu} \) uniform limiting plastic strains in tubular specimens
\(\varepsilon_{1c}, \varepsilon_{2c}, \varepsilon_{3c} \) ultimate plastic strains in the site of fracture
\(\varepsilon_{umax}, \varepsilon_{cmax} \) maximal uniform and ultimate strains, respectively
\(\varepsilon_{iu}, \varepsilon_{ic} \) limiting value of uniform strain intensity and ultimate plastic strain intensity, respectively
\(\varepsilon_{oct} \) octahedral normal strain
\(\varepsilon_{1t}, \varepsilon_{2t}, \varepsilon_{3t} \) limiting principal strains in creep
\(\theta_1, \theta_2, \theta_3 \) the first, second, and third invariants of the strain tensor
\(\theta_o \) relative volume change
\(\mu \) Poisson’s ratio
\(\mu_\alpha, \mu_e \) parameters of the stress and strain deviator types (Lode’s parameters)
\(\nu \) coefficient of transverse strain in the elastoplastic range
\(\sigma_1, \sigma_2, \sigma_3 \) principal normal stresses
\(\sigma_n, \sigma_y, \sigma_z \) normal stresses on the planes perpendicular to the axes x, y, and z
\(\sigma_2, \sigma_9, \sigma_r \) axial, circumferential, and radial normal stresses in a tubular specimen
\(\sigma_o \) mean normal stress
\(\sigma_i \) stress intensity
\(\sigma_{oct} \) normal octahedral stress
\(\sigma_p \) proportional limit in uniaxial tension
\(\sigma_{02}, \sigma_{02}^+ \) yield strengths in tension and compression determined by an offset residual strain of 0.2 %
\(\sigma_{u}, \sigma_{u}^- \) ultimate strength in uniaxial tension and compression, respectively
\(\sigma_{u}^+, \sigma_{u}^- \) true ultimate strength in uniaxial tension and compression calculated by the maximal load considering real dimensions of a specimen
\(\sigma_{1p}, \sigma_{2p}, \sigma_{3p} \) stresses corresponding to a proportional limit under a complex stress state
\(\sigma_{1y}, \sigma_{2y}, \sigma_{3y} \) stresses corresponding to the yield strength under a complex stress state
\(\sigma_{yy} \) yield strength determined from the generalized curve \(\sigma_i = \sigma_i(\varepsilon_i) \) by an offset residual strain of 0.2 %
\(\sigma_{1u}, \sigma_{2u}, \sigma_{3u} \) true stresses corresponding to the maximal load under a complex stress state
\(\sigma_{1u}, \sigma_{2u}, \sigma_{3u} \) conventional stresses corresponding to the maximal load under a complex stress state
\(\sigma_{iu}, \sigma_{iu}^- \) true value of the stress intensity corresponding to the maximal load
\(\sigma_{iu}^+, \sigma_{iu}^- \) long-term strength in tension and compression
\(\sigma_{1b}, \sigma_{2b}, \sigma_{3b} \) stresses corresponding to the long-term strength under a complex stress state
σₘ, σₘₐₓ stress amplitude and mean stress under cyclic uniaxial loading, respectively
σₖₚ, σₖₘ stress amplitude intensity and mean stress intensity under cyclic loading
σ₁₂, σ₃₃, σ₃₁ fatigue limit under fully reversed loading in bending
τ₁₂, τ₂₃, τ₃₁ principal shear stresses
τ₁₂, τ₂₃, τ₃₁ shear stresses on planes perpendicular to the y, z, and x axes
and parallel to the x, y, and z axes, respectively
τᵤ ultimate strength in torsion
τᵧ yield strength in torsion
τₑ shear stress in a tubular specimen
τₑ p proportional limit in torsion
τₑ oct octahedral shear stress
τₑ m mean value of shear octahedral stress under cyclic loading
τₑ max maximal shear stress
τₑ max, τₑ oct limiting values of the maximal and shear octahedral stresses
τ₋₁ fatigue limit in torsion
τ₀ fatigue limit in pulsating torsion
Ψ, Ψₑ local (in the neck) and uniform reduction of the cross-sectional area
after fracture in uniaxial tension